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We present a combined experimental and theoretical study of cold collisions between bismuth and helium
atoms in strong magnetic fields and demonstrate that the spin-orbit interaction coupling between different
nonrelativistic states of Bi leads to rapid Zeeman relaxation. The Zeeman relaxation of Bi in the ground
electronic state is found to be very efficient due to the admixture of electronic excited states which show an
interaction anisotropy due to their nonzero electronic orbital angular momentum. Our results indicate that
dense ensembles of heavy relativistic atoms will generally be unstable in magnetic traps due to significant spin
relaxation induced by spin-orbit interactions.
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I. INTRODUCTION

Inelastic collisions between paramagnetic atoms and
noble-gas atoms in a magnetic field have long been of sig-
nificant interest for experiments in optical pumping �1�, pre-
cision measurement and precision magnetometry �2,3�,
nuclear physics �4,5�, and magnetic resonance imaging �6�.
Inelastic collisions of alkali-metal atoms with noble-gas at-
oms at elevated temperatures were therefore studied in great
detail �5,7–11�. The interest in collisions of paramagnetic
atoms and helium at low temperatures has recently been
stimulated by the development of cryogenic cooling tech-
niques, which may allow for enhancement of coherence
times in precision measurements �12,13�, and the use of cold
��1 K� helium buffer gas for loading atoms in a magnetic
trap �14–18�. Low-temperature interactions of open-shell at-
oms with helium are, however, poorly understood. Our re-
cent study of the transition-metal atoms Ti and Sc and the
atoms from the lanthanide series �14–19� demonstrated that
cold-collision experiments using helium buffer gas provide
detailed information on the structure of those open-shell at-
oms and their interaction properties. Here, we present a study
of a very different system: cold collisions of helium and
bismuth �the heaviest stable element with a half-filled p
shell� and discuss how measurements of elastic scattering
and collision-induced Zeeman relaxation at low temperatures
can provide a probe of the spin-orbit interaction in heavy
atoms.

Collisions between paramagnetic atoms and helium can
change the spin orientation of the open-shell atom through
three different mechanisms: spin exchange, spin-rotation in-
teraction involving the rotational motion of the collision
complex, and direct relaxation induced by the anisotropy of
the atom-atom interaction �20�. Spin exchange occurs only in
collisions with 3He due to the hyperfine interaction between
the unpaired valence electrons of the open-shell atom and the
spin I=1 /2 of the 3He nucleus. This interaction is weak and
our experiments are insensitive to it. The spin-rotation inter-

action is induced by the second-order spin-orbit couplings. It
can be represented by the phenomenological operator form
��R�N ·S, where N is the rotational angular momentum of
the collision complex and ��R� is the spin-rotation interac-
tion constant �9,10�. This interaction is expected to vary qua-
dratically with the temperature �12,21� and thus has little
effect in low-temperature collisions.

The anisotropy of the atom-atom electronic interaction,
however, can be strong. It arises from the orbital motion of
the electrons with nonzero orbital angular momentum �20�.
Different orientations of the orbital angular momentum rela-
tive to the collision axis give rise to different interaction
energies. The effect of electronic interaction anisotropy on
cold collisions with helium has been studied for several dif-
ferent atoms �16–19,22,23�. It was shown that angular mo-
mentum transfer induced by the electronic anisotropy of
open-shell atoms, such as oxygen in the ground state 3P2, is
fast.

The lowest-energy electronic term of Bi is classified as an
S state with a spin multiplicity of 4. The interaction between
S-state atoms is isotropic �20�, and inelastic collisions be-
tween an S-state atom and helium at low temperatures are
forbidden. The LS-coupling scheme is, however, insufficient
for heavy atoms with strong spin-orbit interactions. Calcula-
tions have shown that the nominally S ground state of bis-
muth has only �57% S character �24,25�; contributions to
the ground state mixed in by spin-orbit �SO� coupling in-
clude terms with nonzero angular momentum. These non-S
terms introduce electronic interaction anisotropy with he-
lium. Thus, measurements of collision processes mediated by
electronic interaction anisotropy can probe the SO interac-
tion in atoms. We observe the effects of this anisotropy in Bi
experimentally by observing angular momentum reorienta-
tion in collisions with cold helium gas.

II. EXPERIMENT

Our apparatus is described in detail in Refs. �18,26�. In
brief, our measurements are performed in a cryogenic buffer
gas cell maintained at the temperature �0.5 K by a dilution
refrigerator. The cell is situated in the bore of a split-coil*maxwell@cua.harvard.edu
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superconducting magnet. We operate the magnet in Helm-
holtz configuration with magnetic fields of �1.5 T. Atomic
bismuth is produced via laser ablation of a solid elemental
target.1 The ablation laser is a nanosecond-pulsed Nd:YAG
frequency doubled to 532 nm. Typical pulse energies used
are 10–20 mJ. The hot atoms produced by the laser ablation
are cooled after a characteristic number of collisions with a
3He buffer gas to temperatures of �1 K �14,27�. The atoms
are detected and their density is probed using laser absorp-
tion spectroscopy. Buffer gas is introduced into the cell
through a 0.6-mm-diameter by 8-mm-long channel. It leaks
back out of the cell and is pumped away via the same chan-
nel over �15 min. The buffer gas densities are inferred from
a combination of a series of measurements with an atom of
known elastic cross section �Nd� and the time after buffer gas
introduction. Quoted buffer gas densities are accurate to
within a factor of �2.

We operate the magnet at sufficiently high field that the
nuclear spin is uncoupled from the electronic spin and can
effectively be ignored in studies of collision dynamics. We
measure and simulate the laser absorption spectra in the
Helmholtz field across a wide range of frequencies to iden-
tify lines corresponding to different mJ states. The lowest-
energy Zeeman state mJ=−J produces a large signal. Atoms
in this state are observable for a time after ablation approxi-
mately equal to the field-free diffusion time, �=30–80 ms.
Atoms in other states are subject to inelastic losses, and their
shorter persistence makes their detection difficult. Nonethe-
less, the measured spectrum of high-field-seeking states
along with our simulated spectrum allowed us to locate and
measure the lifetimes after ablation of spectral lines due to
mJ�−J.

To find the rate of inelastic collisions for bismuth, we
used a spectral line due to a high-field-seeking �HFS� �mJ
=−J=−3 /2, mI=−I=−9 /2� state and a line due to a low-
field-seeking �LFS� �mJ=J=3 /2, mI= I=9 /2� state at a mag-
netic field of 1.5 T. After a single insertion of buffer gas into
the cell, we alternately measured the decay lifetime of each
of these two states, leaving several minutes between mea-
surements to prevent heating of the cell due to repeated ab-
lation pulses. We tuned the laser to a fixed frequency as close
to the peak of each spectral line as possible and measured the
loss rate �−1 of the exponential tail of the decay for each state
in a narrow �factor of 2� range of buffer gas densities.

To extract the inelastic loss rate �in, we model the data as
�−1=�innHe+�0, where �0 accounts for all processes leading
to loss of the ground state. The magnitude of �0 should be
equal to the diffusion lifetime, but we observe additional loss
processes which we attribute to interactions with unidentified
particles produced by the ablation pulse. We assume that this
loss mechanism does not depend on the state mJ. For all the
data we used to infer �in, �0��, so we can approximate
�−1=�innHe. However, a fit to the data of this form indicates
that the model is unphysical; the inelastic rate decreases with
increasing buffer gas density. Figure 1 shows the dependence
of the apparent inelastic rate coefficient on the buffer gas

density. If this were a measurement of the actual Zeeman
relaxation rate, the plot would show a horizontal line. In-
stead, we observe a curve which decreases rapidly with
buffer gas density �as nHe

−1.5	0.2�, consistent with cooling of
the buffer gas in a few milliseconds after the ablation. We
compared the apparent Zeeman temperature with previous
measurements taken in our laboratory �17� and conclude that
we are observing cooling of the buffer gas, with the transla-
tional and Zeeman temperatures near equilibrium during the
measurement. Our measurement can therefore be interpreted
as a lower bound of the Zeeman relaxation rate. From the
value of the apparent inelastic rate coefficient observed at the
lowest buffer gas density, �in,apparent=3.8	 .25

10−14 cm3 s−1, where the quoted error is a 95% statistical
error bound, and taking into account the systematic uncer-
tainty of �2 in the buffer gas density, we conclude that the
Zeeman relaxation rate must be �in�1.8
10−14 cm3 s−1.
Using the theoretical value of the rate coefficient for elastic
collisions, 7
10−10 cm3 s−1, computed as described below,
we obtain the elastic-to-inelastic collision ratio of ��4

104. For comparison, the elastic-to-inelastic collision ratio
for titanium �which has a 3F2 electronic configuration� in
helium was previously measured �17,18� to be 1.3	0.5

104. While the value for titanium is considered high for a
non-S-state atom, the limit measured for bismuth �which is
far higher than the theoretical value we describe below� is
low for a nominally S-state atom. Figure 2 shows the decay
of HFS and LFS states of both bismuth and titanium at a
buffer gas density of nHe=1.6
1016 cm−3.

III. THEORY

In order to verify the validity of our measurements and
understand the mechanism of spin relaxation in bismuth-
helium collisions, we have performed a detailed analysis of
Bi-He scattering based on calculations of the interaction po-
tentials and the SO interaction. The total Hamiltonian of the
Bi-He collision system in a magnetic field can be written in
the form

Ĥ = −
�2

2�R

�2

�R2R +
l2

2�R2 + V̂nr + V̂SO + V̂B, �1�

where � is the reduced mass of the collision system, R is the

interatomic distance, V̂nr is the operator describing the non-

1Alfa Aesar stock number 41636. 99.999% pure. 0.03 ppm Cu,
0.04 ppm K, 0.04 ppm Na.
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FIG. 1. �Color online� The apparent inelastic rate coefficient �in

at different buffer gas densities. If we were observing the true in-
elastic collision rate, rather than cooling of the buffer gas with a
Zeeman temperature thermalized with the translational motion at all
times, we would expect this plot to be a flat line. This leads us to
interpret our data as a lower bound on the inelastic rate coefficient.
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relativistic electrostatic interaction between the atoms, l is

the rotational angular momentum of the nuclei, V̂SO is the

operator of the SO interaction, and V̂B describes the interac-
tion of Bi with external magnetic fields. The valence electron
configuration 6s26p3 of Bi in the ground electronic state
gives rise to the electronic terms 4S�, 2P�, and 2D� split by the
SO interaction into the following states: 4S3/2

� , 2D3/2
� , 2D5/2

� ,
2P1/2

� , and 2P3/2
� �28�. Therefore, we represent the eigenfunc-

tions of the Hamiltonian �1� as follows


 =
1

R
�
L

�
jmj

�
lml

FLjmjlml
�jmj�L���lml� , �2�

where the total orbital angular momentum of the electrons, L,
can take the value 0, 1, or 2, j is the vector sum of L and the
total electron spin S for a given nonrelativistic state of Bi,
and mj and ml are the projections of j and l on the magnetic
field axis. The SO interaction couples states with different L

and the interaction with magnetic fields V̂B couples states
with different j, so the scattering problem cannot be solved
directly in the basis �2�. Following the procedure developed
in Ref. �29�, we introduce an additional transformation to
define a new basis set of functions:

��
mjlml = �

L
�

j

C�Lj
mjlml�jmj�L���lml� . �3�

The basis transformation C is constructed numerically from

the eigenvectors of the matrix of V̂SO+ V̂B in the basis �2�.
The substitution of expansions �2� and �3� into the
Schrödinger equation with the Hamiltonian �1� leads to the
following system of coupled differential equations:

	 d2

dR2 −
l�l + 1�

R2 + 2�E
F�lml

= 2� �
��l�ml�

�CTUC��lml;�l�ml�
F��l�ml�

�R� , �4�

where E is the total energy of the collision complex and U
represents the sum of the matrices of V̂nr, V̂SO, and V̂B in the
basis �2�.

The matrix of the operator

V̂B = �BB�L̂z + 2Ŝz� �5�

can be evaluated in the basis of direct products �LML��SMS�
related to the basis of coupled functions �jmj�L�� by the
Clebsch-Gordan transformation. Here, B is the magnitude of

an external magnetic field, �B is the Bohr magneton, L̂z and

Ŝz are the operators giving the z component of L̂ and Ŝ, and

ML and MS denote the projections of L̂ and Ŝ on the mag-
netic field axis.

In order to evaluate the matrices of V̂nr and V̂SO in the
basis �2�, we computed the interaction potentials of the
Bi-He dimer and the matrix of the SO interaction in the LS
basis spanning the electronic states 4S�, 2P�, and 2D�. The
interaction of Bi in these electronic states with He leads to
six adiabatic potentials classified within the LS-coupling
scheme as 4�−�4S��, 2��2D��, 2��2D��, 2�−�2D��, 2��2P��,
and 2�+�2P��. Our calculations were carried out with the
MOLPRO package of programs �30�. Sixty inner-shell elec-
trons of Bi were approximated by the relativistic effective
core potential �31�, while the remaining electrons were de-
scribed using an augmented correlation-consistent aug-cc-
pV5Z basis set �32�. The same basis was used for He �33�.
The energies and the wave functions were calculated by the
internally contracted multireference configuration interaction
�MRCI� method �34�. The reference orbitals were obtained
by means of the complete active space self-consistent field
�CASSCF� method in which seven electrons were distributed
over nine active orbitals representing 6s6p7s7p shells of Bi
and 1s shell of He. CASSCF calculations involved averaging
over all nine spatial components of the molecular states. In
the MRCI calculations, the orbitals corresponding to the
5s25p6 Bi shells were kept in the core. The total energies
were corrected for the basis set superposition error �BSSE�
using the supermolecular approach �35� with the same
CASSCF+MRCI calculations for the separated Bi and He
atoms in the full �Bi+He� basis set. The original MRCI wave
functions and the BSSE-corrected interaction energies were
used to evaluate the matrix of the SO operator in the spheri-
cal components basis of the MOLPRO program. This matrix
was then transformed to the �LML��SMS� basis. To ensure an
accurate description of the long-range dispersion interaction,
we recomputed the interaction potential for the ground state
4�− of the Bi-He complex using the coupled-cluster method
with single, double, and noniterative triple excitations
CCSD�T� �36,37�, implemented with the same basis set and
orbital partitioning and with the restricted Hartree-Fock
�RHF� reference wave functions. The results were corrected
for the basis-set superposition error. The interaction poten-
tials for the excited states of the Bi-He complex were then
obtained by adding the excitation energies from the MRCI
calculation.

The validity of this ab initio approach can be verified by
examining the asymptotic limit R→�, where the matrix of
the SO interaction can be parametrized by six coefficients
presented in Table I. ED and EP correspond to the energies of
the nonrelativistic states 2D� and 2P�. AP and AD represent
the SO interaction within the 2P� and 2D� states, and BSP and
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FIG. 2. �Color online� A comparison of the decay of HFS and
LFS states of both bismuth and titanium. The traces have been
scaled to have the same amplitude at early times. See text for more
description of the comparison of these two species.
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BPD represent the coupling strength between the states with
different electronic orbital angular momenta. Table I shows
that the results of our calculation are in good agreement with
the parameters derived from the measurements of atomic en-
ergy levels �24�. The calculations reproduced the measured
energy levels of atomic Bi to within 10% with the largest
deviation observed for the highest 2P3/2

� level �29 833 vs
33 165 cm−1� �28�. To verify the accuracy of our calculation
of the interaction potentials at long range important for col-
lision dynamics at low temperatures, we computed the static
dipole polarizability of Bi using a finite-field CCSD�T�
method. Our result of 48.8 a.u. is in excellent agreement
with the theoretical values recommended in Ref. �38�
�49.9 a.u.� and obtained in Ref. �39�.

The interaction potentials of the Bi-He complex param-

etrize the matrix of the V̂nr interaction. To verify our com-
puter programs, we constructed this matrix using two differ-
ent methods. The first approach is based on the direct
transformation of the total wave function from the molecule-
fixed to space-fixed coordinate frame. This transformation
involves summation over many quantum numbers and is
quite cumbersome. An alternative approach is based on the
spherical tensor expansion introduced in Ref. �20�. The non-
relativistic interaction potential between Bi in a particular L
state and He can be written in the following form:

V̂nr
L = �

�

V�
L 4�

2� + 1�
m�

Y
�m�

* �R̂�Y�m�
��̂� , �6�

where R̂ is the unit vector specifying the direction of the
interatomic axis R, �̂ is the unit vectors describing the rota-
tion of the open-shell electron orbitals, Y�m�

are the spherical
harmonics, m� is the projection of � on the magnetic field
axis, and V� are the expansion coefficients related to the
nonrelativistic interaction potentials of the Bi-He complex.
For the ground electronic state L=0 of Bi, there is only one
expansion coefficient V�=0=V4�−. The interaction of He with
Bi in the state with L=1 gives rise to two interaction poten-
tials and two expansion coefficients V� related as follows:

V�=0 = �2V2� + V2�+�/3,

V�=2 = 5�V2�+ − V2��/3. �7�

Finally, the interaction of He with Bi in the state with L=2
gives rise to three interaction potentials and three expansion
coefficients V� related as follows:

V�=0 = �V2�− + 2V2� + 2V2��/5,

V�=2 = �V2�− − V2�� + �V2� − V2�� ,

V�=4 = 9�V2�− − V2��/5 + 3�V2� − V2��/5. �8�

Given these expressions and Eq. �6�, the matrix elements of

the operator V̂nr can be readily evaluated in the basis of direct
products �LML��lml�. The terms with ��0 represent the elec-
tronic interaction anisotropy leading to inelastic collision
processes �20�. As follows from Eqs. �7� and �8�, the elec-
tronic interaction anisotropy is determined by the energy
separation of the adiabatic interaction potentials of the colli-
sion complex.

Table II presents the equilibrium parameters and long-
range C6 coefficients for the potentials referred to the ground
CCSD�T� potential energy curve. The nonrelativistic interac-
tion potentials are all very similar and shallow. This indicates
that the atoms are bound by weak dispersion forces. The
interaction anisotropy in the excited L�0 states is also
weak. The radial dependence of the parameters describing
the SO interaction matrix is depicted in Fig. 3. Note that the
interaction with He induces the SO coupling between the
4�−�4S�� and 2��2D�� states labeled by BSD. This coupling
vanishes as the atoms separate. The SO interaction param-
eters are significantly modified by the interaction with He
only at short distances, well below the equilibrium distance
of the interaction potentials. The inset shows, however, that

TABLE I. LS parameters for Bi atom �cm−1�.

Parameter ED EP BSP BPD AD AP

This work 8944 15769 −8610 −9637 −92 −131

Ref. �24� 8901 14835 −10093 −11284 −101 −164

TABLE II. Equilibrium distances Re �Å�, binding energies De

�cm−1�, and C6 coefficients �a.u.� of the Bi-He nonrelativistic po-
tentials. For the ground 4�− potential both CCSD�T� and MRCI �in
parentheses� results are presented; for others, MRCI excitation en-
ergies referred to the ground CCSD�T� potential.

State Re De C6

4�−�4S�� �4.51� �9.1� �24.7�
4.64 10.0 27.0

2��2D�� 4.96 6.9 29.0
2��2D�� 4.64 9.4 28.7
2�−�2D�� 4.56 9.6 28.6
2��2P�� 4.96 6.9 30.0
2�+�2P�� 4.44 11.5 29.2
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FIG. 3. �Color online� Radial dependence of the SO coupling
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at R=4.1 Å, the value roughly equal to the inner turning
point of the 4�−�4S�� potential for collisions at 1 K tempera-
ture, the variations of the SO interaction parameters are still
larger than the binding energies of the interaction potentials.

The effect of the SO interaction on the interaction poten-
tials is illustrated in Fig. 4. The figure presents the potential
for the nonrelativistic 4�−�4S�� state in comparison with two
lowest-energy SO-coupled adiabatic potentials obtained by
the diagonalization of the total Hamiltonian matrix. These
two potentials correspond to the states with different projec-
tions of the total electronic angular momentum on the mo-
lecular axis, �=1 /2 and 3 /2, correlating with the ground
state 4S3/2

� of atomic Bi. The SO coupling enhances the
strength of the Bi-He interaction and splits the interaction
potential of the ground state. This splitting can be considered
as the manifestation of the interaction anisotropy in the total
electronic angular momentum. At R=4.1 Å, the splitting is
about 10 cm−1.

The numerical integration of Eq. �4� yields the scattering
S matrix describing the cross sections for elastic and inelastic
scattering �29�. The rate coefficients for elastic and inelastic
collisions are calculated from the energy dependence of the
cross sections by integration with the Maxwell-Boltzmann
distribution function. Figure 5 compares the rate coefficients
for elastic collisions with the rates of inelastic scattering
summed over all possible relaxation channels. We calculate
the elastic-to-inelastic ratio at sub-kelvin collision energies
to be about 100, well below the upper limit inferred from the
experimental data.

The rate coefficients for Bi-He collisions in the tempera-
ture interval between 0.3 and 1.1 K are affected by a shape
resonance whose position is sensitive to small variations of
the interaction potentials. For example, a calculation neglect-
ing the radial dependence of the spin-orbit couplings reduces
the rate coefficients at T=0.5 K by a factor of 3.8 for elastic
scattering and by a factor of 1.8 for Zeeman relaxation. To
understand the effects of the other SO parameters �see Fig.
3�, we have repeated calculations of the collision rates with

different couplings set to zero. Removing the couplings AD
and AP changes the rate constants at 0.5 K by less than 30%.
In contrast, setting BPD=0 reduces the inelastic rate by a
factor of 6.2.

IV. SUMMARY

We have presented the results of measurements and accu-
rate quantum calculations demonstrating that the spin relax-
ation in cold collisions of Bi atoms with helium is fast. In-
elastic collisions are induced by the spin-orbit interaction in
the collision system. Our calculations show that the interac-
tion with He does not appreciably change the significant
spin-orbit interaction parameters at interatomic separations
accessible in collisions at sub-kelvin temperatures. An accu-
rate measurement of the Zeeman relaxation of Bi in cold
collisions with He may thus provide a direct probe of the
effect on atomic structure of SO interaction mixing nonrela-
tivistic states. Our results, providing a lower bound on the
Zeeman relaxation rate in Bi-He collisions, indicate that
dense ensembles of heavy relativistic atoms will generally be
unstable in magnetic traps due to significant spin relaxation
induced by SO interactions.

Inelastic collisions between Bi and He are induced by an
admixture of 2P� and 2D� atomic states in the ground state of
the collision complex. This admixture is determined by the
matrix elements BSP, BPD, and BSD of the SO interaction. To
lowest nonzero order, the interaction anisotropy between

ground-state Bi and He is given by ��R�= 2
3

BSP
2

EP
2 �VP��R�

−VP��R��, where VP� and VP� are the interaction potentials
between Bi �2P�� and He. Thus, the SO interaction transfers
the anisotropy of the P state �and D state at higher orders� to
the ground S state. We have verified by a test calculation that
spin relaxation cannot occur if the parameters BSP and BSD
are both set to zero.

We also note that we attempted to trap atomic rhenium
�Z=75�, which has a ground state with a half-filled d orbital
�electronic configuration is �Xe�4f145d56s2� �40�. The ground
state is nominally 6S5/2 and has a Landé g factor of 1.95 �40�.
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We expected that the outer 6s electrons would shield aniso-
tropy due to spin-orbit interactions in the d electrons, thus
suppressing inelastic collisions. However, we found a weak
upper bound on the elastic to inelastic collision ratio of �
�3
105, which proved too high for buffer gas loading of
our magnetic trap. Improved detection and loading of atomic
rhenium may lead to an improved measurement of �.
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