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We study dissipative transport of spontaneously emitting atoms in a one-dimensional �1D� standing-wave
laser field in the regimes where the underlying deterministic Hamiltonian dynamics is regular and chaotic. A
Monte Carlo stochastic wave-function method is applied to simulate semiclassically the atomic dynamics with
coupled internal and translational degrees of freedom. It is shown in numerical experiments and confirmed
analytically that chaotic atomic transport can take the form either of ballistic motion or a random walking with
specific statistical properties. The character of spatial and momentum diffusion in the ballistic atomic transport
is shown to change abruptly in the atom-laser detuning regime where the Hamiltonian dynamics is irregular in
the sense of dynamical chaos. We find a clear correlation between the behavior of the momentum diffusion
coefficient and Hamiltonian chaos probability which is a manifestation of chaoticity of the fundamental atom-
light interaction in the diffusivelike dissipative atomic transport. We propose to measure a linear extent of
atomic clouds in a 1D optical lattice and predict that, beginning with those values of the mean cloud’s
momentum for which the probability of Hamiltonian chaos is close to 1, the linear extent of the corresponding
clouds should increase sharply. A sensitive dependence of statistical characteristics of dissipative transport on
the values of the detuning allows us to manipulate the atomic transport by changing the laser frequency.
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I. INTRODUCTION

An atom placed in a laser standing wave is acted upon by
two radiation forces: deterministic dipole and stochastic dis-
sipative ones �1–3�. The mechanical action of light upon neu-
tral atoms is at the heart of laser cooling, trapping, and Bose-
Einstein condensation. Numerous applications of the
mechanical action of light include isotope separation, atomic
litography and epitaxy, atomic-beam deflection and splitting,
manipulating translational and internal atomic states, mea-
surement of atomic positions, and many others. Atoms and
ions in an optical lattice, formed by a laser standing wave,
are perspective objects for implementation of quantum infor-
mation processing and quantum computing. Advances in
cooling and trapping of atoms, tailoring optical potentials of
a desired form and dimension �including one-dimensional
optical lattices�, controlling the level of dissipation and noise
are now enabling the direct experiments with single atoms to
study fundamental principles of quantum physics, quantum
chaos, decoherence, and quantum-classical correspondence
�for recent reviews on cold atoms in optical lattices see Refs.
�4,5��.

Experimental study of quantum chaos has been carried
out with ultracold atoms interacting in �-kicked optical lat-
tices �6–13�. To suppress spontaneous emission �SE� and
provide a coherent quantum dynamics atoms in those experi-
ments were detuned far from the optical resonance. Adia-
batic elimination of the excited state amplitude leads to an
effective Hamiltonian for the center-of-mass �c.m.� motion
�14�, whose 3 /2 degree-of-freedom classical analog has a
mixed phase space with regular islands embedded in a cha-
otic sea. de Brogile waves of �-kicked ultracold atoms have
been shown to demonstrate under appropriate conditions the
effect of dynamical localization in momentum distributions
which means the quantum suppression of chaotic diffusion

�6–14�. Decoherence due to SE or noise tends to suppress
this quantum effect and restore classical-like dynamics
�15–18�. Another important quantum chaotic phenomenon
with cold atoms in far detuned optical lattices is a chaos
assisted tunneling. In experiments �19–21� ultracold atoms
have been demonstrated to oscillate coherently between two
regular regions in mixed phase space even though the clas-
sical transport between these regions is forbidden by a con-
stant of motion �other than energy�.

The transport of cold atoms in optical lattices has been
observed to take the form of ballistic motion, oscillations in
wells of the optical potential, Brownian motion �22�, anoma-
lous diffusion, and Lévy flights �23–27�. The Lévy flights
have been found in the context of subrecoil laser cooling
�23,24� in the distributions of escape times for ultracold at-
oms trapped in the potential wells with momentum states
close to the dark state. In those experiments the variance and
the mean time for atoms to leave the trap have been shown to
be infinite.

A new arena of quantum nonlinear dynamics with atoms
in optical lattices is opened if we work near the optical reso-
nance and take the dynamics of internal atomic states into
account. A single atom in a standing-wave laser field may be
treated as a nonlinear dynamical system with coupled inter-
nal �electronical� and external �mechanical� degrees of free-
dom �28–30�. In the semiclassical and Hamiltonian limits
�when one treats atoms as pointlike particles and neglects SE
and other losses of energy�, a number of nonlinear dynamical
effects have been analytically and numerically demonstrated
with this system: chaotic Rabi oscillations �28–30�, Hamil-
tonian chaotic atomic transport and dynamical fractals
�31–33�, Lévy flights, and anomalous diffusion �30,34,35�.
These effects are caused by local instability of the c.m. mo-
tion in a laser field. A set of atomic trajectories under certain
conditions becomes exponentially sensitive to small varia-
tions in initial quantum internal and classical external states
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or/and in the control parameters, mainly, the atom-laser de-
tuning. Hamiltonian evolution is a smooth process that is
well described in a semiclassical approximation by the
coupled Hamilton-Schrödinger equations. A detailed theory
of Hamiltonian chaotic transport of atoms in a laser standing
wave has been developed in our recent paper �33�.

The aim of the present paper is to study dissipative cha-
otic transport of atoms in a one-dimensional optical lattice in
the presence of SE events which interrupt coherent Hamil-
tonian evolution at random time instants. Generally speak-
ing, deterministic �dynamical� chaos is practically indistin-
guishable in some manifestations from a random �stochastic�
process. The problem becomes much more complicated
when noise acts on a dynamical system which is chaotic in
the absence of noise. Such systems are of a great practical
interest. Comparatively weak noise may be treated as a small
perturbation to deterministic equations of motion, and one
can study in which way the noise modifies deterministic evo-
lution on different time scales. However, SE is a specific shot
quantum noise that cannot be treated as a weak one because
the internal state may change significantly after the emission
of a spontaneous photon. Special methods are needed to de-
scribe correctly the dynamics of a spontaneously emitting
single atom in an optical lattice. The purpose of this paper is
twofold. Our first goal is to give a description of possible
regimes of dissipative atomic transport in the presence of SE
and to quantify their statistical properties. Our secondary in-
tent is a search for manifestations of the fundamental dy-
namical instability and Hamiltonian atomic chaos in the dif-
fusivelike c.m. motion of spontaneously emitting atoms in a
laser standing wave which can be observed in real experi-
ments.

The paper is organized as follows. In Sec. II we formulate
a Monte Carlo stochastic wave-function approach to solving
semiclassical Hamilton-Schrödinger equations of motion for
a two-level atom in a one-dimensional monochromatic stand-
ing light wave. This approach allows us to get the most
probabilistic outcome that can be compared directly with
corresponding experimental output with single atoms. In Sec.
III we review briefly our previous results on Hamiltonian
chaotic c.m. motion which are necessary to quantify and in-
terpret dissipative dynamics. Section IV is devoted to de-
scription of possible regimes of dissipative c.m. motion of
spontaneously emitting atoms in a standing wave. Monte
Carlo simulations of the well-known effects of acceleration,
deceleration, and velocity grouping, and of an interesting
effect of dissipative chaotic walking of atoms are presented
in this section. Anomalous statistical properties of dissipative
chaotic walking are quantified and discussed in Sec. V.
Whereas Secs. IV and V are devoted to solving the first task
of this paper, in Sec. VI we consider the problem of mani-
festations of dynamical instability and Hamiltonian chaos in
dissipative atomic transport. We demonstrate analytically and
numerically that character of diffusion of spontaneously
emitting atoms changes qualitatively in the detuning regime
where the underlying Hamiltonian dynamics is chaotic. To
observe this effect in a real experiment with cold atoms in a
one-dimensional optical lattice we propose to measure the
linear extent of atomic clouds with different values of their
mean momentum and predict that the extent should increase

significantly with those values of the mean momentum for
which the underlying Hamiltonian evolution is chaotic.

II. MONTE CARLO WAVE-FUNCTION MODELING
OF THE ATOMIC DYNAMICS

In the frame rotating with the laser frequency � f, the stan-
dard Hamiltonian of a two-level atom in a strong standing-
wave one-dimensional �1D� laser field has the form

Ĥ =
P̂2

2ma
+

1

2
���a − � f��̂z − ����̂− + �̂+�cos kfX̂ − i�

�

2
�̂+�̂−,

�1�

where �̂�,z are the Pauli operators for the internal atomic

degrees of freedom, X̂ and P̂ are the atomic position and
momentum operators, �a, � f, and � are the atomic transi-
tion, laser, and Rabi frequencies, respectively, and � is the
spontaneous decay rate. Internal atomic states are described
by the wave function ���t��=a�t��2�+b�t��1�, with a and b
being the complex-valued probability amplitudes to find an
atom in the excited �2� and ground �1� states. Note that the
norm of the wave function, �a�2+ �b�2, is not conserved due to
non-Hermitean term in the Hamiltonian.

We use the standard Monte Carlo wave-function tech-
nique �36–38� to simulate the atomic dynamics with the
coupled internal and external degrees of freedom in an opti-
cal lattice. The evolution of an atomic state ���t�� consists of
two parts: �i� jumps to the ground state �a=0, �b�2=1� each of
which is accompanied by the emission of an observable pho-
ton at random time moments with the mean time 2 /� �actu-
ally, the probability of SE depends on the atomic population
inversion� and �ii� coherent evolution with continuously de-
caying norm of the atomic state vector without the emission
of an observable photon. The decaying norm of the state
vector is equal to the probability of spontaneous emission of
the next photon. It is convenient to introduce the new real-
valued variables �normalized all the time� instead of the am-
plitudes a and b �renormalized after SE events only�,

u �
2 Re�ab*�
�a�2 + �b�2

, v �
− 2 Im�ab*�

�a�2 + �b�2
, z �

�a�2 − �b�2

�a�2 + �b�2
,

�2�

which have the meaning of synphase and quadrature compo-
nents of the atomic electric dipole moment and the popula-
tion inversion, respectively. We stress that the length of the
Bloch vector, u2+v2+z2=1, is conserved.

Since we study manifestation of quantum nonlinear ef-
fects in ballistic transport of atoms, when the average atomic
momentum is very large as compared with the photon mo-
mentum �kf, the translational motion is described classically
by Hamilton equations. The whole atomic dynamics is gov-
erned by the following Hamilton-Schrödinger equations
�42,43�

ẋ = �rp, ṗ = − u sin x + �
j=1

	


 j��� − � j� ,
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u̇ = �v +



2
uz − u�

j=1

	

��� − � j� ,

v̇ = − �u + 2z cos x +



2
vz − v�

j=1

	

��� − � j� ,

ż = − 2v cos x −



2
�u2 + v2� − �z + 1��

j=1

	

��� − � j� , �3�

where x�kf	X̂� and p�	P̂� /�kf are normalized atomic c.m.
position and momentum. The dot denotes differentiation with
respect to the normalized time ���t. Throughout the paper
we fix the values of the normalized decay rate 
�� /� and
the recoil frequency �r��kf

2 /ma� to be 
=3.3�10−3 and
�r=10−5. These values are similar to those used in experi-
ments with Na �6,7�, Cs �9,40�, and Rb �12� cold atoms in a
standing-wave laser field with the maximal Rabi frequency
of the order of 1–5 GHz. So, the normalized detuning be-
tween the field and atomic frequencies, ���� f −�a� /�, is a
single variable parameter. Also we fix the initial conditions
as follows: x0=v0=u0=0, z0=−1, and vary the initial mo-
mentum p0 only. In Eqs. �3� � j are random time moments of
SE events and 
 j are random recoil momenta with the values
between �1 �1D case�. In terms of the normalized time � the
rate of occurrence of SE events is 
�z+1� /2. At �=� j, the
atomic variables change as follows:

� = � j ⇒ u → 0, v → 0, z → − 1, p → p + 
 j,

− 1 � pj � 1. �4�

III. A BRIEF REVIEW OF HAMILTONIAN ATOMIC
DYNAMICS

In this section we review briefly our main results on
Hamiltonian atomic dynamics �see Refs. �28–31,33,35��
which will be used in the next sections. In the absence of any
losses �
=0� the total atomic energy is conserved,

H �
�rp

2

2
+ U, U � − u cos x −

�

2
z . �5�

The corresponding lossless equations of motion with two
independent integrals of motion, the energy H and the length
of the Bloch vector, have been shown �28,29� to be chaotic in
the sense of an exponential sensitivity to small variations in
initial conditions and/or the control parameters. The c.m.
motion is governed by the simple equation for a nonlinear
physical pendulum with the frequency modulation �39�,

ẍ + �ru���sin x = 0, �6�

where the synchronized component of the atomic dipole u is
a function of all the other atomic variables including the
translational ones. Besides the regular c.m. motion, namely,
oscillations in a well of the optical potential and a ballistic
motion over its hills, we have found and quantified chaotic
c.m. motion �28,29,39�. On the exact atom-laser resonance

with �=0, u is a constant, and the c.m. performs either regu-
lar oscillations, if H� �u�, or moves ballistically, if H� �u�.

At ��0, the depth of the potential wells changes in
course of time, and atoms may wander in a rigid optical
lattice �without any modulations of its parameters� in a cha-
otic way with alternating trappings in the wells and flights of
different lengths and directions over the hills. At small de-
tunings, ����1, the second term of the potential energy U in
Eq. �5� is small, and U can be approximated by a function of
only one internal variable u. In this case we have approxi-
mate solutions for v and z

v��� = � 
1 − u2 cos�2�
0

�

cos xd�� + �0
 ,

z��� = � 
1 − u2 sin�2�
0

�

cos xd�� + �0
 , �7�

where �0 is an integration constant which is a function of
initial values of z and u. Using these solutions one can prove
that at ����1, u performs shallow oscillations when the
atom moves between the nodes �recall that u=const at �
=0�. These oscillations are synchronized with the oscillations
of z, and when an atom approaches any node with cos x=0,
where the strength of the laser field changes the sign, they
slow down �see Eq. �7��. The swing of oscillations of u
gradually increases, and exactly at the node u changes
abruptly its value �see Fig. 1�. Thus u is practically a con-
stant between the nodes and it performs a sudden jump at
every node.

In the Raman-Nath approximation, where x=�rp� and p
=const, we have managed to derive the deterministic map-
ping allowing to compute the value um just after crossing the
mth node,

um � sin� �


1 − um−1
2 �
 �

�rp
�v0 cos� 2

�rp
−

�

4



+ �− 1�mz0 sin� 2

�rp
−

�

4

� + �− 1�mz0� + arcsin um−1
 ,

�8�

where v0 and z0 are the values of v and z at the antinodes of
the standing wave at x=�k, k=0,1 ,2 , . . .. They are the same
at all the antinodes because in the Raman-Nath approxima-
tion v and z are periodic functions of x �see solution �7��.
Formula �8� describes the series of jumps of two alternating
magnitudes �for odd and even m�. Strictly speaking, Eq. �8�
is valid with fast ballistic atoms and not on a very long time
scale. Deviation of the analytic calculations with Eq. �8�
from the exact numerical results is demonstrated in Fig. 1�a�
where we plot the function u��� for a fast atom with p0
=1900. It is obvious that the signal is rather regular but the
magnitude of the jumps changes slowly because the Bloch
components v and z are not strictly periodic functions of
time.

Figure 1�b� plots u��� in the regime of Hamiltonian cha-
otic walking. To quantify chaotic jumps of u we proposed in
Ref. �33� the stochastic map
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um � sin����
 �

�rpnode
sin �m + arcsin um−1
 , �9�

which was derived from the deterministic map �8� by intro-
ducing random phases �m�0���2�� instead of arguments
of trigonometric functions which may differ significantly
from node to node due to strong variations in the atomic
momentum beyond the Raman-Nath approximation. Note
that the value of the momentum at the instant when the atom

crosses a node, pnode=
2H /�r, is approximately the same for
all nodes.

The map �9� describes a random Markov process in the u
space with um varying in the range −1�um�1. This quantity
may be smaller or larger than the atomic energy H �which is
a constant in the Hamiltonian limit�. Since the values of u
define the atomic potential energy, its random walking gov-
erns a random walking of atoms in the lattice. The possible
regimes of the Hamiltonian c.m. motion can be summarized
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FIG. 1. Time evolution �� is in units of �−1� of the synphase component of the electric dipole moment u and the atomic energy H �in
units of ���. �a� Regular Hamiltonian dynamics �p0=1900, 
=0�, �b� chaotic Hamiltonian dynamics �p0=700, 
=0�, �c� regular dissipative
dynamics �p0=1900, 
=0.0033�, �d� chaotic dissipative dynamics �p0=700, 
=0.0033�. In all the panels, �=−0.0005. The initial part of �a�
agrees with approximate solution �8� with v0=0, z0=−1.
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as follows �33�: At �u��H, an atom oscillates in one of the
potential wells, at �u��H, it moves ballistically. It can walk
chaotically if 0�H�1. In the process of Hamiltonian cha-
otic walking the atom wanders in an optical lattice with al-
ternating trappings in wells of the optical potential and
flights over its hills changing the direction of motion many
times. “A flight” is an event when the atom passes, at least,
three nodes. c.m. oscillations in a well of the optical potential
is called “a trapping.” The number of node crossings l during
a single flight or a single trapping event is a discrete measure
of the length and durations of those events. We have derived
in Ref. �33� the following formulas for the probability den-
sity functions �PDFs� for the flight and trapping events in the
diffusive approximation:

Pfl�l� �
Q�Du�

arcsin3 H
�
j=0

	

�j + 1/2�2exp
− �j + 1/2�2�2Dul

arcsin2 H
,

Ptr�l� �
Q�Du�

arccos3 H
�
j=0

	

�j + 1/2�2exp
− �j + 1/2�2�2Dul

arccos2 H
.

�10�

Here Q is a constant, Du=�2� /4�rpnode is a diffusion coef-
ficient in the u space. For comparatively small values of l
�i.e., with short flights and trappings�, we get from Eq. �10�
the power decay

Pfl � Ptr � l−1.5, �11�

whereas for large l the decay is exponential. Numerical
simulation of the Hamiltonian equations of motion agrees
well with the analytical results �10� in different ranges of the
detunings. A typical PDF for the flight and trapping events
decays initially algebraically and has an exponential tail. The
length of the initial power-law segment is inversely propor-
tional to the value of the detuning � and can be rather large.

In which way SE changes the statistical properties of the
Hamiltonian motion? Can we find fingerprints of Hamil-
tonian instability and chaos in the motion of spontaneously
emitting atoms or SE totally suppresses any manifestations
of coherent �but chaotic!� Hamiltonian dynamics? These
questions will be addressed in the next sections.

IV. DISSIPATIVE ATOMIC TRANSPORT IN A LASER
STANDING WAVE

The emission of a photon into the continuum of modes of
the electromagnetic field is accompanied by an atomic recoil.
The dissipative �friction� force F�	ṗ� �which does not exist
in the Hamiltonian system� depends on the atomic momen-
tum p and the sign of the detuning in a complicated way
�2,41�. The effects of acceleration, deceleration, and velocity
grouping �at ��0� are well-known in the literature �2,3�. A
different effect we report in this section is dissipative chaotic
walking. It appears under appropriate conditions that are dif-
ferent from those specified for Hamiltonian chaotic walking
in the preceding section.

To illustrate the possible regimes of dissipative atomic
transport in a standing wave we integrate by the Monte Carlo

method dissipative equations of motion �3� with 2000 atoms
whose positions and momenta are distributed in a quasi-
Gaussian manner �Fig. 2�a��. In Fig. 2�b� we demonstrate the
velocity grouping effect at �=−0.2 and �=105. A large num-
ber of atoms is grouped around two values of the capture
momentum pcap� �1300 because of acceleration of slow
atoms and deceleration of the fast ones in the initial en-
semble. The slower the atoms are the longer is the process of
the velocity grouping. Note that atoms with �p��100,
trapped initially in a well of the optical potential, could not
quit the well up to �=105. Contrary to that, at positive values
of the detuning fast atoms are accelerated and slow ones are
decelerated. As a result, we observe a pronounced peak
around x� p�0 shown in Fig. 2�c� at �=0.1 and �=105.

Dependence of the friction force F on the current atomic
momentum p is shown in Fig. 3 at �=−0.2. It has been
computed with our main equations �3� when averaging over
seven thousands atoms with different initial momentum. The
function F�p� resembles the behavior of the friction force
computed with another methods �see �2� and Fig. 1�a� in
�41��. The friction force decreases up to zero value and then
begin to oscillate with increasing p. It has a number of zeroes
�the detailed view is shown in Fig. 3�b�� like the correspond-
ing functions in Refs. �2,41�. Zero values of F correspond to
quasistationary values of the momentum which depend on �.
Some of them are attractors and atoms with close values of
the momentum tend to pcap, another ones are repellors. The
attractors and repellors are not deterministic because of a
random nature of SE. Thus an atom walks randomly in the
momentum space between different values of the capture
momentum pcap. When it reaches a certain value of the cap-
ture momentum the atom does not stop in the momentum
space and goes on to fluctuate because of both the Hamil-
tonian instability and SE effect.

In the preceding section we described the Hamiltonian
chaotic walking that may occur in the absence of any losses.
Dissipation causes additional strong fluctuations of the mo-
mentum. If ��0 or if it is negative but comparatively large,
nothing principally new happens to atoms as compared with
the Hamiltonian limit. However, at negative small values of
�, a characteristic capture momentum becomes smaller than
a typical range of momentum fluctuations due to atomic re-
coils. As a result, atoms may change their direction of mo-
tion in an irregular way. Such a dissipative chaotic atomic
walking is illustrated in Fig. 2�d� at �=−0.05 and �=105

with the atoms distributed widely in the phase plane. Typical
atomic trajectories are shown in Fig. 4 in the momentum
space. Figures 4�a� and 4�b� illustrate how the friction force
near the resonance ��=−0.001 and �=−0.01� decelerates at-
oms with large values of the initial momentum down to so
small values of the capture momentum when the dissipative
chaotic walking becomes possible. With increasing the abso-
lute value of the negative �, the capture momentum in-
creases and the atom changes rarely the direction of motion
�Fig. 4�c� with �=−0.1�. Figures 4�d� and 4�e� illustrate the
velocity grouping effect at �=−0.15 with different values of
the initial momentum.
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V. STATISTICAL PROPERTIES OF DISSIPATIVE
CHAOTIC WALKING

Statistics of Hamiltonian chaotic walking is quantified by
the flight and trapping PDFs �10� with algebraically decaying
head segments and exponential tails whose lengths strongly
depend on �. We will show in this section that PDFs for
dissipative chaotic walking are even more sensitive to varia-
tions in �. Figures 4�a� and 4�b� clearly demonstrate that at
very small detuning �=−0.001 long flights dominate,
whereas there appears a number of short flights with larger
value of �=−0.01. In Fig. 5 we plot the PDFs Pfl for the
duration of atomic flights T with different values of the de-
tuning �. At small detunings �Fig. 5�a��, the length of the
power-law segments depends on � in a similar way as in the
Hamiltonian case �compare this figure with Figs. 5a, 6a, and
7a in Ref. �33��. However, the slope slightly differs from the
Hamiltonian slope which is equal to −1.5. The difference in
the statistics of dissipative and Hamiltonian walkings is more
evident with larger values of the detuning �Fig. 5�b��. The
length of the power-law segments increases drastically with
increasing �. This effect is absent in Hamiltonian dynamics.
The corresponding slope � decreases with changing the de-
tuning from �=−0.09 to �=−0.12 because of the corre-
sponding increase in the length of atomic flights �see Figs.
4�a�–4�c��. In Fig. 6 we plot the dependencies of the mean
duration of atomic flights 	T� and the slope of the PDF

power-law fragments � on the detuning � in the range of its
medium values −0.12���−0.06. Both the quantities corre-
late well with each other. It means that, changing the value of
�, one can manipulate statistical properties of dissipative
atomic transport in an optical lattice. This control is nonlin-
ear in the sense that slightly changing �, say, from −0.08 to
−0.12, we increase the mean duration of flights in a few
orders of magnitude. This effect may be qualitatively ex-
plained as follows. When increasing the absolute value of the
negative detuning, the capture momentum increases but fluc-
tuations of the current momentum p decrease providing long
atomic flights �43�.

To explain the statistical properties of the dissipative cha-
otic walking let us consider the behavior of the quasienergy,

H̃j �
�r

2
p2 − u cos x −

�

2
z −

�


4
	1 − z2��� − � j�

= H −
�


4
	1 − z2��� − � j�, � j � � � � j+1, �12�

which is equal to the total atomic energy �5� in the absence

of relaxation. Near the resonance, ����1, H̃j is almost con-
served between SE events, i.e., in the interval � j ���� j+1.
The real energy H �see Fig. 1�d�� decreases a little in be-
tween in a linear way. The rate of this decrease is defined by
the coefficients of spontaneous emission 
, the detuning �,

FIG. 2. Atomic momentum and position distribution illustrating the effects of atomic acceleration, deceleration, and the velocity
grouping: �a� �=0, �b� �=105, �=−0.2, �c� �=105, �=0.1, �d� �=105, �=−0.05. Momentum p is given in units of �kf, the position in units
of kf

−1.
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and the average probability to find the atom in the excited

state. Both the quantities, H and H̃, changes abruptly just
after SE �because of the corresponding changes in the atomic
variables �4��. Just after emitting a jth spontaneous photon at
�=� j, they have the same values. So, we will model the
evolution of the energy as a map Hj �H�� j

+� taken at the
moments � j

+ just after SE,

Hj = H̃j − H̃j−1 + Hj−1

= Hj−1 + �rp�� j
−�
 j +

�r

2

 j

2 +
�

2
+ u�� j

−�cos x�� j�

+
�

2
z�� j

−� +
�


4
	1 − z2��� j − � j−1� , �13�

where the values of the atomic variables p�� j
−�, u�� j

−�, and
z�� j

−� are taken at the moments � j
− just before SE. They are, in

turn, determined by the coherent evolution between SE.
The stochastic map for the atomic energy �13� provides an

important information about the c.m. motion. It has been
shown in Ref. �33� that atoms move ballistically, if the
atomic energy satisfies to the condition H� �u�, whereas at
H� �u� they may change the direction of motion. The dissi-
pative chaotic walking takes place when the atomic energy H
alternatively takes the values larger and smaller than a criti-

cal value H= �u�. In the Hamiltonian limit, where the energy
is conserved, the problem of the c.m. chaotic walking has
been reduced to the task of random walking of the Bloch
component u �see Sec. III and Ref. �33��. The energy is not
conserved in the presence of relaxation, but the values of u
are always small �see the Appendix and Figs. 1�c� and 1�d��.
Thus atoms oscillate in the wells of the optical potential if
H�0 and move ballistically if H�0.

On a time scale exceeding the mean time between SE
events 2 /
, the evolution of energy can be treated as a dif-
fusion process with a drift in the energetic space. The prob-
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FIG. 3. Dependence of the friction force F�	ṗ� on the current
atomic momentum p at the detuning �=−0.2.
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FIG. 4. Typical atomic trajectories in the momentum space: �a�–
�c� dissipative chaotic walking with different statistics of atomic
flights, �d� and �e� the effect of velocity grouping. Note that atoms
with very different initial momentum acquire a close value of the
capture momentum.
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ability to have the energy H at time � is governed by the
Fokker-Planck equation

Ṗ�H,�� = − 2cH
�P

�H
+ DH

�2P

�H2 , �14�

where DH is an energy diffusion coefficient and cH is an
energy drift coefficient which can be estimated with the help
of Eq. �13� as follows:

cH �
	Hj − Hj−1�
	� j − � j−�

= 	Ḣ� �
�r


12
+

�


2
. �15�

In deriving this formula we adopt the average value of the
squared recoil momentum 	
 j

2�=1 /3 �the projections of the
recoil momenta on the standing-wave axis x, 
 j, are assumed
to be distributed in the range �1 with the same probability�,

the average value of the population inversion just before a
SE event to be 	z�� j

−��=1 /2, the average value of z over the
whole time scale and its mean squared deviation from 1 to be
	z�=0 and 	1−z2�=1 /2, respectively �see the solution �A5�
in the Appendix�. Moreover, neglecting the correlation, we
put 	u cos x��	u�	cos x�=0, which is valid if ��rp��
 /2,
i.e., when p�100 with our choice of the parameters. Since
the first term in Eq. �15� is small and may be neglected, the
drift velocity of an atom in the energetic space is approxi-
mately proportional to the detuning �, and therefore in aver-
age atoms accelerate and decelerate at ��0 and ��0, re-
spectively, as it should be for ����1. In the weak Raman-
Nath approximation, Eqs. �A4� and �A6�, the drift coefficient
in the energetic space is simply related to the friction force F
acting upon atoms,

F � 	ṗ� �
	Ḣ�
�rp

. �16�

The friction force plays the role of a drift coefficient in the
momentum space. Strictly speaking, the weak Raman-Nath
approximation is not valid near the turning points when the
atomic velocity is comparatively small. However, most of
the flight time it is valid.

The diffusion coefficient in the energetic space is given by
the formula

DH �
	�Hj − Hj−1�2� − 	Hj − Hj−1�2

2	� j − � j−1�
, �17�

which can be rewritten with the help of Eq. �13� as follows:

DH �

�r

2p2�� j
−�

12
+

	u2�� j
−��


8
. �18�

Using weak Raman-Nath approximation, Eqs. �A4� and
�A6�, the first term can be replaced by 
�rH /6. Using the
estimation �A10� for 	u2�� j

−�� in the irregular c.m. motion
regime �see the Appendix�, we get the following expression
for the energy diffusion coefficient:
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FIG. 5. The PDFs Pfl for the duration of atomic flights T with
�a� small detunings �crosses �=−0.01, stars �=−0.001, circles �
=−0.0001, squares �=−0.000 01� and �b� medium detunings �stars
�=−0.09, �=−0.77; circles �=−0.1, �=−0.27; squares �=−0.12,
�=−0.05�. Straight lines show slopes � of the power-law fragments
of the PDFs in log-log scale.
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DH
ch �


�rH

6
+

�2

8
. �19�

This expression is valid for moderately small momentums
�p�1000� when the strong Raman-Nath approximation can-
not be applied. In the process of dissipative chaotic walking,
the probability to get higher values of the momentums is
almost zero.

Now we will try to derive analytically a distribution of the
durations T of atomic flights in the process of dissipative
chaotic walking. In fact, it is a problem of the first passage
time for the atomic energy H to return to its zero value.
Recall that at small detunings we have H�0 in the very
beginning of every flight. In course of time H can reach
rather large values, and it returns to zero at the end of the
flight. If the random jumps of the energy would be symmet-
ric �cH=0�, the probability to find a flight with duration T
would be proportional to T−1.5, where the exponent −1.5 does
not depend on the diffusion coefficient. This conjecture fol-
lows from the known theorem in probability theory. A more
general result �see Chap. XIV in Ref. �44�� proves that in the
case of an asymmetric random walking in the energetic space
�cH�0� the PDF for the flight durations in configuration
space is

Pfl � e−cH
2 T/DHT−1.5, �20�

if the drift and diffusion coefficients in the Fokker-Planck
equation for the random walking are assumed to be con-
stants. This formula gives a distribution of the flight dura-
tions with a power-law fragment followed by an exponential
tail and agrees qualitatively with the exact numerical com-
putations of Pfl shown in Fig. 5�a� for a few values of the
detuning �. The main disadvantage of this formula is that
Eq. �20� does not depend on � as the exact PDFs in Fig. 5�a�.
At very small �=−10−5, the PDF, shown by squares in Fig.
5�a�, decays mostly algebraically, whereas at larger values of
the detuning the power-law fragments are much shorter. A
discrepancy between the analytical and numerical PDFs
arises because we assumed in deriving Eq. �20� that DH and
cH do not depend on the energy H. In fact, it is not the case
for small values of the momentum p, and a more accurate
formula for Pfl�T� is required.

The PDFs for Hamiltonian �Eq. �10�� and dissipative �Eq.
�20�� transport are similar in the sense that both Pfl contain
power-law fragments followed by exponential tails, but the
origin of each statistics is different. In the Hamiltonian limit
the statistics is governed by the behavior of u, not the energy,
as in the dissipative system. A turnover from a power law to
an exponential decay in the Hamiltonian case is explained by
a boundedness of �u��1, whereas in the dissipative system it
is explained by a negative drift of the energy H. Each of the
factors prevents the corresponding randomly walking quan-
tity to go far away from its critical value �at which the atoms
can change the directions of motion� decreasing the probabil-
ity of long flights in at exponential way.

VI. MANIFESTATION OF HAMILTONIAN CHAOS
IN DISSIPATIVE ATOMIC TRANSPORT

In the absence of SE the atomic dynamics can be regular
or chaotic depending on the initial conditions and/or the de-
tuning. In experiments one measures statistical characteris-
tics of spontaneously emitting atoms. Is there a correlation
between those characteristics and the underlying Hamil-
tonian dynamics? Can we find any manifestations of Hamil-
tonian instability, chaos, and order, in the diffusivelike dissi-
pative atomic transport? These questions will be addressed in
the present section.

The common quantitative criterion of deterministic chaos,
the maximal Lyapunov exponent �, is a measure of a diver-
gence of two trajectories in the phase space with close initial
conditions �45�. To quantify probability of chaos in the
mixed Hamiltonian dynamics, when �=0 with some values
of p0 and ��0 with another values of p0, we introduce a
probabilistic measure of Hamiltonian chaos,

� � 	2���� − 1� , �21�

where ���� is a Heaviside function ��=0 if ��0, �=1 /2 if
�=0, and �=1 if ��0�. The probability of Hamiltonian
chaos � is computed by averaging over a large number of
atomic trajectories with different values of p0. If all the tra-
jectories in the set turn out to be stable, one gets �=0, and if
all they are exponentially unstable, then �=1. One gets 0
���1, if some trajectories in the set are stable but the
other ones are not. The magnitude of � is proportional to the
fraction of trajectories with positive �s.

To examine manifestations of the underlying Hamiltonian
dynamics in dissipative transport in is convenient to consider
atomic diffusion not in the energetic but in the momentum
space. The momentum diffusion coefficient, which is a mea-
sure of momentum fluctuations, can be written with the help
of Eqs. �17� and �A4� as follows:

Dp �
DH

�r
2p2 �




12
+

	u2�� j
−��


8�r
2p2 . �22�

Using the formula �19�, we get Dp in the regime of chaotic
oscillations of the Bloch component u,

Dp
ch �




12
+

�2

8�r
2p2 . �23�

The momentum diffusion coefficient Dp is computed with
the main equations �3� in the following way. The range of all
possible values of the atomic energy H �5� is partitioned in a
large number of bins. For a large number of initial conditions
�in fact, we change only the initial momentum p0 keeping the
other conditions to be fixed�, after any jth SE event we com-
pute the difference Hj −Hj−1 and the squared difference �Hj
−Hj−1�2. They are random values, but their statistics depend
on the preceding energy value Hj−1. So we calculate the his-
tograms of the average values of 	Hj −Hj−1� and 	�Hj
−Hj−1�2� as functions of energy Hj−1. After that we can com-
pute the energy diffusion coefficient DH �17� which, being
divided by �r

2p2, yields the momentum diffusion coefficient
Dp which is better to present as a function of the current
momentum p�
2Hj−1 /�r.
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The main result in this section is illustrated with Fig. 7. In
the upper left and right panels the dependencies of the mo-
mentum diffusion coefficient Dp on the current momentum p
are plotted in a log-log scale for �=−0.01 and �=−0.0005,
respectively. In both cases, we put 
=0.0033. These plots
should be compared with the corresponding lower panels
where the probability of the Hamiltonian chaos � is plotted
against p with 
=0 �i.e. in the Hamiltonian limit of Eqs. �3��.
It is evident that the character of the momentum diffusion
changes abruptly at those values of the current momentum
where a transition from chaos to order occurs in the under-
lying Hamiltonian dynamics. Such a turnover takes place in
a range of small negative detunings and is a manifestation of
the peculiarities of the underlying Hamiltonian evolution in
the diffusivelike dissipative transport of atoms in a standing-
wave laser field. We may conclude that in spite of random
atomic recoils due to SE the chaotic �regular� dynamics be-
tween the acts of SE clearly manifests itself in the behavior
of the measurable characteristic of the atomic transport, the
momentum diffusion coefficient Dp. The behavior of Dp in
the range of p, where the underlying Hamiltonian evolution
is chaotic, is well described by the formula �23� with Dp

ch

� p2+const �see both the upper panels in Fig. 7 where this
dependence is shown by dashed lines�.

However, the formula �23� does not work in the regimes
when the underlying Hamiltonian dynamics is mixed or
regular because in deriving it we supposed fully chaotic be-
havior of u. We have managed to estimate analytically Dp in
the Hamiltonian regular regime at extremely small values of
the detuning ���≪1 and for atoms whose momentum is so

large that we can neglect its fluctuations between SE events
�the exact Raman-Nath approximation with x=�rp��. Figure
1�a� illustrates the ladderlike behavior of u which is de-
scribed by the deterministic mapping �8� on a comparatively
short time scale. To get Dp

RN from Eq. �22� we use the ex-
pression �A9� for u2�� j

−� derived in the Appendix,

Dp
RN �




12
+

�2

8�rp
�
. �24�

Thus we derived the formulas for the momentum diffusion
coefficient Dp in the regimes of Hamiltonian chaos �23� with
�=1 and Hamiltonian order �24� with �=0. In a general
case with 0���1, we will assume a linear combination

Dp � �1 − ��Dp
RN + �Dp

ch �



12
+

�2

8�rp
�1 − �


�
+

�

�rp

 .

�25�

This function, shown by the solid line in the right upper
panel in Fig. 7, fits rather well exact numerical results.

We would like to end this section with the proposal of a
simple experimental scheme to observe our main theoretical
and numerical result on an abrupt change in the character of
atomic diffusion in a laser standing wave under conditions
corresponding to two different regimes of the underlying
Hamiltonian evolution: chaotic and regular ones. Let us con-
sider a small atomic cloud moving in one direction with an
average atomic momentum 	pc�. Initial position and momen-
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FIG. 7. Correlation between the average momentum diffusion coefficient in a log-log scale Dp �in units of �2kf
2�� and probability of

Hamiltonian chaos � in their dependencies on current atomic momentum p �in units of �kf� at �=−0.01 and �=−0.0005. Dashed lines with
the slopes p−2+const and p−1+const are theoretical curves �23� and �24� valid in the regimes of Hamiltonian chaos and order, respectively.
Solid line is a theoretical curve �25� derived to fit the exact numerical results. An abrupt change in the decay laws for Dp occurs for those
values of p where the transition from order to chaos takes place in the underlying Hamiltonian dynamics.
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tum distribution are assumed to be a Gaussian with the stan-
dard deviations �x

2�	�x− 	xc��2� and �p
2 �	�p− 	pc��2�. The

momentum diffusion coefficient is

Dp =
d��p

2�
2d�

. �26�

The temperature of gas and its rate of heating in K per sec-
ond are

T �
2	Ek�

kB
=

�2kf
2�p

2

makB
,

dT

dt
=

2�2kf
2�Dp

makB
, �27�

where Ek is a kinetic energy of atoms �in J� in the reference
frame moving with the c.m. of the cloud. It follows from Eq.
�27� that the rate of heating is proportional to Dp whose
behavior is different in the regimes of regular and chaotic
underlying Hamiltonian dynamics.

The linear extent of the cloud in meters is LX�2�x /kf. On
a comparatively short time scale, �� ��	pc� /F��, and low tem-
peratures �p� �	pc��, Dp is approximately the same for all the
atoms in the cloud because the c.m. velocity could not
change significantly under the action of the friction force F
during the observation time. Using the first equation in the
set �3� and Eq. �26�, we obtain

�x
2 � �x

2�0� +
1

2
�r

2�p
2�0��2 +

2

3
Dp�r

2�3. �28�

We have computed LX with that formula with Dp given by
Eq. �23� and compare the result with numerical simulation of
Eqs. �3� for a number of atomic clouds with different initial
values of 	pc�. In Fig. 8 the dependence LX�	pc�� is plotted
for �=−0.01 at two moments of time. The analytic dashed
lines fit well the exact numerical results in the range 	pc�
�1200 where the underlying Hamiltonian dynamics is cha-
otic �see the left column in Fig. 7�. Note an abrupt change in
the decay of LX�	pc�� beginning with those values of 	pc�
�1200 where the Hamiltonian dynamics becomes more
regular. Since the linear extent of the atomic clouds changes

abruptly at the chaos-order border one may conclude that in
real experiments the value of LX should increase sharply with
those values of the average cloud momentum 	pc� for which
the underlying Hamiltonian evolution is chaotic.

VII. CONCLUSION

Coherent evolution of the atomic state in a near-resonant
standing-wave laser field is interrupted by SE events at ran-
dom moments of times. The Hamiltonian evolution between
these events has been shown previously �for a summary of
Hamiltonian theory for cold atoms in a 1D optical lattice see
Ref. �33�� to be regular or chaotic depending on the values of
the detuning � and the initial momentum p0. We stress that
dynamical chaos may happen without any noise and any
modulation of the lattice parameters. It is a specific kind of
dynamical instability in the fundamental interaction between
the matter and radiation.

In reality Hamiltonian chaos is masked by random events
of SE. The behavior of spontaneously emitting atoms in the
detuning and momentum regimes where the underlying
Hamiltonian dynamics is chaotic may be called stochastic
chaos. We have specified and quantified two regimes of the
stochastic chaos, namely, random walking and dissipative
ballistic transport. In the first regime, atoms wander in an
optical lattice in a random way performing flights in both the
directions with the PDFs strongly depending on the detuning
�see Figs. 5 and 6�. In the ballistic regime, atoms move in the
same direction with momentum fluctuations caused both by
the Hamiltonian instability as well as SE events. It has been
shown in our numerical experiments and confirmed analyti-
cally that the character of momentum diffusion changed
abruptly in the regime where the underlying Hamiltonian
dynamics proved to be chaotic. A clear correlation between
the decay of the momentum diffusion coefficient Dp and
probability of Hamiltonian chaos � has been found �Fig. 7�.
In order to observe the manifestation of Hamiltonian chaos
in real experiments we proposed to measure a linear extent of
atomic clouds LX in a 1D optical lattice and predicted a sig-
nificant increase in LX for the atomic clouds with ��1.

In conclusion we would like to discuss some possible ap-
plications of the theory developed and the results obtained. A
sensitive dependence of statistical properties of dissipative
chaotic walking and ballistic transport on the values of the
detuning � provides a possibility to manipulate atomic c.m.
motion by changing �. For example, one can increase the
mean duration of atomic flights in three orders of magnitude
by changing � only by 30% �see Fig. 6�.

Cold atoms in optical lattices is an ideal system to study
different phenomena in statistical physics. Besides dynami-
cal chaos, the phenomena of stochastic resonance has been
observed in a near-resonant optical lattice �46�. Another phe-
nomenon of considerable current interest is cold atom ratch-
ets �47–51�. A ratchet is a spatially periodic device which is
able to produce a directed transport of particles in the ab-
sence of a net bias �i.e., when the time- and space-averaged
forces are zero�. In order to realize the ratchet effect it is
necessary to break time or/and spatial symmetries which
generate a countermoving partner to each trajectory �52�.
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FIG. 8. A log-log dependence of the cloud’s linear extent LX �in
microns� on the average initial momentum 	pc� of atoms in a cloud
at two moments of time. The analytic dashed lines were computed
with the formula �28� with Dp=Dp

ch valid in the chaotic regime on a
short time scale. Note an abrupt change in the decay of LX�	pc�� in
the range of 	pc��1200 where a chaos-order transition takes place
in the underlying Hamiltonian motion. �=−0.01, 2�x�0�=0.5,
2�p�0�=5, wavelength � f =2� /kf =850 nm.
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Different classes of the ratchets have been experimentally
realized with cold atoms in optical lattices �47–49�. The in-
terrelation of Hamiltonian chaos and SE noise, found in this
paper, provides an additional possibility to create and ma-
nipulate directed transport of atoms in rigid optical lattices.

APPENDIX

We work in the regime of small detunings

��� � 1, �A1�

moderate mean atomic velocities

	��rp�� � 
/2 � 1, �A2�

and diffusive motion

� � 2/
 . �A3�

Due to Eq. �A1�, we may neglect the last term in the poten-
tial energy �5� and adopt the Hamiltonian solutions for Eq.
�7� between any two acts of SE. The evolution of u is de-
scribed by the approximate solutions �8� for the regular
Raman-Nath motion and Eq. �9� for the chaotic motion. It
follows from the condition of moderate atomic velocity �A2�
and solutions �8� and �9� that �u��1. In other words, u can-
not go far from zero between acts of SE after each of which
u=0. Under the conditions �A1� and �u��1, the mean kinetic
atomic energy is much greater than the potential one and in
this weak Raman-Nath approximation

�u sin x +
�z

2
� �

�rp
2

2
, �A4�

the solution �7� for z is simplified,

z��� � � sin�2�
0

�

cos xd�� + �0
 . �A5�

In the diffusion regime �A3� and in the weak Raman-Nath
approximation �A4� the momentum fluctuations between two

SE are small in comparison with its fluctuations over the
time scale of atomic transport. So, the atomic momentum
just before SE is equal to its value at the node,

p � p�� j
−� � pnode. �A6�

Now we can get simplified solutions for u. In the exact
Raman-Nath condition, x=�rp�, we have from Eq. �8� the
approximate deterministic map written in a two-step form,

um
RN � 2�
 �

�rp
v0 cos� 2

�rp
−

�

4

 + um−2

RN . �A7�

In the chaotic regime we have from Eq. �9� the stochastic
map

um
ch = ���
 �

�rp
sin �m + um−1

ch . �A8�

The maps derived enable us to estimate the values of
u�� j

−� just before jth act of SE. After the �j−1�th SE u0
=u�� j−1

+ �=0, u�� j
−�=uM is an accumulated value of u after

passing M nodes in the interval � j−1���� j. The average
number of node crossings can be estimated to be 	M�
�2��rp� /
�. In the exact Raman-Nath limit, uM =M�um
−um−2� /2, and the mean squared value in the regular regime,

	u2�� j
−��RN = 	uM

2 �RN �
4�2�rp

�
2 	v0
2�cos2� 2

�rp
−

�

4

 .

�A9�

Beyond the strong Raman-Nath limit, u�� j
−�=uM is a sum of

M random numbers which are proportional to sin �m. From
the probability theory we get

	u2�� j
−��ch = 	uM

2 �ch � 	M��2 �

2�rp
�

�2
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