
Ultralarge Rydberg dimers in optical lattices

B. Vaucher,* S. J. Thwaite, and D. Jaksch
Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, United Kingdom

�Received 22 August 2008; published 20 October 2008�

We investigate the dynamics of Rydberg electrons excited from the ground state of ultracold atoms trapped
in an optical lattice. We first consider a lattice comprising an array of double-well potentials, where each
double well is occupied by two ultracold atoms. We demonstrate the existence of molecular states with
equilibrium distances of the order of experimentally attainable interwell spacings and binding energies of the
order of 103 GHz. We also consider the situation whereby ground-state atoms trapped in an optical lattice are
collectively excited to Rydberg levels, such that the charge-density distributions of neighboring atoms overlap.
We compute the hopping rate and interaction matrix elements between highly excited electrons separated by
distances comparable to typical lattice spacings. Such systems have tunable interaction parameters and a
temperature �104 times smaller than the Fermi temperature, making them potentially attractive for the study
and simulation of strongly correlated electronic systems.

DOI: 10.1103/PhysRevA.78.043415 PACS number�s�: 37.10.Jk, 34.20.Cf, 32.80.Ee

I. INTRODUCTION

Recent advances in the trapping and manipulation of ul-
tracold atomic gases have provided experimentalists with the
ability to coherently control large numbers of atoms. Two
areas that have become the focus of experimental efforts of
late are the use of ultracold atoms for the formation and
manipulation of molecules �1,2� and the creation and ma-
nipulation of Rydberg atoms in optical lattices �3�. In this
paper we study whether a combination of these areas might
lead to the production of diatomic molecules whose nuclear
position is fixed by an optical lattice �see Figs. 1�a� and
1�b��. In particular, we examine the properties of ultralarge
dimers with equilibrium distances of the order of typical lat-
tice spacings and binding energies of the order of 103 GHz.
We also investigate the prospect of using systems of inter-
acting Rydberg atoms to simulate Fermi systems.

Molecules have a far richer energy structure than atoms,
and can also have stronger long-range interactions, a feature
that offers new possibilities for quantum control �see, e.g.,
�4��. However, the cooling of molecules is notably difficult,
since the absence of closed electronic transitions prevents the
use of standard laser cooling procedures. An attractive ap-
proach to producing translationally cold molecules is thus to
form them from precooled atoms by way of photoassociation
or magnetic resonance techniques. In recent years several
classes of ultracold molecules have been predicted and pro-
duced, including Feshbach molecules, Efimov trimers, and
the famous “trilobite” molecules, which are composed of a
highly excited Rydberg atom interacting with another atom
in its ground state �5,6�. The existence of long-range mol-
ecules composed of two Rydberg atoms stabilized via dipole-
dipole interactions has also been predicted �7–9�. These ul-
tracold long-range Rydberg molecules have binding energies
of the order of several hundred megahertz �a factor of �106

greater than the typical temperature of ultracold atoms, but

weak by molecular standards�, a lifetime expected to be
similar to that of Rydberg atoms, and equilibrium distances
of the order of 104a0 �with a0 the Bohr radius� �8�. Recent
advances in high-resolution microscopy techniques may of-
fer new possibilities to study the spatial structure of such
molecules �10�. Theoretical treatments of Rydberg molecules
to date have primarily dealt with the regime in which the
internuclear separation is greater than the Le Roy radius. In
this regime the overlap between the atomic charge-density
distributions is vanishingly small �7,8�. In contrast to these
works, we consider the regime where the internuclear dis-
tance of the molecular dimer is comparable to typical lattice
spacings, but smaller than the Le Roy radius, in which case
the overlap of the charge distributions and effects such as the
exchange interaction must be taken into account.
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FIG. 1. �Color online� An optical lattice with pairs of atoms well
separated from each other is initialized �a�. A laser pulse transfers
each pair of atoms to a molecular state with a very large internu-
clear distance. �b� Density plot of a typical diatomic molecular
wave function on the x-z plane �y=0� in the relative coordinates of
two electrons in highly excited npz states. �c� The outer electron of
each ground-state atom trapped in an optical lattice is transferred
into a Rydberg state, such that the charge-density distributions be-
tween neighboring atoms overlap. The electron hopping rate t be-
comes nonzero, and the interactions between electrons can be de-
scribed by the parameters U �on-site interaction�, V, W, and X
�off-site interactions�.
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The simulation of condensed-matter systems is another
area to which optical lattices are uniquely suited. Optical
lattices have extremely flexible geometries, and by a suitable
choice of laser configuration, any desired lattice structure can
be created �11,12�. Fermions loaded into an optical lattice
can be used as a model of electrons in a solid, with the
significant advantage of having a periodic potential that is
defectless and fully customizable �13�. However, the ratio
between the currently attainable temperature T of fermionic
atoms trapped in an optical lattice and the Fermi temperature
TF of the system is T /TF�0.25, preventing the clean obser-
vation of such interesting phenomena as the BCS transition
or the emergence of certain types of antiferromagnetic order
�13–15�. In the final section of this paper we consider the
possibility of collectively transferring a population of
ground-state atoms trapped in an optical lattice to a highly
excited Rydberg level, such that the charge-density distribu-
tions of neighboring atoms overlap �see Fig. 1�c��. We extend
the model developed in the first section to compute the hop-
ping rate and interaction parameters between the highly ex-
cited electrons, and determine the dependence of these quan-
tities on the initial lattice spacing. While the implementation
of these systems is experimentally challenging and beyond
the scope of this paper �16�, we note that experimental tem-
peratures far smaller than the Fermi temperature �T /TF
�10−4� might be readily attainable, making the realisation of
such systems a promising approach to the quantum simula-
tion of interacting fermions.

The paper is organized as follows. In Sec. II we present
the model that we subsequently use to investigate the exis-
tence of attractive molecular potentials with equilibrium dis-
tances below the Le Roy radius. We approximate the lifetime
of these molecules and calculate their equilibrium internu-
clear distance for different values of the principal quantum
number of the electrons. In Sec. III we use the model intro-
duced in the first section to compute the hopping rate and
interaction parameters of the Rydberg electrons and discuss
the possibility of using these setups to simulate condensed-
matter systems. We conclude in Sec. IV.

II. MOLECULAR POTENTIALS OF ULTRALARGE
RYDBERG DIMERS

In this section we present a method of evaluating the en-
ergy of highly excited diatomic molecular states whose equi-
librium distance Re is below the Le Roy radius. We develop
an efficient method of computing one- and two-center mo-
lecular integrals over electronic orbitals with large principal
quantum numbers n and calculate the depth and equilibrium
position of molecular potentials accessible from the ground
state via photoassociation for values of n up to n=35. We
estimate the radiative lifetime of the highly excited molecu-
lar potentials.

Quantum chemistry methods commonly used within the
Le Roy radius typically become computationally expensive
when dealing with Rydberg molecules due to the size of the
basis set required to describe the spatially diffuse Rydberg
orbitals. In order to obtain qualitative results in this compu-
tationally challenging regime we take a simple wave func-

tion ansatz inspired by the Heitler-London treatment of the
hydrogen molecule. Due to the simplistic form of the mo-
lecular wave functions used we do not expect the method
presented to produce quantitatively accurate results; rather,
our aim is to obtain qualitatively correct results and insights
within a regime where common methods of calculating mo-
lecular potentials fail or become computationally costly.

A. Model

We consider an optical lattice potential forming an array
of double wells separated from each other by sufficiently
high optical barriers that each double well can be considered
as an isolated system �17�. We assume that each double well
initially contains two 87Rb atoms in their ground state, and
that the potential is sufficiently deep that the Wannier func-
tion associated with each atom is well localized in one half
of the well. Because alkali atoms have only a single valence
electron, their energy levels are described by the same quan-
tum numbers as those of the hydrogen atom. If the ground-
state atoms are excited to Rydberg levels with n�30 by
applying a laser pulse to the system, the charge distributions
of atoms in the same double well will overlap, and under
certain conditions a stable molecular state will be formed.
We aim to study the basic properties of these molecules and
explore whether they may be produced in an optical lattice
with experimentally realistic parameters. Since the tempera-
ture of the system is very low, the velocity of the electrons—
even in highly excited states—is much greater than that of
the trapped ions, and the electrons respond almost instanta-
neously to displacements of the ions �8�. Consequently, we
will calculate molecular potentials in the Born-Oppenheimer
�BO� approximation �18,19�.

Neglecting interactions between atoms belonging to dif-
ferent double wells, the energy of a homonuclear molecule
formed by the atoms in a double well is given within the BO
approximation by the eigenvalues of the Hamiltonian
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where ri �i=1,2� is the position of the ith electron; ri� ��
=A ,B� is the distance between the ith electron and atomic
center �; r12 is the distance between the two electrons; j0
=e2 / �4��0�, where �0 is the permittivity of free space and e
the elementary unit of charge; and R is the distance between
the nuclei. In the BO approximation R is treated as a classi-
cal variable upon which the eigenvalues and eigenfunctions
of the Hamiltonian depend parametrically. Following a simi-
lar approach to that of Ref. �9,20�, we approximate the en-
ergy of the molecule by diagonalizing the Hamiltonian �1�
using as a basis the asymptotic electronic states

�q,q�
� = Nq,q�

� �Aq�r1�Bq��r2�� Aq�r2�Bq��r1�� , �2�

where Ap�ri� �Bp�ri�� is a hydrogen-like wave function with
quantum numbers q= �n ,� ,m� centered on nucleus A �B�,
and Nq,q�

� = �2�1� �Sq,q��
2��−1/2 is a normalization factor,
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where Sq,q�=	drA
q
*�r�Bq��r� is the overlap integral �18�. The

basis elements that are symmetric or antisymmetric in the
coordinates have an associated antisymmetric �singlet� or
symmetric �triplet� function of spins, respectively. Each basis
state �2� describes the two electrons being exchanged be-
tween the two nuclei, and corresponds to an ansatz for a
valence-bond wave function �19�. The diagonal elements of
the Hamiltonian �1� using the states �2� as a basis correspond
to the molecular potentials obtained using the Heitler-
London method �18,21�.

The hydrogenic wave function of the valence electron
centered on atom � located at r� is well approximated by the
�unnormalized� function

�q�r� = P��cos ���
eim	

a0
3/2 �2
�

n*
�n*

e−
�/n* 

k=0

kmax

bk
�
−�k+1�. �3�

Here 
�=r� /a0 with r�= �r−r�� the radial distance from the
atomic center �, �� is the angle between the vector r� and the
internuclear axis, 	 is the azimuthal angle, P��x� is a Leg-
endre polynomial, and n*=n−�� is the effective principal
quantum number, with �� a quantum defect whose value de-
pends on the angular momentum quantum number � and the
atomic species �22�. The coefficients bk=bk−1�n* /2k�����
+1�− �n*−k��n*−k+1�� are defined recursively with b0=1,
and kmax is an integer satisfying n*−�−1�kmaxn*−�
�23,24�. The orbital defined in Eq. �3� is known as the
asymptotic form of the quantum defect wave function; for
��=0, it is identical to the hydrogenic wave function, while
for ���0 it provides an accurate description of a Rydberg
electron in the mid- and long-range. It differs significantly
from the exact quantum defect wave function only at short
distances from the atomic cores, which is of little conse-
quence since the interactions we consider here depend
mainly on the outer part of the atomic wave functions.

For n�20, the overlap between the charge-density distri-
butions of atoms separated by distances smaller than the Le
Roy radius �for q=q�� is typically of the order of Sq,q�
�10−1–10−2. The charge-density overlap is therefore not
negligible in this regime, and the approximation of the Cou-
lomb potential using the multipole expansion �25,26� is not
suitable. The multipole expansion diverges quite significantly
from the Coulomb potential even in the presence of small
charge-density overlap, and so the results obtained using this
approximation below the Le Roy radius are very uncertain
�8,27�.

We consequently estimate the energy of the dimer by
evaluating the expectation value of the Hamiltonian �1� in
the states �2�, a task that requires the evaluation of a number
of integrals over atomic orbitals. These integrals fall into
two classes: the one-center integrals, comprising the
overlap integral Sq,q�, the Coulomb integral Jq,q�
= j0	dr B

q
*�r��1 /rA�Bq��r�= j0	dr A

q
*�r��1 /rB�Aq��r�, and

the charge overlap integral Kq,q�
� = j0	dr A

q
*�r��1 /r��Bq��r�;

and the two-center integrals

Up,p�
q,q� = �AqAq��ApAp��, Wp,p�

q,q� = �AqBq��ApBp�� , �4�

Vp,p�
q,q� = �AqAq��BpBp��, Xp,p�

q,q� = �AqAq��ApBp�� , �5�

where

������� = j0� � dr1dr2�*�r1���r1�
1

r12
�*�r2���r2� . �6�

The evaluation of one- and two-center molecular integrals
poses a considerable challenge for large values of the prin-
cipal quantum numbers. The results of such integrals using
direct numerical integration converge extremely slowly, and
the answers so produced can suffer from dramatic losses of
accuracy �a phenomenon known as numerical erosion; see,
e.g., �28,29��. Following an approach suggested by Barnett,
we use a computer algebra-based method to generate analyti-
cal formulas for the molecular integrals �28,30,31�. We have
found this approach advantageous for three reasons: �i� it
permits the fast evaluation of molecular integrals with high
principal quantum number to arbitrary accuracy; �ii� once the
analytical form has been found, the evaluation of an integral
for different values of the internuclear distance is instanta-
neous; �iii� the analytical expressions of the integrals can be
stored and reused at little computational cost.

However, even with the use of symbolic calculations, the
evaluation of molecular integrals for large values of n is
computationally demanding. In order to make these calcula-
tions tractable for large n we restrict the value of the projec-
tion of the electronic angular momentum along the internu-
clear axis to m=0. This limits the range of molecular states
that can be investigated to those of symmetry 1�g

+ and 3�u
+;

these are associated with the �q,q�
+ and �q,q�

− basis states,
respectively. In this way we have been able to compute mo-
lecular integrals involving wave functions with principal
quantum numbers up to n=35.

In order to compute the molecular integrals it is conve-
nient to express the electron coordinates in elliptical coordi-
nates �� ,� ,	� through the relations r�= �R /2������ and
cos ��= ��1���� / ������, where plus and minus signs ap-
ply to �=A and �=B, respectively. The volume element is
given by dr= �R /2�rArBd� d� d	, where 0�	�2�, −1
���1, and 1����. After rounding up the powers of r� in
Eq. �3� to the next integer value �which significantly affects
the shape of the wave function only near the core� we find
that the integrands of all of the one-center integrals can be
written in the form e−��e���ijqi,j�

i� j where qi,j are coeffi-
cients associated with a given integral. By applying the re-
placement rules defined in Table I, every one-center integral
can be converted into an analytical expression with paramet-
ric dependence on R.

TABLE I. Replacement rules used to generate analytical formu-
las for one-center integrals; �k�x� is the incomplete gamma function
with k�N+.

Rule Functional Replacement

R1 	1
�dx e−�xxk → �1 /�1+k��1+k���

R2 	−1
1 dx e�xxk → ��−��−k /����1+k�−��−�1+k����
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The evaluation of symbolic expressions for two-center in-
tegrals proceeds similarly, although many more replacement
rules are required. The general approach for two-center inte-
grals consists of expressing the Coulomb potential in the
form of a sum of polynomials �such as the Legendre or Neu-
mann expansion� before applying replacement rules on the
terms resulting from the successive integrations over the co-
ordinates of the first and second valence electron. Using this
method, exact formulas are obtained for Eqs. �4�, but only
approximate expressions may be found for Eqs. �5� �see the
Appendix�.

B. Results

Since we envisage producing the Rydberg dimers by ap-
plying a laser pulse to a system of ground-state atoms, we are
primarily interested in the molecular states that are most
strongly coupled to ground-state atoms by the dipole transi-
tion operator; namely, those of 3�u

+ symmetry with a high p-
character ��=1�. We will therefore restrict our analysis to
these states. However, for values of n�10 molecular states
of 3�u

+ and 1�g
+ symmetry become quasidegenerate �8,26�,

and so the results presented here apply to molecular states of
either of these symmetries.

We have estimated the equilibrium distances Re and po-
tential depths De=Emol���−Emol�Re� of np+np molecular
potentials of 3�u

+ symmetry using the Heitler-London ap-
proach for values of the principal quantum number up to n
=35 �see Fig. 2�. We find that the equilibrium distance of
these potentials follows the relation Re��1.628n2

−100.25�a0, which is about a factor of 4 smaller than the Le
Roy radius for all values of n �see Fig. 2�a��. For larger
values of the principal quantum number �n�35�, we find
that the equilibrium distances predicted by our scaling law
are comparable to �although �20% smaller than� those
found by Boisseau et al. in Ref. �8�, who use the multipole

expansion of the Coulomb potential to examine the same
potentials below the Le Roy radius.

The depth of the molecular potential for n=35 is De
�2000 GHz, approximately three orders of magnitude larger
than the potential depth of ultralarge molecules with symme-
try 1�g– 3�u bonded via dipole-dipole interactions studied in
Ref. �8� �see Fig. 2�b��. We find that the molecular binding
energy decreases exponentially with the value of the princi-
pal quantum number according to the relation De=exp��1
+�2n�2 +�3n�3� GHz where �1=−6.53, �2=−24.44, �3
=−20.51, �2=0.14, and �3=−223.45. Our predicted potential
depths differ by up to an order of magnitude from those
calculated using the multipole expansion; as Boisseau et al.
point out in Ref. �8�, this is probably a consequence of the
inaccuracy of the multipole expansion below the Le Roy
radius. Although the potentials produced using our method
do not have the asymptotic R−5 behavior expected from per-
turbation theory �26�, this may be corrected by carrying out a
numerical integration of the terms which were neglected dur-
ing the symbolical calculations of the molecular integrals.
This correction is feasible for small values of n, but very
time consuming for larger values. However, a comparison
with the results of exact numerical calculations of the same
potentials up to n=8 shows that our method reproduces the
correct values of Re and De within �3%.

Following the approach taken in Ref. �9�, we diagonalized
the Hamiltonian using as a basis the molecular states �2� with
a significant coupling to the np+n�p asymptote. For n�=n
−1 and n=16 we used the states �n−1�s+ �n+1�s, �n−1�s
+ns, �n−1�s+ �n+2−k�d, �n−2�d+ �n−k�d, �n−3�d+ �n−k
+1�d, and �n−1−k��p+ �n+k�p, with k ,k�=1,2. The diago-
nalization procedure yields eigenstates of the form �mol�R�
=
Cq,q��R��q,q�, allowing the determination of the contri-
bution of a given molecular state �q,q� to each eigenstate.
Figure 3 shows the contribution of the asymptotic np+ �n
−1�p state to an eigenstate �mol, and the potential curve
Emol�R� corresponding to this eigenstate, for the case of n
=16. In a region of width � about Re the molecular potential
is indistinguishable from that of the bare np+n�p state, and
the associated wave function has a very dominant np+n�p
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FIG. 2. �Color online� Equilibrium distance Re �a� and potential
depth De �b� of the np+np states using the Heitler-London method.
The dots denote the values calculated numerically, while the curves
correspond to the fitted functions mentioned in the text.
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FIG. 3. �Color online� Left axis: 3�u molecular potential �solid
red line� associated with the wave function �mol�R� resulting from
the diagonalization of the Hamiltonian �see text� for n=16. The
dashed line shows the molecular potential for the np+ �n−1�p bare
state. Right axis: Contribution Cq,q��R� of the q= �16,1 ,0�, q�
= �15,1 ,0� basis state to the molecular wave function �mol�R�; �
denotes the width of the region over which this contribution is
dominant.
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character �Cq,q�=0.98 with q= �16,1 ,0� and q�= �15,1 ,0�;
see Fig. 3�. This is due to the fact that the coupling between
different states is generally weak �off-diagonal elements of
the Hamiltonian are typically �10−1–10−3 smaller than di-
agonal ones� and the strongest coupling is seen between
states with identical angular momentum.

We find that the size of the region ��0.24n2a0 is ap-
proximately a factor of 3 smaller than the width of the mo-
lecular potential associated with the bare np+ �n−1�p states
�approximately given by 0.73n2a0�. This provides an indica-
tion of the nature of the wave function of the molecular
states accessible by the photoassociation of ground-state at-
oms initially trapped in an optical lattice. The distance adw
between the two sides of a double well may be controlled by
altering the laser parameters. The uncertainty in the initial
position of the ground-state atoms is given by the width of
their Wannier functions �see Fig. 1�, which is proportional to

�=adw / ���Ṽ /ER�1/4�, where Ṽ is the depth of the double
well and ER the recoil energy �32�. By setting adw=Re and
considering the scaling of the width of the np+ �n−1�p mo-
lecular potentials, we find that 2��� for lattice potential

depths of the order of Ṽ= �30–40�ER. This suggests that us-
ing an optical lattice to enforce the initial position of the
atoms before applying the photoassociation pulse might offer
advantages in providing access to molecular states with a
very dominant np+n�p character.

We have obtained an order-of-magnitude estimate of the
lifetime of the photoassociated molecules by assuming for
simplicity that the dominant decay mode is radiative disso-
ciation into a pair of 87Rb atoms. We neglect the rotational
fine structure of the energy levels and any bound-bound de-
cay channels and consider a transition between a bound state
of vibrational quantum number �� and energy E�� and a free
continuum state of wave number k� and energy Ek�
=�2k�2 / �2��, where �=mRb /2 is the reduced mass of the
molecule. The Einstein A coefficient is given by

A��k� =
32�3

3�0h5c32�

Ek�
�E�� − Ek��

3

� �� ����
vib�R��*D�R��k�

vib�R�dR�2

J−1 s−1, �7�

while the radiative lifetime of a single bound vibrational
level is given by ���=A��

−1, where

A�� = �
0

�

A��k�dEk�. �8�

Here h=2�� is the Planck constant, c is the speed of light,
���

vib and �k�
vib are vibrational wave functions for the discrete

and continuum states, respectively, and the dipole moment
D�R� is given by

D�R� = − e� � dr1dr2��qi,qi

� �*�z1 + z2��qf,qf

� , �9�

where z1 and z2 are the z coordinates of the electrons and qi
and q f denote the quantum numbers of the initial and final

states. For large internuclear distances the continuum wave
function �k�

vib has the asymptotic form

�k�
vib � sin�k�R + �� , �10�

where � is the scattering phase shift, which at low energies is
given by �=−k�as with as the s-wave scattering length. In
the initial molecular state we approximate the true bound
vibrational wave functions ���

vib�R� by the eigenstates of a
harmonic approximation to the molecular potential centered
about R=Re. Due to the asymmetric nature of the molecular
potential curves, this approximation becomes progressively
worse as �� increases. However, we expect that the ability to
impose an interatomic spacing close to the equilibrium dis-
tance of the targeted molecular state before applying the pho-
toassociation pulse will provide a measure of control over
the range of vibrational levels occupied by the molecules,
thus making the lowest vibrational levels the most relevant.

Although there are a huge number of final states to which
the molecule could decay, the dependence of the decay rate
given by Eq. �7� on �E��−Ek��

3 favors transitions that involve
the emission of a high-energy photon. We therefore consider
only transitions that finish within the continuum above the
5s-5s potential curve, neglecting all other decay channels.
The radiative lifetimes thus calculated for the ground vibra-
tional state ��=0 are shown in Fig. 4; the lifetimes of higher
vibrational levels �up to ��=10� are the same to within �5%.
Also plotted for comparison purposes is the radiative lifetime
�=�0n3 of a free Rydberg atom, where �0=1.4 ns for 87Rb
�33�. Our calculations indicate that for n 17 the Rydberg
dimers are more stable than the free atoms. For the highest
molecular state considered �n=35� we find lifetimes of the
order of a few milliseconds, indicating that, even if contri-
butions from neglected decay channels were to reduce this
lifetime by several orders of magnitude, the system could
still be successfully interrogated and characterised by short
�nanosecond to picosecond� laser pulses. To avoid possible
stimulated emission contributions to the radiative decay pro-
cess, the laser fields forming the optical lattice could be
switched off as the Rydberg excitation pulse is applied. The
subsequent free expansion of the atoms would not limit the
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FIG. 4. �Color online� Radiative lifetimes for the ��=0 vibra-
tional level in molecular excited states with principal quantum num-
bers n=15–35 �black line�. The radiative lifetime �=�0n3 of a free
Rydberg atom is plotted for comparison purposes �red �gray� line�.
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window of time within which the system may be character-
ized, since the atoms are expected to remain localized within
a few lattice spacings for a time of the order of 10 �s �34�.

III. INTERACTIONS BETWEEN HIGHLY EXCITED
ELECTRONS IN A LATTICE

In this section we consider the situation where ground-
state atoms trapped in a regular optical lattice are collectively
excited to a given Rydberg state such that the charge-density
distributions of neighboring atoms overlap. With overlapping
charge-density distributions between neighboring atoms, the
valence electrons will tunnel between lattice sites and inter-
act with each other, mimicking the behavior of electrons in
metals. Such a system may have interesting applications for
the quantum simulation of electrons in lattice systems. As-
suming that the band structure of such a system is well de-
scribed by a tight-binding model, we will find that using the
hopping rate calculated in the next section that the Fermi
temperature of a half-filled lattice is TF�10−3 K, some five
orders of magnitude larger than typical temperatures
achieved in experiments with ultracold atoms. While the ef-
ficient population transfer of atoms to Rydberg states is ex-
perimentally very challenging and goes beyond the scope of
this paper �see, e.g., Ref. �16��, this figure implies that after
the excitation step, the system temperature could still remain
well within the Fermi degeneracy regime �T!TF�. This
would enable the observation of interesting many-body phe-
nomena currently inaccessible to other experimental setups
involving fermionic atoms where the ratio T /TF�0.25 �see,
e.g., Refs. �13,35��. In this section, we use the tools devel-
oped previously to evaluate the typical interaction param-
eters and the hopping rate of such a system, and investigate
their dependence on the interatomic spacing fixed by the
lattice.

Model

In this section we assume that ground-state atoms trapped
in an optical lattice can be collectively excited to a given
Rydberg state. We assume that the dynamics of the valence
electrons in the lattice is restricted to only one spatial mode
per site i that corresponds to an orbital 	i�r�= �r �	i� associ-
ated with a given Rydberg state localized at site i with two
spin orientation. The Hamiltonian of the system is then given
by

Ĥ = − 

i,j,�

tijĉi�
† ĉj� +

1

2 

i,j,k,l

�,��

V�i, j,k,l�ĉi,�
† ĉj,��

† ĉk,��ĉl,�,

�11�

where ĉi�
† is a creation operator associated with the orbital

	i�r� and spin �, tij describes the hopping of a particles
between sites i and j; and the intersite interactions are given
by

V�i, j,k,l� =� � dr dr�	i
*�r�	

j
*�r��Vee�r − r��	k�r�	l�r�� ,

�12�

where Vee�r−r�� is the interelectronic potential. We assume
here that next-nearest-neighbor hopping can be neglected,
and consider only nearest-neighbor interactions. In this situ-
ation the hopping term t= ti,i+1 consists of the kinetic energy
and Coulomb potential of neighboring ion cores

t = �	i��−
�2

2M
�2 −

j0

�r − Ri�
−

j0

�r − Ri+1���	i+1� , �13�

and the only two-electron interaction terms taken into ac-
count are U=V�i , i , i , i�, X=V�i+1, i , i , i�, V=V�i , i+1, i
+1, i�, and W=V�i , i+1, i , i+1� �36�.

Electronic orbitals centered at different lattice sites are
often considered to be orthogonal and equated to the Wannier
functions of the crystal �37�. However, a better definition of
the Wannier function centered at site i in terms of electronic
orbitals is given by

	i = �i −
Si�i+1 + Si−1�i−1

2
, �14�

where �i is a normalized electronic wave function with quan-
tum numbers centered at site i, and Si is the overlap between
the orbitals of site i and i+1 �38�. In the regime where the
terms proportional to Si

2 can be neglected, the functions 	i
form an orthonormal basis set. By inserting the definition
�14� into Eqs. �12� and �13� and assuming that the site orbit-
als �i=�q�r−Ri� correspond to hydrogenic wave functions
with quantum numbers q, the parameters of the Hamiltonian
�11� can be expressed in terms of two-center molecular inte-
grals as

U = Uq,q
q,q − 4Sq,qXq,q

q,q,

t = �Eq + j0/R�Sq,q − 2Kq,q,

V = Vq,q
q,q − 2Sq,qXq,q

q,q,W = Wq,q
q,q − 2Sq,qXq,q

q,q,

X = Xq,q
q,q − Sq,q�Wq,q

q,q +
1

2
�Uq,q

q,q + Vq,q
q,q�� , �15�

where Kq,q=Kq,q
A =Kq,q

B , U is the on-site interaction, V and W
are off-diagonal repulsion terms, and X is sometimes called
the density-dependent hopping or enhanced hopping rate
�39�. The absolute values of the ratios between different in-
teraction parameters for atoms in npz, ns, and ndz2 states �n
=30� are shown in Fig. 5, where we have plotted the param-
eters in Eq. �15� obtained with Si=0, that is, with Wannier
functions represented by bare atomic orbitals. The orthogo-
nalization procedure �i.e. replacing �i by 	i� mainly affects
the smallest parameters X and W in the regions where the
value of Si

2 is not small enough for the Wannier functions to
be effectively orthogonal.

The interaction parameters calculated above correspond to
the intermediate screening case, that is U�V"W and X
�#J, where # is a constant �40,41�. The ratios between the
parameters are similar to those found in realistic systems,
e.g., between p electrons in conjugated polymers �40�. For
different values of the angular momentum, these ratios differ
mainly in the way they behave at large distances. The hop-
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ping rates t are shown in Fig. 6, and, for the quantum num-
bers considered, vary between 102 and 10−4 GHz for intersite
distances between 150 and 250 nm, respectively.

IV. CONCLUSION

We showed that optical lattices forming arrays of double-
well potentials may be exploited to selectively photoassoci-
ate pairs of atoms to molecular states with binding energies
of the order of 103 GHz, far larger than those of long-range
molecules stabilized by dipole-dipole forces. These molecu-
lar states are expected to have equilibrium distances of the
order of the typical lattice spacings and lifetimes several or-
ders of magnitude larger than the time scales required to
interrogate and characterize them by way of short laser
pulses.

We considered the possibility of collectively exciting
ground-state atoms trapped in a regular lattice to a given

Rydberg level such that the charge-density distributions of
atoms located in neighboring sites overlap. Assuming that
such a system could be realized, we calculated the typical
interaction parameters between the Rydberg electrons and
the hopping rate between sites. With a temperature well be-
low the Fermi temperature and tunable interaction param-
eters, such systems might offer an interesting alternative ap-
proach to the simulation of Fermi systems. For instance, the
ability to change the lattice spacing such that v=U /V� 1

2 or
v 1

2 would offer the possibility of engineering a charge-
density wave �CDW� or a spin-density wave �SDW�, respec-
tively. The preparation of a SDW state could even be facili-
tated by using spin-changing collisions between ultracold
87Rb ground-state atoms to produce a Néel-like state
�↑↓↑↓…� that has a spin arrangement identical to that of the
SDW ground state along one spatial direction �42�. If real-
ized, such a system would allow the observation of a phase
transition between the SDW and CDW phases, by, for ex-
ample, the measurement of the zero-frequency SDW
susceptibility1 or the CDW structure factor, both of which
diverge linearly in their respective phases �43�. Further, the
versatility of optical lattice setups may allow the excitation
of Rydberg atoms with a given angular momentum, which
potentially enables exotic quantum phase transitions to be
engineered: indeed, the value of the electronic angular mo-
mentum not only influences the relative values of the system
interaction parameters, but also in some cases their signs
�see, e.g., Refs. �44–46��. This feature is particularly inter-
esting, as it is the mechanism behind e.g., the emergence of
nontrivial and rich phase diagrams in doped cuprates �see,
e.g., Refs. �47,48��. Finally, if in addition the electron density
could be controlled when producing one of these states, it
would provide the exciting possibility of turning the state of
the electrons into a superconductor, as happens in the case of
doping-induced superconductivity in cuprates �49�. The pa-
rameters calculated in this work apply to models where the
dynamics of the electrons is restricted to one mode per site.

In future works, it would be interesting to determine the
conditions for this assumption to be valid, and whether these
conditions can be engineered with current technology. Re-
sults in this direction would allow excitation schemes to be
devised, and also the determination of the control available
to tune the density of electrons in the lattice. Also, dynamical
calculations aiming at characterizing the lifetime of the lat-
tice configuration after the atoms have been excited to Ryd-
berg levels would allow the evaluation of the time scale
available to interrogate the system. The exact calculation of
this lifetime is an open problem whose solution is beyond the
scope of the present paper. However, the dynamics of our
system happens on a time scale of a few hundreds of pico-
seconds. Techniques for probing electron dynamics on the
femtosecond time scale exist in condensed-matter systems
�see, e.g., Ref. �50��. These methods might form the basis for
resolving the motion of electrons in a Rydberg gas on pico-
to femtosecond time scales in future experiments. The use of

1The SDW susceptibility and the structure factor are defined,
respectively, by $�q�= �1 /N�	0

1/Td�
i,j#i���# j�0� and S�q�
= �1 /N�
i,je

iq�Ri−Rj��ninj�, where #i�t�=ni↑�t�−ni↓ and ni,�= ĉi,�
† ĉi,�.
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FIG. 6. �Color online� Hopping rate in the z direction between
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Sq,q=0. From top to bottom we have V /U �green�, t /U �blue�, X /U
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our scheme for the purpose of quantum simulation requires
the lifetime of the lattice configuration to be longer than the
typical time scales of the dynamics. As mentioned by Mou-
rachko et al. in Ref. �51�, the interatomic spacing
��micrometers� between Rydberg atoms in a frozen gas var-
ies very little ��3% � over a period of time of the order of
1 �s, some three orders of magnitude larger than the typical
hopping times present in the system we have proposed. Also,
as already mentioned by Li et al. in Ref. �52�, fixing the
initial positions of the atoms will help to reduce the motion
of the ion cores. We therefore believe that Rydberg gases
created from ultracold atoms in an optical lattice provide a
promising route toward the direct quantum simulation of in-
teracting Fermi systems.
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APPENDIX: REPLACEMENT RULES FOR THE
EVALUATION OF TWO-CENTER MOLECULAR

INTEGRALS WITH m=0

Here we outline the methods we have used to solve mo-
lecular integrals using symbolic replacements. We also pro-
vide all the necessary relations to implement the method for
m=0.

The first step toward the evaluation of these integrals is to
express the Coulomb potential in terms of a series of Leg-
endre functions as

1

r12
= 


k=0

�



m=−k

k �k − �m��!
�k + �m��!

r�a�k

r�b�k+1

� Pk
�m��cos �1�Pk

�m��cos �2�eim�	1−	2�, �A1�

where r12 is the distance between two points with spherical
coordinates �ri ,�i ,	i�, Pk

�m��x� are the associated Legendre
functions �we use the notation Pk

0�x�= Pk�x��, and r�a�, r�b�
are the smaller and larger of the quantities r1 and r2; or using
the von Neumann expansion

1

r12
=

2

R


k=0

�



m=−k

k

�− 1�m�2k + 1�� �k − �m��!
�k + �m��!�

2

Pk
�m����a��Qk

�m�

����b��Pk
�m���1�Pk

�m���2�eim�	1−	2�, �A2�

where in this case the two points are expressed in elliptical
coordinates ��i ,�i ,	i�, Qk

�m��x� are associated Legendre func-
tions of the second kind, and ��a� is the lesser and ��b� the
greater of �1 and �2 �see, e.g., Ref. �19��.

Since the integral 	0
2�ei�	d	 vanishes if � is an integer

different from zero, setting the quantum number m=0 con-
siderably simplifies the evaluation of the integrals �4� and �5�
using the relations �A1� and �A2�.

Every two-center molecular integral apart from Wp,p�
q,q� can

be evaluated using Eq. �A1�. The angular part of these inte-
grals will be nonzero for only a few terms; for instance, for
q=q�= �n ,0 ,0�, the angular part is nonzero for k=0, and for
q=q�= �n ,1 ,0� for k=0,2. It may be simplified by using the
formula for the product of surface harmonics:

P�1
�cos ��P�2

�cos �� = 

j=��1−�2�

�1+�2

�Cj
�1,�2�2Pj�cos �� , �A3�

where Cj
�1,�2 =C��1 ,�2 , j ;0 ,0 ,0� are Clebsch-Gordan coeffi-

cients �31�. The integration of the radial part over the coor-
dinates of the first electron necessitates the evaluation of in-
tegrals of the form

�
0

�

dr1r1
2 r�a�k

r�b�k+1aq�r1�aq��r1� = Iqq�,k
+ �r2� + Iqq�,k

− �r2� ,

�A4�

where aq�r� is the radial part of the wave function �3�, and ri

is the coordinate of the ith electron. The functionals Iqq�,k
� �r2�

are defined as

Iqq�,k
− �r2� = �1/r2

k+1��
0

r2

dr1r1
2r1

kaq�r1�aq��r1� �A5�

and

Iqq�,k
+ �r2� = r2

k�
r2

�

dr1r1
2r1

−k−1aq�r1�aq��r1� . �A6�

For k=0 both �A5� and �A6� can be solved using the rules

R3: �
0

r

dr e−arrk → �k! − �k+1�ar��/ak+1,

R4: �
r

�

dr e−arrk → �k+1�ar�/ak+1. �A7�

If the sum of Eq. �A1� contains only k=0 terms, the symbolic
form of the integral is obtained by replacing the spherical
coordinates of the remaining electron by elliptical coordi-
nates and using the replacement rules of Eqs. �A7� and Table
I. In integrals requiring terms associated with k�0 in the
sum �A1�, the functionals associated with k=0 dominate
�36�. For higher values of k, the functional �A6� can always
be solved, and as an approximation we have dropped the
terms in �A5� that could not be solved analytically using the
integration rules mentioned above.

Because it involves associated Legendre functions of the

second kind, the evaluation of Wp,p�
q,q� is more problematic. We

used the Rodrigues formula to expand these functions in
terms of sums of Legendre polynomials and logarithms, and
then solved the polynomial part by applying the replacement
rules mentioned above. Solving the logarithmic part requires
the integration over ln�1�x� for the first set of coordinates,
and then exponential integral functions for the second set.
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