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Ultracold dipolar gas in an optical lattice: The fate of metastable states
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We study the physics of ultracold dipolar bosons in optical lattices. We show that dipole-dipole interactions
lead to the appearance of many insulating metastable states. We study the stability and lifetime of these states
using a generalization of the instanton theory. We also investigate possibilities to prepare, control, and ma-
nipulate these states using time-dependent superlattice modifications and modulations. We show that the
transfer from one metastable configuration to another necessarily occurs via superfluid states, but can be
controlled fully at the quantum level. We show how the metastable states can be created in the presence of a
trapping potential. Our findings open the way toward applications of the metastable states as quantum

memories.
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I. INTRODUCTION

Ultracold dipolar gases have recently attracted a lot of
attention, both from the experimental and theoretical side
[1-4]. Experiments show that it is possible to cool chromium
below the degeneracy temperature [5], and by using a Fesh-
bach resonance one can reduce the s-wave contact interac-
tion [6] such that the physics of the system is dominated by
the anisotropic dipole-dipole interaction between atoms.
These achievements together with the rather remarkable
progress in cooling and trapping of dipolar molecules [7]
clearly indicates that these systems indeed are within experi-
mental reach. Particularly interesting in this context are ul-
tracold dipolar gases in optical lattices [2,8], which offer
novel possibilities of studying strongly correlated states.

Theoretical studies [9,10] and experiments [11] on bosons
in optical lattices have pointed out the existence of two main
kinds of phases: (i) a superfluid phase (SF), characterized by
a uniform nonzero order parameter, in which particles are
delocalized over the whole lattice and (ii) a Mott-insulator
(MI) phase of localized atoms, in which the order parameter
is zero. As soon as one introduces a long range interaction
between atoms, new phases appear, both in the SF [12,13]
and MI [14,15] region of the phase diagram: the supersolid
phase (SS), which features a nonzero order parameter fol-
lowing a modulated pattern, and the charge density wave
(CDW) in which the localized atoms follow modulated pat-
terns with a resulting zero order parameter. These effects are
particularly strong in dipolar gases in optical lattices [15].
Moreover, it has been shown [16] that the lower tunneling
region of the phase diagram is characterized by the existence
of many almost degenerate metastable states of Mott-like
distribution of atoms in the lattice. These distributions con-
sist of localized atoms following a specific pattern with a
filling factor (average number of atoms per site) which is in
general not integer.

The large number of metastable states suggests the anal-
ogy between dipolar gases and classical complex systems
such as neural network models [17] or spin glass models
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[18]. As it is well known, classical complex systems, and in
particular neural networks, may serve very well as very effi-
cient classical distributed memory models. They are robust
with respect to the damage of part of the network, and they
“recognize patterns with distortion,” acting as associative
memory. It is natural to ask if these properties could not turn
out to be useful also for quantum memories. Quantum
memories serve to store in a robust way quantum states, i.e.,
not only some “classical” patterns, but also quantum fluctua-
tions (see, for instance, Ref. [19]). It would be interesting to
combine the best of the two worlds: robustness, associativity
and large storage capacity of “classical” distributed memo-
ries, with quantum stability for the storage of fluctuations.
This is the motivation and far reaching goal of this paper.
The paper itself concentrates on the first steps toward this
goal: stability, control, preparation and manipulation of the
metastable states in ultracold dipolar gases in optical lattices.

We focus on the insulating metastable states of the sys-
tem. We show how the appearance of these states crucially
depends on the dipole-dipole interaction. Our calculations on
the stability of these states show that their lifetime strongly
increases when hopping is suppressed and scales exponen-
tially with the number of sites involved in the tunneling pro-
cess to other metastable states. We show that once the system
is prepared in a certain metastable configuration, it is neces-
sary to pass through the SF region of the phase diagram in
order to dynamically pass from the given metastable con-
figuration to another one, and that this is a quantum con-
trolled process.

The paper is organized as follows. In Sec. II we introduce
the model. In Sec. Il we first derive the mean field (MF)
Hamiltonian, then calculate the ground and metastable states
of the system, for the case in which the dipole-dipole inter-
action is a small perturbation with respect to the contact in-
teraction (U/Uynn=20, see text for details). This section con-
tains several subsections: we study the behavior of the
system with respect to the cutoff range of the dipole-dipole
interaction and the size of the elementary cell that reproduces
the infinite lattice. Nonuniform lattices are also discussed.
Low-energy excitations are discussed in Sec. IV, while the
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stability of the metastable states is discussed in Sec. V,
through an instanton approach. In Sec. VI we study how to
manipulate, in a deterministic way, the metastable configu-
rations by changing in time the lattice parameters. In Sec.
VII, we treat the effects of a confining trap on the system. We
discuss our results in Sec. VIIIL.

II. THE MODEL

We study a single component gas of bosons (i.e., spin or
pseudospin, polarized) [15,20] in an optical lattice. We as-
sume the temperature of the system to be low enough such
that we can restrict to the first Bloch band, and the system is
well described by the extended Bose-Hubbard Hamiltonian
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where J is the tunneling coefficient, U the on-site interaction,
Uy the strengths of the dipole-dipole interaction at different
relative distances, and u the chemical potential which fixes
the average atomic density. In our notation (ij) represents
nearest neighbors, and ({ij)); represents neighbors at dis-

tance E .
We describe our system with Hamiltonian (1), and a
Gutzwiller ansatz for the wave function [10]

()

where
particular the time-dependence of the Gutzwiller coefficients
ﬁn’) allows us to study the evolution of the state in real and
imaginary (7=-it) time [15,21]
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We consider an infinite two-dimensional (2D) square lat-
tice. We assume the dipoles to be polarized such that the
atoms in the lattice experience an isotropic repulsive dipole-
dipole interaction in all directions of the plane. The behavior
of the system is determined by the parameters of Hamil-
tonian (1), in particular the ratio U/ Uyy between the contact
interaction and the strength of the first nearest neighbor
(INN) dipole-dipole interaction. In experiments with chro-
mium atoms, by using Feshbach resonances, it is possible to
control the ratio U/ Uyy and even turn it down to zero [6]. In
this paper we assume the long range interaction to be a small
perturbation with respect to the contact interaction U/Uyy
=20, because this regime might be reachable with chromium
atoms.
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FIG. 1. Gray sites are occupied by one atom and white sites are
empty. A “classical” distribution |®;) of atoms in the lattice (I). The
same distribution with one additional atom (Ia) and one removed
atom (Ib).

III. GROUND STATE AND METASTABLE STATES

We consider an infinite 2D square lattice reproduced by a
4 X4 elementary cell with periodic boundary conditions,
filled with dipolar atoms. Such a system is described by the
Hamiltonian (1) and we know that it is characterized by the
existence of many almost degenerate metastable states [16].

Using imaginary time evolution in Eq. (3), it is possible to
find the ground state of the system. However, often this pro-
cess gets stucked in local minima of energy and in general it
is very difficult to reach the actual ground state [16]. This is
a clear signature of the existence of metastable states. To find
all the metastable states, we use a combined mean field and
perturbative approach.

We want to write Hamiltonian (1) as a sum of single-site
Hamiltonians. Writing the annihilation operator as a;=a;
+ ¢;, we can perform the mean field decoupling on the prod-
uct

aja;=al;+ap;+ ¢+ a,d; = al ¢+ ap— @), (4)

where in the last step we have assumed small fluctuations,
characteristic of the Mott or the deep superfluid states, and
replaced ﬁjdj:O. In Hamiltonian (1) we now replace alTaj
with the expression calculated above, we neglect terms of the

order of <p? and find the mean field Hamiltonian

Hyr=Hy+H,, (5)
where
U U;
Hy=2 | - pn;+ Eni(ni -+ ?lﬁi]”i , (6)
i /
Hy=-J2 (8 a;+@a)). (7)

Given a classical distribution of atoms in the lattice |<I>I),
e.g., (I) in Fig. 1, that fulfills Hoy|®)=E|®;), we want to
know whether this configuration is stable or not with respect
to particle-hole excitations [9]; this holds not only for |®;)
being the ground state, but also a metastable state. For each
stable configuration there is a region in the u-J plane, called
a Mott lobe, in which the order parameter is zero due to the
perfect localization of the atoms at the lattice sites. There-
fore, to calculate the Mott lobe of |<I>I>, we have to evaluate
the order parameter ¢;={a;)=Tr(a,;p) at each site of the lat-
tice. The partition function Z=Tr(e #HMF), after a Dyson ex-
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pansion of the exponential, is in the lowest relevant order
Z=Tr(ePH0), with B being the inverse of temperature. The
MF density matrix is p=%e'BHMF, which in the limit of zero
temperature (B8— ) can be expanded around E;, and be-
comes p=eﬁEOe‘ﬁHMF.

Using again the Dyson expansion of the exponential, we
obtain the order parameter as

B
0 =- e'BEOf Ti[a,eF~"HoH e~™0]d 7
0

B
=J(,BieBE0f Tr[aie‘(ﬁ_T)HOalTe‘THO]dT. (8)
0

Performing the integral (8) in the zero temperature limit, we
trace around |®;). To avoid the divergence of the integral one
has to require that by adding (removing) one particle to
(from) |®,) at any site i, as shown in the Fig. 1, the energy
increases, i.e., that the state |®;) is a minimum with respect
to particle-hole excitations in some range of the parameters J
and w.

After simple algebra, one finds the order parameter to
fulfill

ni+l n;

Uni— 4+ Vi Ulni=1) =+ Vi

$i= J Pi s (9)
where V(lj;f) is the dipole-dipole interaction of one atom placed
at site { with the rest of the lattice, and the conditions for
convergence are

(- 1HU+ Vé;;$,u$ Uni+Vllji;. (10)
One finds such an equation (9), and conditions (10) for every
site i of the lattice. The convergence conditions are simple
and among them one has to choose the most stringent to find
the boundary of the lobe at /=0. Instead the equations for the
order parameters are coupled due to the ¢; term. They can be
written in a matrix form M(u,U,J)¢=0, with ¢
=(---¢;-++), and have a nontrivial solution. For every wu, the
smallest J for which det [M(w,U,J)]=0 gives the lobe
boundary of configuration |®); in the u-J plane. Notice that
if the chosen configuration is not stable, one finds that con-
ditions (10) are never satisfied. This is because the require-
ment that by adding (removing) one particle to (from) |®;) at
any site i the energy increases is false, and the integral (8)
indeed diverges.

We follow the same procedure for every possible classical
distribution of atoms in the lattice, for filling factors v
=N,/N, (number of atoms per number of sites) ranging from
v=1/16 to v=1. In Figs. 2(a)-2(c) we present the phase
diagram calculated in this way. Contrary to the standard
Bose-Hubbard phase diagram where the dimensionless pa-
rameter u/ U is plotted versus J/ U, with U being the on-site
interaction, we plot u/Uyy versus J/ Uyny Where Uyy is the
strength of the first nearest-neighbor dipole-dipole interac-
tion that sets the units of energy. The thick lines represent the
boundaries of the existence of the ground state while the thin
ones correspond to the boundary of the existence of meta-
stable states. Figures 2(a)-2(c) show the phase diagram for a
range of the dipole-dipole interaction cut at the first (INN),
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FIG. 2. (Color online) (a), (b), (c) Phase diagram with a range of
the dipole-dipole interaction cut at the first, second, and fourth near-
est neighbor, respectively. The thick line is the ground state and the
other lobes correspond to the metastable states, the same color cor-
responding to the same filling factor. In (c) filling factors range
from v=1/8 to v=1. In the right column we present metastable
configurations appearing at the first nearest neighbor (I), and second
(IMa, IIb), and the corresponding ground state (g.s.); those meta-
stable states remain stable for all larger ranges of the dipole-dipole
interaction.

second (2NN), and fourth (4NN) nearest neighbor, respec-
tively (see also Ref. [15]).

For 4NN, shown in Fig. 2(c), the low tunneling region of
the phase diagram consists of many Mott insulating states
with different filling factors, ranging from v=1/8 to v=1.
The ground states (thick lines) are multiples of even filling
factors (even number of atoms in the lattice), while the meta-
stable states (thin lines) show up also with odd values of
filling factors apart from 1/16 and 15/16. The phase diagram
presents almost perfect particle hole duality induced by the
strong value of the on-site interaction, meaning that configu-
rations at filling factors bigger than v=1/2 show up with the
same number and the same distribution of holes in the lattice
as the number and distribution of atoms for filling factors
smaller than v=1/2. Some of the metastable configurations
at v=1/2 are presented in Fig. 2 (I, IIa, IIb) with the corre-
sponding ground state (g.s.). We also find supersolid domains
in the superfluid region of the phase diagram, but we do not
consider this issue here.

A. Range of interaction

When the dipole-dipole interaction is absent (Uxn=0),
the phase diagram in the low tunneling region, is given by
Mott insulator lobes MI(n) with exactly n particles per site
depending on the value of the chemical potential w [9]. In
Fig. 2, we have shown the phase diagram for a range of
dipole-dipole interaction that is cut at the first (INN) (a),
second (2NN) (b), and fourth (4NN) nearest neighbor. Notice
that as the range of interaction increases, the lower point of
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FIG. 3. (Color online) Boundaries of the g.s. Mott lobes at zero
tunneling, calculated for even filling factors from 2/16 to 1/2, as a
function of the range (RNN) of the dipole-dipole interaction. The
colors are the same as for the previous figures of the lobes. Notice
the discontinuity in the g.s. after RNN=4 that will be filled by other
fractional filling factors.

the MI(1) lobe at J=0 moves upward and lobes for fractional
filling factors appear in the lower part of the phase diagram.
The long range interaction is responsible for the appearance
of the lobes below the MI(1) lobe. The checkerboard starts to
appear already at 1NN with a small number of metastable
insulating lobes and if the range of interaction increases the
checkerboard moves upward in the phase diagram as shown
in Fig. 2(b).

As the range of interaction increases new fractional filling
factors appear. For instance in a 4 X4 elementary cell the
smallest allowed filling factor is 1/16. By cutting the long
range interaction at 4NN we observe that filling factor 1/16
is not present, because following conditions (10), the con-
figuration of one atom in the 4 X4 elementary cell is not
stable with respect to particle-hole excitation. Nevertheless
this configuration becomes stable for larger ranges of the
dipole-dipole interaction.

Using Eq. (10), in Fig. 3, we plot the boundaries of the
ground state insulating lobes at zero tunneling as a function
of the cutoff range of the dipole-dipole interaction RNN. For
clarity, we consider only filling factors multiple of 2/16,
from 2/16 to 1/2. For RNN =4, these filling factors cover
entirely the p domain, from =0 up to the upper boundary
of the v=1/2 lobe. For larger values of the range of interac-
tion gaps between the considered filling factors appear,
which will be filled by other fractional filling factors. As we
explain below those filling factors are not necessarily com-
patible with a 4 X4 elementary cell. Notice also that the
boundaries at zero tunneling stabilize to steady values when
the range of dipole-dipole interaction is sufficiently large.

B. Size of the elementary cell

The size of the elementary cell also plays an important
role in the allowed filling factors. Indeed, in a N X N cell it is
impossible to see filling factors smaller than 1/N?. In order
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TABLE I. Range of the dipole-dipole interaction RNN and its
corresponding g.s. at the minimal filling factor v,

RNN 0 1 2 3 4 5 6 7 8

1

1 1

1
Vo 1 5 T

1 1
g:s. 2 4 5 8 9 10

to see the ground state of filling factor 1/2, a 2 X2 elemen-
tary cell is sufficient, but to be able to see filling factors close
to zero and, as a consequence of the particle hole duality,
close to 1, one has to increase the size of the elementary cell.

Given a range of the dipole-dipole interaction, there is a
rule of thumb to find which is the smallest g.s. filling factor
allowed. It consists of placing atoms in an infinite lattice at
the smallest possible interatomic distance compatible with
zero dipole-dipole interaction in the system, and find the di-
mension of the elementary cell compatible with this atomic
distribution. Table I shows the relation between the cutoff
range of dipole-dipole interaction RNN and the g.s. at the
minimal filling factor v, , for a cutoff range of interaction
up to the eighth nearest neighbor. The corresponding lobes in
the u-J plane are shown in Fig. 4.

The largest lobe corresponds to RNN=1, and the state is a
checkerboard v, =1/2. Then, as the range of the dipole-
dipole interaction increases, the corresponding lobe of the
g.s. at the minimal filling factor shows a tendency to de-
crease in size. This is illustrated in Fig. 4 up to RNN=8§
where the smallest of the lobes corresponds to v, =1/16. In
the following, unless differently specified, we will consider
the elementary cell to be 4 X4 with periodic boundary con-
ditions and the range of dipole-dipole interaction cut at the
fourth nearest neighbor to cover a sufficiently round region
of interaction in the lattice.

C. Nonuniform lattices

Another interesting thing is to see what happens to an
insulating lobe when we add to the two-dimensional lattice a

0.5

J/UNN

FIG. 4. Lobes of the g.s. at the minimal filling factor for RNN
=1,...,8. As the range of dipole-dipole interaction increases the tip
of the corresponding lobe gets smaller.
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FIG. 5. Insulating lobes of the checkerboard state with a nega-
tive local chemical potential that follow a checkerboard pattern (a)
and a stripe pattern (b), see text for details. The continuous line
shows the lobe without any superlattice applied.

superlattice, mimicked by a local chemical potential Apy;
with a specific pattern. This can be useful for applications
such as initialization and manipulation of the metastable
states.

We replace the chemical potential in Egs. (9) and (10)
with u— w—Aw,;. Our convention is that Au;<0 for a
deeper well, such that it is energetically favorable for an
atom to stay in it. For any choice of the Ay, one can easily
calculate the effect of the superlattice on a given insulating
lobe.

In Fig. 5, we show the effect of two different superlattices
on the checkerboard insulating lobe. In Fig. 5(a) A,
=Au nECB), with Au<<0 and nSCB) the density of the check-
erboard. The thick, dashed, and dotted lines are for
Ap/Ugn=0,-0.6,-1.2, respectively. As Au grows in mag-
nitude, the lobe becomes bigger, as expected. Notice that the
upper point of the lobes at /=0 does not change while chang-
ing A, while the lower point moves towards w=0 as Au
decreases. This is easily understood by looking at inequali-
ties (10), that in this case become

(= DU+ Vi + Ay < < Uny+ Vi + A (11)
The upper limit is given by the smallest of the right hand
side (RHS) in conditions (11), i.e., at n;=0 where, Au,;=0,
while for the lowest limit, we have to choose the biggest of
the left hand side (LHS) condition, where n;=1 and Ay;
<0.

In Fig. 5(b), the local chemical potential follows a stripe
pattern Au,=Apu ngs), where ngs) is the density distribution of
the stripe (S) state (Ila) of Fig. 2. The magnitude of A is the
same as in the above case for the thick, dashed, and dotted
lines. As Au decreases, the lobe becomes smaller due to the
distribution of local potential energies that do not favor the
checkerboard configuration. It is not difficult to see that the
lower limit, set by the biggest of the LHS of conditions (11),
is given for n;=0 and Aw,;=0, while the upper limit set by the
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smallest of the RHS of conditions (11), is found where n;
=1 and Ay;<0.

D. 3D lattices

Optical lattices in real experiments are in general three-
dimensional and one should take into account that atoms can
tunnel in all directions as well as the anisotropic dipole-
dipole interaction with the whole lattice. While it is experi-
mentally feasible to isolate two-dimensional (2D) layers such
that atoms do not tunnel from one layer to the neighboring
ones, it is not possible to switch off the inter-layer dipole-
dipole interaction due to its long-range character. However,
if the direction of the dipoles is perpendicular to the plain of
the layers (as in our model), the resulting dipole-dipole in-
teraction between different plains is attractive. In the Mott
phase, this makes energetically favorable to have the same
distribution of atoms in all layers [22]. One could check it by
using Eq. (3) for a three-dimensional system and make use of
the imaginary time evolution technique. This is not the pur-
pose of this work and will be done elsewhere.

IV. LOW-ENERGY EXCITATIONS

The low-lying excitations are creating particles (p) and
holes () in a given metastable configuration. For every site

i, at J=0 the excitations are given by E'=Un;—u+ Vé;i) and
Ef-’z,u,— U(ni—l)—V‘li;;, where n; is the density at site i.

Clearly the hole excitation for 7;=0 is unphysical. At finite J,
the excitation spectrum w(k) of a metastable configuration, is
given by the small fluctuations 5ff1’)(t) around the unper-

turbed metastable state coefficients fﬁ,i). In a Mott state with
exactly m; particles at site i, the only non-zero coefficients

are given by £V, Writing 7=+ 5(s) in Eq. (3), and
taking into account only linear terms in the fluctuations, we
get

. of _ ’f_ o o /_ .
lﬁﬁ,’) = —J[cp,»\e’ni]_fgl’ll +@,\n;+ 1175;11]

U 4 . A
+ Eni(}’li— 1) + ”llV(lj;;— mn; — X,(,,ll) 5f§ll)s (12)
where @i220>i2n§nj+1®i)*6ﬁ{21+ nill&fi/)*) and  x
=%m,-(m,»—1)+m,-V['j;;—,um5 is an extra phase that we have
introduced to eliminate the rotating phase of the f(n? coeffi-
cients. The only nontrivial terms in Eq. (12) are therefore

. — _%
i8fyl1 = ELf,L ~ INmi@,,

18y = Epdfyly = Nm;+ 15, (13)
and their complex conjugates. It is convenient to study Eq.
(13) and their com(plex conjugates in the Fourier domain
with 5f§1i)(t) =3,ekx l)ag)(k,t), x being the 2D vector point-
ing at site i. After simple algebra one finds the Fourier modes
to fulfill

ial) (k1) = Ela (k1) = J 2 [Vmy(m; + Da’" (= k,1)
o
aw

+ \e"m,-mja,(,’;)_l(k,t)]e"k' , (14)
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i) (k1) = EPa), (k1) = J 2 [N(m; + 1) (m;+ Dall), (k,1)
Wi

+y(m; + l)mjag)_*l (- k,t)]e"k'dm, (15)

with d={*(d,0), *(0,d)} being the vectors of nearest
neighbors in the lattice, and d the lattice spacing. We look for
stationary solutlons of Ec(:ls (14) and (15) with the ansatz

(’)(k = u (k)e"“’(k)’+v ’)(k)e“"(k)t For every site i of the
elementary cell Egs. (14) and (15) become

[E! = () Ju (k) = T [Nmy(m; + DoV (- k)
[

G
+mm, mul) (k) ]e™d" =0,

m+1 m+1

[E? + o()]o"* (k) = I, [\ (m, + 1) (m;+ Do (- k)
Ui

+\(m; + 1)mjufrjl)_l(k)]eik'do> =0,

[E - (k)] (k) - JE[\(m +1)(m;+ Dull), (k)

—

A m+ Dmp™ (- k)l =0,

[E! + (k)T (- k) - J% [Vmm; + Du?,, (k)

+ V"mimjvz)_ﬁ (- k)]eik'dg) =0. (16)

This set of 4N? equations can be reduced depending on the
symmetry of the density distribution, as in the case of the
checkerboard where only two sites are relevant. Equations
(16) can be written in a matrix form, M(,.)=0, and have
nontrivial solution only if det{M]=0. The excitation spec-
trum is then given by the positive solutions of the last equa-
tion. We have checked that Egs. (16) lead to an excitation
spectrum that perfectly agrees with the one calculated in Ref.
[14] for the checkerboard and the MI(n) states. In Fig. 6(a),
we show the lowest excitation branch of the four metastable
configurations of Fig. 2, for u=3.3Uyn, J=0.1Uyy, and
k.d =kyd=k/ 7, in the first Brillouin zone. The thick line is
for the (CB) state, the dashed, dash-dotted, and dotted lines
are for (I), (Ila), and (IIb) states, respectively. At the bound-
aries of the insulating lobes the excitation spectrum w(k
=0) goes to zero.

Oscillations. In the real time evolution in Eq. (3), at a
constant density, the chemical potential u gives only a phase
factor, therefore the tunneling coefficient J is the only impor-
tant parameter. Suppose at time ¢ the system is described by
a Gutzwiller state |¢,), we define the population of the meta-
stable state |¢ys) as

Pys() = V[ pas| )

the N;h root of the fidelity, where N, is the number of sites of
the elementary cell. This definition has the advantage over
the fidelity that it does not depend on the number of sites,
while the simple fidelity would be one if and only if |¢,)
=|¢ms)» and otherwise depend on the dimension of the cell
and tend to zero for an infinite number of sites N,.

; (17)
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FIG. 6. (Color online) (a) Lowest excitation spectrum of meta-
stable state (g.s.) (thick), (I) (dashed), (Ila) (dash-dotted), and (IIb)
(dotted) of Fig. 2 calculated for u=3.3Uyy, and J=0.1Uyy. Popu-
lation (b) of the metastable state (I) during real time evolution, the
thick and dash-dotted lines are for a small perturbation of the meta-
stable state for J=0.04Uyy and J=0.12Uyy, while the dashed line
corresponds to an initial big perturbation and J=0.08Uyy; (c) the
Mott insulating lobe of the state (I).

In a metastable state, atoms are perfectly localized at the
sites of the lattice, and the system is a Mott insulator. By
adding some ‘“noise” in the Gutzwiller coefficients we ran-
domly remove population from occupied sites and move it to
empty ones, conserving the total number of atoms, and the
system is superfluid. In general, for a given initial condition
close to a metastable state (meaning that the density follows
the distribution of the metastable state plus some noise) and
the tunneling coefficient J smaller than the tip J, of the
metastable insulating lobe, in the real time evolution we ob-
serve small oscillations around a local minimum of the en-
ergy with a multicomponent frequency v. The frequency of
oscillation v depends on the exact initial condition and on the
tunneling coefficient. As an example in Fig. 6(b) we show
the real time dynamics of the population of metastable state
(I). The thick and dash-dotted lines are calculated for J
=0.04Uyy and J=0.12Uyy, respectively, the approximate os-
cillation frequencies, in units of Z=1, are given by v/ Uy
=21/4.8 and v/ Uyy=2m/6.1, respectively. The dashed line
is calculated for J=0.08Uyy and at a larger value of the
initial perturbation, so that its oscillation frequency is
v/ Unyn=2m/7.9. In Fig. 6(c) we plot the insulating lobe of
configuration (I), and the round spots are placed in corre-
spondence of the values of the parameters for oscillations
shown in Fig. 6(b).

V. STABILITY OF THE METASTABLE STATES

In Sec. III, we have studied an infinite 2D lattice repro-
duced by a 4 X4 elementary cell with periodic boundary
conditions. We have shown that polarized dipolar bosons in
such a system feature many almost degenerate metastable
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FIG. 7. (Color online) Particle in a double well (a) and the
instanton (b).

(2)
X

% 0

states that are stable against particle-hole excitations. An-
other clear sign of the existence of metastable configurations
is the fact that in the imaginary time evolution is very diffi-
cult to reach the ground state and often the process gets
stucked in local minima of the energy. Therefore, we can
think of these states as local minima of a potential where a
particle can be trapped for a certain time that depends on the
barrier that separates it from another local minimum.

Before studying the stability of the metastable states we
remind the reader of the simple case of a particle in a double
well potential. Being the particle at time =0 in the right well
(xo) as shown in Fig. 7(a), the probability at time T for the
particle to tunnel in the left well can be calculated using the
propagator in imaginary time and a path integral approach
[24]. The probability amplitude for the particle to tunnel is
given by

(= xole™™|xo) = sinh(Tawye™), (18)

where w, is of the order of the frequency at which the par-
ticle oscillates around the local minimum x, and S is the
minimal action along the stationary path that connects x, to
—x, in the inverted potential of Fig. 7(b), called an instanton.

The corresponding probability amplitude in real time is
obtained from Eq. (18) by analytical continuation just by
replacing 7=iT, and one finds that the particle has tunneled
completely to the left well after a time given by

Twy= geso. (19)

Therefore the tunneling time is known once we know the
frequency of small oscillations w, and the action S, along the
stationary path in the inverted potential. Regarding the meta-
stable states, the analogy of the tunneling of a particle in the
double well potential is the process in which a metastable
state tunnels into its complementary, in which the role of
particles and holes is exchanged as shown in Fig. 8 (I).
Given a metastable configuration defined by its
Gutzwiller coefficients {ﬁ,i)}, it is not straightforward to iden-
tify the barrier that separates it from its complementary. For
the Gutzwiller wave function we look for a simple param-
etrization that allow us to identify the metastable states and
parametrize in a simple way the process of exchanging atoms
with holes and viceversa in certain lattice sites. We will de-
scribe the process of passing from one local minimum to
another one using only one variable and its conjugate mo-
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FIG. 8. (I) Exchanging particles with holes, and (II) process
where only in a region of the lattice (first and third row from top)
the exchange of particles with holes takes place.

mentum. The process in which a metastable state tunnels into
a state different from its complementary, as shown in Fig. 8
(IT), carries the complication that initial and final states are
not degenerate.

A. Parametrization and ansatz
The imaginary time Lagrangian of a system [25], de-
scribed by a quantum state |®), is given by
_(D[D) — (@[ d)
2

L= +(D|H|D). (20)

The coefficients of the Gutzwiller wave function (2) in gen-
eral can be complex numbers. We write them in this way

A B
== +ip),
V2

i 1 0. (i
"= = i), (21)
.

where xif) and pﬁf) are real numbers. With the last prescrip-
tion, the Lagrangian of the system becomes

1
LG p)==i 2 psl +(@IHG p )Y, (22)

n n °Fn
i,n=0

We write it in its canonical form

1
LGP = X POZD - 1D, PY), (23)

i,n=0
where

Pff) =— ipﬁf) and

HED,PD) = —(@|H(D, p)| D) (24)

n>

is the conserved quantity.
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FIG. 9. (Color online) Stationary paths (a), action per site (b),
and barrier (c). The initial state (I) at (¢,P)=(0,0) and final state
(IM) at (g,P)=(y2,0). The state in (II) is at an intermediate point.

Lagrangian (23) is an equation in 2Ny independent vari-
ables and their conjugate momenta, where Ny is the number
of sites of the lattice. We want to reduce the number of
independent variables to one.

Consider a simpler case when we have only two sites with
one particle in the left well (O=occupied) and we want to
parametrize the process in which the particle tunnels into the
right well (E=empty), with the constraints on (xff), pﬁf)) that
the normalization is respected and the number of atoms is
conserved

1
1 . )
S @ -P) =1 i=0.E.
n=0

|
N2 \2
> E(xﬁ” -P)=1. (25)
i=0
We make the following ansatz:

o
i =x =g,

PE=pP=p,
po P(IO),
xE =0,
P =_plo). (26)

The only independent variable is ¢. Its conjugate momentum
P is a complicated function given by dL/dq. When (g, P)
=(0,0) the atom is in the left well (O) while at (g,P)
=(\E,O) it is in the right one (E). The instanton is then the
stationary path that joins those two points in phase space.
The action S, is calculated along this path.

For more complicated cases, as the processes described
by Figs. 8, there are more than two sites that exchange par-
ticles with holes and vice versa. We consider only two inde-
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pendent sites (O) and (E), subject to the parametrization
(g, P) explained above, where (O) is occupied by one atom
and in (E) there is a hole. The remaining occupied sites (j
€ {0}), behave as the independent (O), while the empty ones
(j e {E}) behave as the independent (E). We also have to take
into account potential sites that do not change, as in the
example of Fig. 8 (I). These conditions together with ansatz
(25) and (26), enter in Eq. (23) as Lagrange multipliers, and
the Hamiltonian becomes

1
a2 2
H(q.P)=H(q.P)+Ni| 2 2 n(xl” = PP) =2 | + 0 (P
i n=0
+ P) + N5 () = x{) 4 0y (P = PO) 4 n5(x )

@) + NP = P)+ X N - @) + 20,7
jeio}

=X\ + 70(P§) = P) + 0 (PY = PO)]

+ 2 NG -2 + N Y - g) + o (P

Jjel{E}
=P+, (PY - P+ 2 [N - 2)
Jjefo}
+ )\?,lx%j) + n?,OPg) + 77?,1PY)] + 2{} D\]l',()x(()/)
jell
+ )\/1‘,1()6%/) -2)+ n},OP(()D + 77},1PY)], (27)

where the first two lines are for the independent sites (O) and
(E), the third and fourth correspond to sites forced to behave
similar to (O) or (E), and in the last two lines we have taken
into account also possible conditions for sites that do not
change.

B. Action and barrier

Given an initial and final distribution of atoms in the lat-
tice, as for the examples explained above, the procedure will
be: (i) identify the sites that exchange particles with holes
and vice versa, sites that do not change, and adjust Lagrange
multipliers in Eq. (27); (ii) calculate the stationary path that
starts at (¢,P)=(0,0) and, for degenerate states, ends at
(g,P)=(N2,0); (iii) calculate the action along the path, given
by

d
So=f£(q,P)dr=f E(q,P)—?, (28)
path q

with g=dH /P from Eq. (27).

In Figs. 9 and 10, we show the stationary path (a) that
connects the metastable state (I) with its complementary
(IIT). At J—O0 (thick line), the path is bigger than at J#0
(dashed lines), then the orbit reaches its minimum extension

in correspondence of the tip of the lobe J. In Figs. 9 and
10(b), we plot the action per site as a function of the tunnel-
ing coefficient. The action diverges at /— 0 and it reaches its
minimum in correspondence of the tip of the metastable
lobe. In Figs. 9 and 10(c), we calculate the barrier as
—H(g,P=0) for J=0.

In Figs. 11 and 12, we plot the path, the action and the
barrier for a metastable state (I) that tunnels into a nonde-

043604-8



ULTRACOLD DIPOLAR GAS IN AN OPTICAL LATTICE:...

24 26
() (b)
p Sy/Ng
- -
A b d
-
0 0 -
0 V2 0 JU J/Unn
NN

I (I1D)

=

FIG. 10. (Color online) Stationary paths (a), action per site (b),
and barrier (c). The initial state (I) at (¢,P)=(0,0) and final state
(IM) at (g,P)=(y2,0). The state in (II) is at an intermediate point.

generate one (IIT). Notice that in contrast with the previous
case, the paths start at (¢,P)=(0,0) but end at 0<g< V2.
This is due to the fact that the final and initial states do not
have the same energy.

By comparing the above figures we observe that given a
metastable state, a longer lifetime corresponds to a lower
energy barrier. Small energy differences between the initial
and the final states and large regions of the lattice undergoing
particle-hole exchange in the tunneling process contribute to
large energy barriers. Hence, in general it is more likely for a
given state to tunnel into a state deeper in energy, e.g., the
ground state, than into its complementary, which implies the
exchange of particles with holes in the whole lattice.

VI. DYNAMICS

Once the lattice is prepared in a configuration with a cer-
tain symmetry, the capability of manipulating the configura-

2.4 2.6
(a) (b)
p S O/NS
0 - 0
0 V2 0 ; J/Unn
/UNN
0.87
© ) (I (I
Z
DUJ
Z
[sa]
0.47
0

FIG. 11. (Color online) Stationary paths (a), action per site (b),
and barrier (c). The initial state (I) at (g,P)=(0,0) and final state
(I) at (¢,P)=(y2,0). The state in (II) is the bouncing point at
(g,P)=(0.89,0).
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FIG. 12. (Color online) Stationary paths (a), action per site (b),
and barrier (c). The initial state (I) at (¢,P)=(0,0) and final state
(I at (q,P)=(y2,0). The state in (II) is the bouncing point at
(g,P)=(1.36,0).

tion is essential in order to use the system as a quantum
memory. Given an initial metastable state, it would be nice to
change in time the lattice parameters such that the system
evolves in a deterministic way towards another chosen meta-
stable configuration. Since there are many metastable states
and many parameters, we study the problem in a simplified
scenario of a finite 2 X2 square lattice, and with a cutoff
range of the dipole-dipole interaction at the second nearest
neighbor (2NN). In this section, we study how to dynami-
cally pass from a given configuration to another one, with
two different methods: (i) adiabatic passage in which we
look for an adiabatic transfer of one state into another one
and (ii) through MF real-time evolution.

A. Adiabatic passage

We study the exact Bose-Hubbard Hamiltonian (1) for the
2 X 2 lattice mentioned above at filling factor 1/2. There are
six possible ways of placing two atoms in the lattice and are
shown in Fig. 13, which provide the basis for the Hilbert
subspace of the Bose-Hubbard Hamiltonian. Moreover, the
MF phase diagram of such a system [28] consists of a two-
times degenerate checkerboard (CB,CB*) ground state and a
four-times degenerate metastable state in which particles are
vertically or horizontally aligned in the lattice as a stripe
(S1,...,54) pattern. The CB lobe and S lobes are shown in
Fig. 2(b).

The Hamiltonian in this basis is non diagonal because of
tunneling. By diagonalizing the Hamiltonian, we find the
ground state

CB cB” S1 ) s3 s4
FIG. 13. Disposition of two atoms in the lattice. In MF, CB and

CB* is the ground state, while S1,...,S84 are degenerate metastable
states.
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FIG. 14. (Color online) (a) Eigenenergies of the Bose-Hubbard
Hamiltonian, thick and dashed line are the ground and first excited
state, as a function of Au. (b) The ground state of the system is
initially prepared in a CB state (filled bar), while the first excited
state consists of equally populated stripe states (empty bars), then
an S1-type local chemical potential is applied. (c) The final popu-
lations is given by an S1 ground state (filled bar) and a CB first
excited state (empty bar). (d) The variation of the tunneling
coefficient.

! 122
|thos) = X2 ) + Y (Icp) + [cp) — (29)
i=1

to be a combination of all the states of the basis, where x is
a function of the tunneling coefficient.

Now we want to add to the lattice a superlattice mimicked
by a local chemical potential

= A= = Sung® - Aung’, (30)

where n[CB and nfl are, respectively, the density distributions
of CB and S1 state of Fig. 13.

To transfer a CB state to the metastable S1, the procedure
is (i) prepare the system in CB; one has to break the sym-
metry of the ground state (29) by applying a local chemical
potential that privileges CB, in this case su <0 and Au=0
in Eq. (30). Notice that Su from now on will be kept con-
stant. Then (ii), apply a second local negative chemical po-
tential Ay in the position of atoms in the S1 state. The last
process is shown in Fig. 14, where we plot (a) the spectrum
of the Bose-Hubbard Hamiltonian as a function of Au.

At Apu=0 the system is already prepared in the CB state
for du=-Uyxy as shown from the population graph Fig.
14(b). As Au decreases the population is adiabatically trans-
ferred in the S1 state Fig. 14(c). In correspondence to the
anticrossing we have increased the tunneling coefficient J as
shown in Fig. 14(d), in order to increase the magnitude of the
gap. For a different adiabatic transfer involving other states,
one has to go through the above steps with the appropriate
“distribution” of local chemical potential in the lattice.

The drawback of this approach is that for a finite system
there is no SF-MI phase transition [23], therefore no concept
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FIG. 15. (Color online) Spectrum of the Bose-Hubbard Hamil-
tonian for J=0 (a), and J=0.18Uyy (b). At J=0 the ground state
coincides with the MF ground state. In (b) the shaded areas repre-
sent the superfluid region calculated in MF, while the round spots
are the phase boundaries of filling factor »=1/2 calculated with the
Bose-Hubbard Hamiltonian.

of MI lobes. Nevertheless we can identify traces of the
ground state MI lobe for the filling factor 1/2. We calculate
the spectrum of Hamiltonian (1) for the 2 X2 system intro-
duced above at Ay;=0 but for all filling factors, and in Fig.
15 we plot the eigenenergies versus the chemical potential.
The different slopes are for the different filling factors v
=1/4, 1/2, and 3/4 respectively.

At J=0 Fig. 15(a) there are four degenerate eigenstates
both for filling factor »=1/4 and v=3/4, while for v=1/2
the number of eigenstates is 6: a twice degenerate ground
state, and an excited state manifold of four degenerate states.
When J becomes nonzero (b) the degeneracy breaks, v
=1/4 and v=3/4 both split into three levels while v=1/2
splits into four. We identify two types of eigenstates: (i)
Mott-like states for which the eigenenergies do not depend
on the tunneling coefficient J (continuous lines) and (ii) su-
perfluidlike states that change their eigenenergies as J in-
creases (dashed lines). At /=0, as shown in Fig. 15(a), the
ground state boundaries of v=1/2 range from pu=v2Uyy to
u=4Uyxn and coincide with the boundaries of the checker-
board calculated in MF. At J# 0, as shown in Fig. 15(b), we
estimate the boundaries of the Mott-like state (first thick line)
as the crossing points with the superfluidlike ground states of
v=1/4 and v=3/4 (dashed lines), plotted as round spots in
the graph. The shaded area is the MF superfluid region
around filling factor 1/2. The boundaries of the checker-
board calculated in MF, enclosed in the shaded area, are
different due to the low accuracy of this method.

B. MF real time evolution

For large lattices, it is more reliable to look at the dynam-
ics in MF. To pass from one configuration to another, it turns
out to be necessary to go into the superfluid region of the
phase diagram. Even if at the MI-SF transition it is impos-
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sible to be adiabatic because of the continuous excitation
spectrum of the SF phase [14], for a certain range of lattice
parameters the process works.

We describe the dynamics through Eq. (3) in real time.
Two things are worth noticing: (i) to have a nontrivial dy-
namic, one has to prepare an initial state with a nonzero
superfluid parameter ¢; # 0, and of course J# 0. This is be-
cause the coupling term in Eq. (3) is directly proportional to
the order parameter. And (ii), since the number of particles is
a constant of the motion that is fixed from the initial condi-
tion, the chemical potential x gives only a phase factor dur-
ing the evolution. As a consequence of the latter, at a con-
stant integer density the only important point in the phase
diagram is the tip J, of the insulating lobe indicating the
phase transition at constant density. Starting from an initial
condition close to a metastable state, meaning that the den-
sity follows the distribution of the metastable state plus some
noise, for J smaller than Jy, the system shows small oscilla-
tions around a local minimum of the energy, as presented in
Fig. 6, while for larger values of J, one finds deep superfluid
oscillations.

With the population defined as in Eq. (17), we aim to
transfer population from a given metastable configuration to
another one with a different symmetry, by changing the lat-
tice parameters. In the MF regime, the Mott insulator states
are exact eigenstates of the MF Hamiltonian. The effect of a
nonuniform lattice on a given configuration is only to change
the size of its insulator lobe but, as long as the lobe exists,
the configuration remains stable. This is consistent with the
definition of metastable states as local minima of energy and
is confirmed by the lobes of Fig. 5. This means that there is
no coupling between the metastable states and consequently,
by changing a local chemical potential Au; as in Eq. (30),
there is no possibility of having an anticrossing of the type of
Fig. 14 but only a perfect crossing. The only possibility of
transferring population from a metastable state to another
one, is by passing through the superfluid (SF) region of the
phase diagram and enter a different metastable insulating
lobe. It turns out that this is a quantum controlled process
which is very much sensitive to the exact initial conditions
and the way the parameters change in time.

We specifically study the 2 X2 system introduced above
with periodic boundary conditions and again, we want to
transfer population from the CB state to S1 by applying the
time dependent local chemical potential Au; of Eq. (30), in
favor of S1. We also want to change the tunneling coefficient
J in time, so as to exit the CB lobe and, through the super-
fluid region, enter into the S1 lobe. Ideally we want the
population of S1 at the end of the process to be one,
Pg(ts,)=1, but the actual value of Pg(¢g,) is very much
sensitive on the exact values the parameters take during the
dynamics. Specifically, we change the lattice parameters
smoothly in time as

Ault)=-C tanh{g(t— zo)] + Ctanh{— ﬁto} ., (1)
C C
where C=1.7Uyy and 1,=60/ Uyy (in units of 2=1), are kept

constant, while « is a free parameter that sets the maximum
slope for this function, and
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FIG. 16. (Color online) (a) The pulse of local chemical potential
as a function of time. (b) The smoothed steplike function is the
tunneling coefficient as a function of Ay, while the thick (dashed)
line is the tip of S1 (CB) insulating lobe. (¢) Population inversion,
from CB to S1 at the end of the process. Notice the oscillation of
populations when passing through the SF region of the phase
diagram.

I, —J
J(Ap) = TO
2J
tanh[— sm, ] — tanh[s(Au —m,)] + 0
. ]m - J()
X min
2,
tanh[s(Au — m;)] — tanh[— sm;] + ,
Jm - ‘]O
(32)

with s=15/Uyxy and Jy=0.02Uyy constants, m;=-2.6Unyn
fixes the superfluid to Mott insulator transition point at
Api=-2.57Unn, Whereas J,, and m,, are free parameters re-
lated with the maximum value of tunneling coefficient in the
superfluid region and the point Au, where the CB ceases to
exist. Together with the intensity /, of the random noise that
fixes the initial condition [29], the space

{a’AMD’JVI’[?Ir}’ (33)

of our control parameters is in total four-dimensional. We
assume two extra things: (i) an initial nonuniform lattice that
lifts the degeneracy between CB and CB* in favor of the
checkerboard, whose intensity is fixed at Su=—Uyy, and (ii)
we isolate the rows of the lattice from tunneling to one an-
other.

In Fig. 16 we show the dynamics of the transferring pro-
cess for a=40X 102Uy, Ap,=-0.45Uxny, J,n=0.66Uxx,
and I,=4X1073. In Fig. 16(a) we plot the pulse of local
chemical potential Au as a function of time. The smoothed
step function in Fig. 16(b) shows the tunneling coefficient as
a function of Au, while the dashed (thick) line is the tip of
the CB (S1) insulating lobe. These pulses drive the popula-
tion of S1 [Fig. 16(c), thick line] to a steady value of
P (t,)=0.992 at the end of the process (f5,=120/Uyn),
while the population of the CB state [Fig. 16(c), dashed line]
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FIG. 17. (Color online) Percentage of realizations (a) terminat-
ing with an S1 population bigger than threshold, versus threshold
itself; as the threshold increases less realizations satisfy the required
precision. (b)—(d) Slices of the discretized space of control param-
eters; the spots are for processes ending in S1 with at least 0.98
population. In (b) we fix 7,=10X 1073 and Au,=-0.45Uyy, in (c)
and (d) we fix a=40X 10_3U§N and Au,=-0.45U\y, respectively,
for J,,,=0.66UNN.

diminishes considerably. Notice the oscillation of popula-
tions when passing through the SF region of the phase dia-
gram. Notice also that due to the definition (17), populations
do not have to sum up to one.

Having such a precise control on the parameters (33) is
very challenging from the experimental point of view. Nev-
ertheless, such a process is robust if there is a reasonable
range in which the parameters can vary without affecting the
final result. The goal is of course the population of S1 to be
as close as possible to 1 at the end of the process. We dis-
cretize the space of parameters (33) arbitrarily, and for every
value of the parameters simulate the dynamics represented in
Fig. 16. The resulting statistics is shown in Fig. 17.

We have observed that there is a lower limit at J,,
=0.6Uyy, below which the transferring process does not
work. For values of J bigger than this limit, almost all the
realizations end up in S1 state with a final population bigger
than 0.8, but the exact value depends on the control param-
eters of the single realization. In Fig. 17(a), we fix J,,
=0.66Uyxy and plot the percentage of the dynamics with
Py, (t5,) coming through a given threshold as a function of
the population threshold itself. As we increase the threshold
the number of simulations ending up in S1 with a population
that overcomes the given threshold decreases, up to no simu-
lations ending up at the ideal value Pg(¢z,)=1. This is a
clear signature of a quantum controlled process. Notice,
however, that about 36% of our simulations terminate with
S1 being populated at 0.98.

In Figs. 17(b)-17(d) we show slices of the hypercube de-
fined by the discretized space of control parameters (33),
where the spots are placed in correspondence of the values
giving a dynamics with Pg;(#5,) =0.98. In Fig. 17(b) we fix
1,=10X 107 and Au,=-0.45Uyy, in Figs. 17(c) and 17(d)
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FIG. 18. (Color online) Density p(x,y) and superfluid parameter
|@(x,y)]? in the harmonic trap.

we fix @=40X107Uxy and Au,=-0.45Uyy respectively,
for J,,=0.66Uyy. There is a closed region in the discretized
{a,Au,,1,} space in which one always comes through the
0.98 population threshold. This is true also for larger elemen-
tary cells, for which we have checked that the transferring
process works the same way. This means that experimentally
one has the freedom of setting the control parameters such
that their small fluctuations do not affect the transfer process.
This makes the specific process of population transferring
from CB to S1 quite robust.

VII. TRAP EFFECTS

So far we have considered an infinite lattice reproduced
with a 4 X4 or 2 X2 elementary cell with periodic boundary
conditions. In real experiments atoms first are trapped in a
harmonic trap and then the optical lattice is raised. Therefore
it is important to understand the behavior of these systems in
the presence of a confining potential. Here we calculate the
ground state of a finite 20 X 20 square lattice, where we su-
perimpose a trapping potential mimicked by local chemical
potentials [10,26,27], without periodic boundary conditions.
The range of the dipole-dipole interaction is cut at the fourth
nearest neighbor as before.

The external potential for the system in Fig. 18 is
V(x,y)=ULNN[(x—xO)2+(y—yo)2], where (x(,y,) is the center
of the two-dimensional isotropic trap. On the two outermost
sites of the lattice the potential is such to force the density to
zero. The parameters for the system in (a), (b) are u/Uyny
=2.8, J/Uxn=0.26, and K=107X 1073 s7! in units of A=1.
There is clearly a region around the center of the trap where
the density p(x,y) follows a checkerboard pattern and where
the superfluid parameter |¢(x,y)|? is zero [see Figs. 18(a) and
18(b)]. Notice the supersolid-superfluid area that surrounds
the Mott insulating phase. In Figs. 18(c) and 18(d) the pa-
rameters are u/Uxy=3.3, J/Upxn=0.16, and K=3.1
X 1073 s7! in units of Z=1. The density in the center of the
trap [see Fig. 18(c)] follows the metastable state atomic dis-
tribution of Fig. 19 (IT), with a zero superfluid parameter [see
Fig. 18(d)], while in the outer region of the trap a SF state is
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FIG. 19. (Color online) (a) The thick line is the lobe of the
ground state (I), while the thin line represents the lobe of metastable
state (IT). Thick and dashed vertical lines are the extension of the
harmonic potential of Figs. 18(c) and 18(d) and 18(a) and 18(b),
respectively.

present. In Fig. 19(a), the dashed and thick lines represent
the extension of the previous trapping potentials, respec-
tively, for the (a), (b) and (c), (d) case.

VIII. CONCLUSION

We have studied a single component gas of dipolar bosons
in a two-dimensional optical lattice. The atoms feature a po-
larized dipole moment perpendicular to the plane of the lat-
tice resulting in a long range interaction repulsive in every
direction of the plane. The dipole-dipole interaction range
has been truncated at the fourth nearest neighbor, and we
have considered 4 X4 and 2 X 2 unitary cells with periodic
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boundary conditions. We have shown that such a system pos-
sesses many almost degenerate metastable states competing
with the ground state.

We have studied the stability of these states and have
shown that the tunneling time scales exponentially with the
number of sites of the elementary cell of the corresponding
metastable configurations in the lattice, with a factor which
depends in a complicated way on the hopping parameter J,
the energy difference between the two metastable states, and
the number of lattice sites involved in the tunneling. In a
previous work [16], we also showed how to identify the state
in the lattice through noise correlation measurements.

The mean field theory calculations have shown that, once
the system is prepared in one of the metastable states, it is
necessary to go into the superfluid region of the phase dia-
gram in order to break the symmetry of the prepared state
and transfer it to another one. Even though this is a quantum
controlled process, very much sensitive to the exact values of
the control parameters during the dynamics, we have shown
that the process is quite robust. The capability of initializing,
reading and manipulating these systems makes dipolar
bosons in optical lattice very promising for applications in
quantum information as quantum memories.
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