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It is shown that the discrete energies of a scattering Hamiltonian calculated under the influence of an
artificial confining potential can be used to determine its phase shifts. Two potentials that have the same energy
under the influence of the confining potential have exactly the same phase shift at that energy when the
confining potential is removed. Thus the phase shifts of a complicated many-body problem can be extracted by
solving the Schrödinger equation under the influence of the confining potential, and then making reference to
the energies and phase shifts of a much simpler model potential calculated in the same confining potential.
Calculations on real systems gave very precise phase shifts for the e−-H and e−-He systems.

DOI: 10.1103/PhysRevA.78.042705 PACS number�s�: 34.10.�x, 34.80.Bm, 03.65.Nk

I. INTRODUCTION

A common theme in the quantum theory of scattering is
the development of procedures that take advantage of bound
state methods based on square integrable �L2� wave func-
tions. One reason for this is the desire to adapt existing
bound state program packages to the calculation of con-
tinuum states. As a general rule, a much greater degree of
precision has been achieved for bound states as opposed to
continuum state solutions of the Schrodinger equation. For
example, the energy of the helium ground state �in a nonrel-
ativistic model� has been determined to an almost unbeliev-
able precision of more than 40 significant digits �1�. How-
ever, the low energy elastic scattering phase shifts for
electron-hydrogen scattering are only known to an accuracy
of about 10−4 rad �about 4 significant digits� �2,3�.

Some of the bound state methods applied to scattering
problems include the many different types of R-matrix meth-
ods �4–8�, stabilization approaches �9,10�, and the applica-
tion of a complex absorbing potential �CAP� outside the scat-
tering region �11�.

Most recently, the use of real-valued as opposed to com-
plex artificial confining potentials has been investigated.
Guerout et al. �12,13� had used a real confining potential to
determine the solution of the Schrödinger equation for the
internal region wave function within a multichannel quantum
defect theory formalism. More recently, a confining potential
was added to a scattering system �14� so that the stochastic
variational method �SVM� �14–17� could be used to opti-
mize a basis of explicitly correlated Gaussians �ECGs� to
describe the interaction region. The ECG basis was then used
as a foundation for a stabilization calculation.

The present paper applies a recently developed method to
calculate low energy elastic scattering phase shifts �18�. The
basic idea is to add an artificial confining potential to the
scattering Hamiltonian and determine the discrete energies of
this modified system. The phase shifts are then extracted by

comparing the energies with the energies of a simple model
potential calculated with the same confining Hamiltonian.
This confined variational method �CVM� �18� has similari-
ties with the box-variational method �8�. In its simplest form,
the box-variational method requires the wave function, and
thus the basis functions, to have a zero at the boundary �note,
the logarithmic derivative at the box boundary can, in prin-
ciple, be set to any value�. The �=0 phase shifts for the nth
positive energy state with energy En inside a cavity of radius
R are then given by the identity �n=n�−R�2En �8�. The
quantum Monte Carlo method for scattering can be formu-
lated in terms of the box-variational method �19–21�.

In the CVM the confining potential increases steadily
from zero past some critical radius �18�. This has the advan-
tage that the basis functions can then be almost any square
integrable function. A numerical calculation is then needed to
extract the phase shift from the energy of the confined state.
However, this additional calculation is quite straightforward.

The present paper discusses the justification and applica-
tion of the CVM to low energy scattering. The actual solu-
tion of the Schrodinger equation for the confined system is
performed with the SVM �15–17� which exploits the very
convenient properties of a basis consisting of ECGs. Precise
phase shifts are computed for electron scattering from hydro-
gen in the 1S3, 3Se, 3Po symmetries and electron scattering
from helium in the 2Se symmetry at energies below 1 eV.

II. DESCRIPTION OF METHOD

A. Formal result

The problem is to solve the Schrödinger equation

�−
�2

2
+ V�r����r� = E��r� , �1�

for E�0. The central potential V�r� will be assumed to be
zero beyond some finite radius, say R0. Now consider the
related equation*jxm107@rsphysse.anu.edu.au
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�−
�2

2
+ V�r� + WCP�r����r� = E��r� , �2�

where WCP is a confining potential and E is defined relative
to V�r→��. This potential has the property that WCP�E0 as
r→�. It is also permissible that WCP�O�rn� as r→�. The
potential WCP�r� should have two properties. It should have
an analytic form which has easy to evaluate matrix elements
for the basis functions used to represent ��r�. Secondly,
WCP�r� should be negligible for r�R0. If these conditions
are met, then it can be shown that the discrete energies Ei of
the solution of Eq. �2� can be used to uniquely determine the
phase shifts of Eq. �1� at those energies, irrespective of the
specific functional form of V�r�.

Consider a potential V0�r� for which Eq. �2� has an eigen-
value E0. When r�R0, the solution of Eq. �2� will be an
exponentially decreasing solution, B	0�r�. While the ampli-
tude B may depend on the specifics of V0�r�, the actual radial
dependence of 	0�r� does not depend on the form of V0�r�.
Now, consider the behavior of the wave function for r�R0.
One simply integrates the Schrödinger equation outward
from the origin, and since WCP�r� is negligible here, the func-
tional form of the inner wave function, 
0�r�, will not be
influenced by the form of WCP�r�. The eigenstate will then be

��r� = A
0�r�, r � R0,

��r� = B	0�r�, r � R0. �3�

The logarithmic derivatives of 	0�r� and 
0�r� will agree at
the matching radius. The constants A and B are chosen so
that the overall normalization of ��r� is unity and that it is
continuous at r=R0.

Now consider the solution of Eq. �1� at E=E0. When
r�R0, this will simply be C
0�r� since the boundary
condition at the origin only depends on E0. At the boundary
r=R0, the phase shift � is determined from the logarithmic
derivative �,

���r� =
1

��r�
d�

dr
. �4�

There is a general functional relation between �
 and � that
can be expressed formally as

��E0� = f„�
�R0�… . �5�

However, the logarithmic derivative of 	0�r� is exactly the
same as 
0�r�. The logarithmic derivative of 	0�r� at r=R0
is determined by E0, and its functional dependence g�E0�
does not depend on V0�r�. So

�
�R0� = �	�R0� = g�E0� . �6�

Combining Eqs. �5� and �6�, one can establish a functional
relation between the energy E0 and the phase shift, i.e.,

��E0� = f„g�E0�… . �7�

The most useful consequence of Eq. �7� lies in the fact
that Eq. �6� has no explicit functional dependence on the
specifics of V0�r�. While g�E0� depends on R0, E0, and the
form of WCP�r�, it does not depend on V0�r�. Therefore, if

two potentials, V0 and V1 in Eq. �2� have the same eigenen-
ergy E0, then their phase shifts �modulo �� will be the same
at E0. From one point of view this result is not surprising.
Provided the two wave functions have the same logarithmic
derivative at r=R0, it should not matter whether bound or
continuum boundary conditions are imposed.

The immediate consequence of this result is the ability to
determine the phase shift of a complicated many-body prob-
lem directly from the energy of a bound state calculation.
The determination of the phase shift for a projectile scatter-
ing from a few-body system can thus be reduced to the cal-
culation of its binding energy in a confining potential.

There are a number of ways the result obtained in this
section can be exploited. These are detailed later.

B. Choice of confining potential

The most general form for the confining potential that
obeys the required conditions would seem to be a function of
the form

V�r� = 
�r − R0�g�r − R0� . �8�

The Heaviside function 
�r−R0� is defined,


�x� = 0, x � 0,


�x� =
1

2
, x = 0,


�x� = 1, x � 0.

�9�

The confining function g�x� should be zero at x=0. The func-
tion g�x� should increase monotonically as x increases. The
function g�x� should go to a sufficiently large positive value
to bind the scattering particles together. If the scattering en-
ergy is Escatt, then the confining potential must obey the con-
dition limr→� g�r��Escatt. The potential can also diverge to
infinity as O�rn� when r→�. In the present work we choose
g�r−R0�=G�r−R0�2 for reasons discussed later.

Potentials based on the Heaviside form similar to this
have been adopted in a few previous works �12,13,22�. These
works were mainly concerned with molecular systems.

C. Use of SVM to solve a confined Schrödinger equation

The potential given by Eq. �8� is in the form of a one
dimensional central potential. Therefore, it is relatively
straightforward to use with ECGs �23,24� since the matrix
elements of a potential of this type are easily expressed in
terms of a Laplace transform of the potential �16,25,26�.

While the principles involved in the CVM are very gen-
eral, its application to real physical systems in the present
work has been in conjunction with the SVM. The SVM
�15–17�, and variants �27–31� constitute a very powerful tool
for studying few-body systems. The success of the method is
based on the analytic properties of the ECG basis
�17,23,24,27� which have the analytic form

Gk = exp�−
1

2 	 Aij
k xi · x j� , �10�

where xi is the coordinate of the ith particle. The ECG basis
functions have the property that the multicenter integrals that
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occur with correlated basis sets are surprisingly easy to
evaluate. It is feasible to use a stochastic search to optimize
the nonlinear parameters of the basis because the Hamil-
tonian matrix elements can be evaluated very quickly.

The use of a Gaussian basis did impose some practical
constraints on the shape of WCP�r�. One problem is that the
elements of a Gaussian basis set are linearly dependent and
the fundamental equation to be solved is a generalized eigen-
value problem. The potential problem lurking in the back-
ground is that of linear dependence degrading the accuracy
of the results or even causing catastrophic failure in the nu-
merical solution of the generalized eigenvalue problem.
While the problem of linear dependence can, in principle, be
controlled by the technique of singular value decomposition,
this additional level of complexity was not used in the
present work.

Some practical experimentation by diagonalizing the po-
tential V=0 revealed that the radial dependence of the con-
fining potential should not be made too abrupt. Solving the
Schrödinger equation with a Gaussian basis became increas-
ingly difficult as the confining potential increasingly re-
sembled a hard wall. For example, it was not possible to
construct a Gaussian basis that could give an energy that was
accurate to better than three significant digits for the poten-
tial WCP�r�=10−2�r−16�10.

D. Phase shift from wave function at boundary

The simplest way to compute the phase shift is to use the
behavior of the wave function at r=R0. The logarithmic de-
rivative of the wave function at the boundary and the phase
shift are related by the expression

cot�kR0 + �� = ���R0� =
1

��R0�
�d�

dr
�

r=R0

, �11�

where k=�2E. The logarithmic derivative is computed at r
=R0, and the phase shift at the boundary is extracted from
Eq. �11�. Alternatively, it is possible to extract the phase shift
by computing the wave function at two points near the
boundary. This approach has the advantage that both the
phase shift and absolute normalization of the wave function
are determined and will be termed the boundary condition
method �BCM�.

The scattering information of the artificial well potential
method of Guerout et al. �12,13� are derived with an ap-
proach similar to the BCM. The internal region wave func-
tions are essentially spliced onto the appropriate asymptotic
form.

E. Stabilization approach for SVM

Another alternative that is useful when the interaction re-
gion wave function is determined with the SVM is to per-
form a stabilization calculation using established procedures
�10,14,32�. The present analysis means that the basis should
be capable of describing the interaction region very well pro-
vided the energy of the confined system is close to conver-
gence.

The first SVM calculations using a confining potential
were based on intuitive ideas before the present results were
established. The confining potential adopted was of the form
V�r�=�rn, where ��10−19 was small and n=12 was large
�14�. These potentials did not exactly satisfy the condition
that WCP should be exactly zero within some critical radius.
However, the condition was approximately satisfied with
WCP�10−6 at r=12a0. And as mentioned earlier, the purpose
of the SVM calculation was not to directly compute the
phase shift, but rather to generate an interaction region basis
that could be used in a stabilization calculation. This particu-
lar approach will not be discussed further in the present pa-
per since it has been investigated at length elsewhere �14�
and to a certain extent it has been superseded by develop-
ments reported in the present paper.

F. Converting the energy into a phase shift

The following ansatz can be used. First choose a confin-
ing potential WCP�r� and then choose an auxiliary potential
�v�r�. The auxiliary potential v�r� is chosen to have a simple
form so that it is straightforward to determine the phase
shifts at any energy by direct numerical solution of the
Schrodinger equation or some other technique.

The full many-body problem for the exact Hamiltonian
H �exact� under the influence of WCP is first solved to gen-
erate a set of discrete eigenenergies Ei satisfying

�H�exact� + WCP��i = Ei�i. �12�

Then the energies of the potential �v�r� under the influence
of WCP�r� are determined. The parameter � is then adjusted
until the ith eigenenergy of H�v� exactly corresponds to the
ith eigenenergy of H �exact�, i.e., Ei.

�−
�2

2
+ �iv�r� + WCP�r���i��r� = Ei�i��r� . �13�

Finally, the continuum Schrödinger equation is solved for
the potential �iv�r� and the phase shift �i is obtained. The
phase shift �i will be equal to the phase shift of the H �exact�
at a continuum energy of E=Ei. This approach will be re-
ferred to as the confined variational method �CVM�.

G. Long-range potentials

All atomic collision systems have potentials that have
long-range components. In the case of charged particle scat-
tering from atoms, there is the polarization potential

Vpol�r� 
 −
�d

2r4 . �14�

In this expression, �d is the dipole polarizability. In the case
of an electrically neutral object scattering from atoms, there
is the dispersion potential

Vdisp�r� 
 −
C6

r6 . �15�

The parameter C6 is the lowest-order dispersion coefficient.
Other long-range terms exist, but the terms listed above are
the dominant ones.
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While the derivation from Eq. �1� to Eq. �7� is reliant on
the fact that WCP�r� is zero at some finite radius, the exact
potential Vexact�r� can have a long-range component. How-
ever, this long-range component should permit easy integra-
tion beyond R0. Provided this is true, polarization effects can
be incorporated into the calculation by simply including a
component with the same asymptotic form as Eqs. �14� or
�15� into the tuning potential.

H. Normalization of the wave function

One problem with the CVM concerns the overall normal-
ization of the continuum wave function. The conversion of
the confined energy into a phase shift does not directly use
any information on the overall normalization of the wave
function. This is not a problem when the only result wanted
is the elastic cross section, but it is an issue when other
scattering observables, such as a photoionization cross sec-
tion, or an annihilation cross section for positron impact is
wanted. It is of course possible to utilize the phase shift and
then use the value of the wave function at the boundary to
determine the overall normalization. However, this would
lead to a decrease in the accuracy since local properties of
variational wave functions are generally less accurate than
their global properties �33�. The stabilization approach also
automatically gives the asymptotic normalization.

Another possibility lies in evaluating the expectation
value of WCP,

�WCP� = 

R0

�

dr�
0�r��2WCP�r� . �16�

Two potentials which give the same energy, will not neces-
sarily give the same value of �WCP�. The modeling potential
�v�r� can be made more flexible by the inclusion of a pa-
rameter to change its shape, e.g., choose �v�r�=� exp�−�r�.
Then, both � and � are adjusted until Ei and �WCP� are the
same for both H �exact� and H�v�. Equality of the energies
means that the phase shifts are the same; equality of �WCP�
ensures that the normalization conditions at the boundaries
are the same. Using �WCP� to determine the overall wave
function normalization should lead to accurate results. It is
part of the Hamiltonian and the total energy is stable against
first-order variations in the trial wave function.

III. RESULTS

Numerical verification

The first test is to verify whether the primary proposition,
namely, two short-range potentials with the same energy
having the phase shift, can be achieved in a practical numeri-
cal calculation. The convergence properties are also studied.

For this test, we choose

V�r� = − exp�− 1.40r� , �17�

�v�r� = ��exp�− r2� + r exp�− 2r�� . �18�

The potential V�r� represents the potential for some compli-
cated many-body system and it will not always be possible to

determine its eigenenergies to infinite precision. The confin-
ing potential is defined

WCP�r� = 0, r � 16, �19�

WCP�r� = G�r − 16�2, r � 16, �20�

where G=3�10−4. The energies of �V+WCP� are then deter-
mined by diagonalization in a basis of Laguerre-type orbitals
�LTOs�. The LTOs are defined �34,35�

���r� = N�r�+1 exp�− ��r�Ln�−�−1
�2�+2� �2��r� , �21�

where the normalization constant is

N� =��2���2�+3�n� − � − 1�!
�� + n� + 1�!

. �22�

The function Ln�−�−1
�2�+2� �2��r� is an associated Laguerre poly-

nomial that can be defined in terms of a confluent hypergeo-
metric function �36� as

Ln�−�−1
�2�+2� �2��r� =

�n� + � + 1�!
�n� − � − 1�!�2� + 2�!

�M„− �n� − � − 1�,2� + 3,2��r… . �23�

The exponent in Eq. �21� was set to 2.0 and the basis dimen-
sion increased in steps of 5. The results of the diagonaliza-
tion for the two lowest energies are listed in Table I. The
energy for the ith eigenstate for a basis of dimension N is
denoted Ei,N. The exact energy of the ith eigenstate is for all
practical purposes given by Eexact,i=Ei,50.

Two columns of Table I give the exact phase shift �ob-
tained by numerical integration of V�r� using the Numerov
method� at the energies of the pseudostate. The pseudostate
energy decreases as the LTO basis is enlarged. The phase
shifts are denoted as �exact,i,N.

The phase shift obtained from the BCM for the two low-
est states are given in the two columns labeled �BCM,1,N and
�BCM,2,N. This phase shift was computed by evaluating the
logarithmic derivative at the r=16 boundary. Part of the
variation in �BCM,i,n is due to the fact that the energy of the
pseudostate changes as the basis dimension is changed. The
other part of the variation is related to the ability of the LTO
basis to adequately represent the wave function. The respec-
tive influence of these two factors in causing the variation in
the phase shift can be estimated by reference to the �exact,i,N
column. It would appear that the inability to represent the
scattering wave function at the boundary is the main source
of error for N�30.

The CVM phase shifts �CVM,i,N are listed in Table I. The
energies of the potential ��v�r�+WCP�r�� were obtained from
a calculation that gave functionally exact energies. The pa-
rameter � was adjusted until the energy was exactly equal to
either E1,N or E2,N �note, slightly different values of � were
needed for E1,N and E2,N�. The continuum Schrodinger equa-
tion was then integrated using the previously obtained value
of � with the continuum energy set to Ei,N. The energies at
which the phase shifts are obtained are undergoing continual
changes since the Ei,N change as the dimension of the LTO
basis, N, is increased.
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Casual examination of Table I reveals the clear superiority
of �CVM,i,N with respect to �BCM,i,N. At large values of N,
�CVM,i,N is the same as �exact,i,N to all quoted digits while
�BCM,i,N only achieves four digit accuracy even when N=50.
Even in the worst cases, �CVM,i,N reproduces �exact,i,N to five
digits. One of the most striking features of Table I is the
extreme accuracy of �CVM,i,N even in those cases where the
LTO basis is overestimating the actual energy of the confined
state by 20%.

One reason for the accuracy of �CVM,i,N is that the CVM
converts a variational energy into a phase shift. The energy
obtained in a variational calculation is stationary to order
����2 with respect to wave function variations �17�. The
number of digits to which the phase shift is accurate is
roughly equal to the number of digits to which the energy
has converged.

The convergence of �CVM,i,N in Table I is also seen to be
monotonic. This is merely a reflection of the monotonic con-
vergence of the energy in the underlying variational calcula-
tion.

The lower accuracy of �BCM,i,N at high N is due to the fact
it is obtained from the local properties of the wave function.
While the energy may obey, �E
����2, there is no formal
result that any other properties should be this accurate. The
local properties of the wave function cannot be guaranteed to
have the same level of accuracy as the energy �33� and the
four significant digits achieved by �BCM,i,50 is the best that
can reasonably be expected. The BCM phase shifts in Table
I indicate that the relative energy needs to be computed to an
overall accuracy of 10−9 �this tolerance will depend on the
specific definition of WCP�r�� for the error in the phase shift
to approach 0.001 rad.

The actual choice of the tuning potential has no impact on
the computed value of the CVM phase shift. This is guaran-
teed by the fundamental theorem underlying the CVM, but
some calculations with alternate forms for the tuning poten-
tial have been done and the overall quality of the CVM phase
shifts are identical to that displayed in Table I.

IV. RESULTS ON REAL PHYSICAL SYSTEMS

A. Electron-hydrogen scattering in the 1Se channel

The e−-H system in the singlet channel possesses a bound
state, the H− ion. The energy of the state is −0.527 751 016 5

hartree �39�. The SVM was used to solve the Schrödinger
equation under the influence of the confining potential,
WCP�r�=G�r−19�2, where G=6.390 783 3�10−5. The con-
fining potential acts upon both electrons. The actual energy
being optimized was the average of the three lowest energies,
i.e., Eopt= �E0+E1+E2� /3. One advantage of having a bound
state is that the energy difference of E1 and the exact H−

energy is an indicator of the convergence of the basis. The
value of G was not fixed during the optimization process.
The value of G underwent continual small adjustments to
keep the energy of the third eigenstate, i.e., E2, as close to
−0.480 hartree as possible while the optimization was in
progress. This corresponds to k=0.2a0

−1 and made it easier to
compare with previous calculations of the phase shift �2,3�.
All the energies given in Table II were computed with the
final value of G adopted for the largest calculation �this was
done with N=340 as discussed later�.

The imposition of the confining potential had an insignifi-
cant impact on the hydrogen ground state. The energy
change was about 10−15 hartree. This is not surprising given
that the hydrogen ground state wave function is 5�10−9

smaller at R0=19a0 than it is at the origin. The energy shift
of the more diffuse H− ground state was larger, being about
1.8�10−7 hartree. When the confining potential is turned
off, the N=300 basis gives a H− energy of
−0.527 750 982 hartree, about 3�10−8 hartree larger than
the exact H− energy.

The electron-hydrogen potential has a long-range polar-
ization potential with a dipole polarizability of 4.5 a.u. The
phase shift obtained from the CVM processes is the phase
shift at R0. The value of Vpol�r=R0� is 1.7�10−5 hartree. The
potential is small, but it can effect the derived phase shift at
k�0.2a0

−1 at the 0.1% level. The potential that was used to
extract the phase shift was

VH�r� = � exp�− �r� −
�d

2r4 �1 − exp�− r6/�6�� , �24�

where � was set to �=3a0
3 and � was set to 2a0

−1.
Table II gives the energies of the three lowest states at

various stages of the optimization procedure. The k values
are related to the energies by the identity k=�2�−E−0.5� and
tabulated as ki,N. The lowest-energy state is the H− bound
state. In order to generate the phase shifts, the parameter �
was adjusted until the continuum energy was equal to �Ei,N

TABLE I. The convergence of the energy and derived phase shift with respect to increasing the size of the LTO basis set. The column
entries are discussed in the text. The numbers in the square brackets denote powers of ten. Energies are given in atomic units.

N E1,N �exact,1,N �BCM,1,N �CVM,1,N E2,N �exact,2,N �BCM,2,N �CVM,2,N

20 8.10592466029�−3� 0.4773965 0.5309627 0.4773945 3.63192796364�−2� 0.6673184 0.7805095 0.6673155

25 6.04569190259�−3� 0.4310864 0.4931422 0.4310858 2.57208169952�−2� 0.6375783 0.7339627 0.6375769

30 5.62992416864�−3� 0.4199395 0.4147941 0.4199395 2.28586364743�−2� 0.6248517 0.6215669 0.6248515

35 5.60792046301�−3� 0.4193291 0.4169931 0.4193291 2.25933186044�−2� 0.6235284 0.6185374 0.6235284

40 5.60770145958�−3� 0.4193230 0.4194748 0.4193230 2.25887828201�−2� 0.6235056 0.6237640 0.6235056

45 5.60770114269�−3� 0.4193230 0.4193651 0.4193230 2.25887729654�−2� 0.6235055 0.6235204 0.6235055

50 5.60770114218�−3� 0.4193230 0.4193572 0.4193230 2.25887729644�−2� 0.6235055 0.6235192 0.6235055
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+0.50�. The 0.50 is added to remove the energy of the H
ground state. Then the continuum Schrödinger equation was
integrated to 500a0 to give the phase shift which is listed in
the columns �CVM,2,N. The N=300 basis gave a k=0.2a0

−1

phase shift of 2.066 99 rad.

1. Addition of basis functions to represent asymptotic
wave function

One inefficiency in the present approach is the use of the
SVM procedure to represent the wave function in the
asymptotic region. For example, the asymptotic wave func-
tion for e−-H scattering takes the simple product form �with
implied antisymmetrization�, i.e.,

� = 	H�r1�	�r2� . �25�

While the SVM process constructs a basis to represent the
interparticle correlations, it also constructs a basis to repre-
sent a wave function with a very simple structure.

The residual errors in the confined energies given in Table
II arise from two sources. One part is due to an incomplete
description of interparticle correlations and the other part
arises due to an incomplete description of the asymptotic
wave function given by Eq. �25�. One aspect of the incom-
pleteness can be eradicated by the expedient of adding basis
functions to represent the asymptotic wave function as done
in the stabilization SVM �14�, e.g.,

�i,out = �H�r1��i�r2� , �26�

�H�r1� = 	
k

dk exp�− �kr1
2� , �27�

�i�r2� = exp�− �ir2
2� . �28�

The target wave function is represented as a linear combina-
tion of ECGs and the �i are chosen to form an even tempered
set with �i=�1 /Ti−1.

Table II shows the improvement this makes in the energy
and phase shift for the e−-H1Se system. The hydrogen ground
state is represented as a linear combination of 20 Gaussians
with an energy of −0.499 999 999 43 hartree. The scattering
orbital is represented with a set of 40 Gaussians with �1
=19.45. The largest calculation with the N=340 basis func-
tions gave a phase shift of 2.066 99 rad.

One surprising aspect of the augmented basis was that the
energy improvement was sensitive to the choice of �1. Our
original expectation was that the use of a large even tem-
pered basis would result in an energy improvement that did
not vary much as �1 was changed. However, it was found
that the net energy improvement could be increased by as
much as 50% by manual tuning of �1.

The N=340 basis gave a H− energy of
−0.527 750 987 hartree when the confining potential was
turned off. The convergence of E2,N versus N seems slightly
quicker than E0,N at the larger values of N. Therefore it is
reasonable to assert that the E2,340 is converged to better than
3�10−8 hartree. It is possible that further increase in the

TABLE II. The confined energies and phase shifts of the e−-H 1Se system as a function of the number of
ECGs, N. Phase shifts from some other calculations are given. Numbers in parentheses are the estimated
uncertainties. Energies and k are given in atomic units.

N E0,N E1,N E2,N k1,N k2,N �CVM,1,N �CVM,2,N

SVM basis

50 −0.52770403 −0.49368121 −0.47991805 0.11241698 0.20040932 2.47390 2.04791

100 −0.52774706 −0.49372494 −0.47999589 0.11202730 0.20002056 2.48794 2.06604

150 −0.52774993 −0.49372700 −0.47999912 0.11200894 0.20000439 2.48860 2.06679

200 −0.52775058 −0.49372721 −0.47999981 0.11200704 0.20000097 2.48867 2.06695

250 −0.52775076 −0.49372727 −0.47999994 0.11200656 0.20000030 2.48869 2.06698

300 −0.52775080 −0.49372728 −0.47999999 0.11200643 0.20000007 2.48869 2.06699

Augmented SVM basis

50+40 −0.52772835 −0.49372047 −0.47998502 0.11206722 0.20007490 2.48650 2.06350

100+40 −0.52774797 −0.49372677 −0.47999847 0.11201094 0.20000765 2.48853 2.06664

150+40 −0.52775004 −0.49372716 −0.47999966 0.11200752 0.20000169 2.48865 2.06691

200+40 −0.52775061 −0.49372726 −0.47999990 0.11200664 0.20000051 2.48869 2.06697

250+40 −0.52775078 −0.49372728 −0.47999997 0.11200644 0.20000014 2.48869 2.06699

300+40 −0.52775081 −0.49372729 −0.48000000 0.11200637 0.20000000 2.48870 2.06699

Complex Kohn �3� 0.200 2.06678�20�
Kohn �2� 0.200 2.0673�9�
Finite element �37� 0.200 2.066

Finite difference �38� 0.200 2.0666
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basis dimension could result in a phase shift of 2.067 00 rad.
A reasonably conservative estimate of the k=0.2a0

−1 phase
shift would be 2.066 99�2� rad.

A precise electron-H phase shift can also be extracted
from the second lowest eigenstate. In this case we get a
phase shift of 2.488 70�2� rad at k=0.112 006 37a0

−1.

2. Comparison with previous calculations

Previously, the most accurate phase shifts so far published
have come from Kohn variational calculations using corre-
lated basis functions �2,3�. At k=0.20a0

−1, the seminal calcu-
lation of Schwartz gave 2.0673�9� rad �2� while the more
recent complex Kohn calculation of Bhatia and Temkin gave
2.066 78�20� rad �3�. The value of Schwartz was deduced by
estimating the infinite basis limit of a sequence of calcula-
tions. The complex Kohn phase shifts are lower bounds �3�
and the uncertainty gives an estimate of the maximum pos-
sible increase in the phase shift.

The CVM phase shift at k=0.2a0
−1, namely,

2.066 99�2� rad can be regarded as the best estimate of the
phase shift so far determined. One source of uncertainty
would be the usage of a long-range polarization potential that
is based on second-order perturbation theory. The effect of
the polarization potential for r�R0 was to increase the phase
shift by about 0.000 37 rad. This correction should be reli-
able to better than 0.000 01 rad since the r−6 term in the
polarization expansion involving the quadrupole �15 a.u.�
and nonadiabatic dipole polarizability �5.375 a.u.� is less
than 1% of the magnitude of the dipole polarizability at r
=19a0.

B. Electron-hydrogen scattering in the 3Se channel

The confining potential in the SVM calculation of
the e−-H3Se system was tuned so that the second lowest
state had an energy of −0.480 000 00 hartree. The actual
energy that was optimized was the average of the two
lowest energies, i.e., Eopt= �E1+E2� /2. The energies given in

Table III were computed with the basis augmented by
an additional 40 functions as defined by Eq. �28�. The
value of �1 was 17.0. The final confining potential was
WCP�r�=9.160 038 70�10−5�r−18�2.

The procedure used to convert the confined energy into a
phase shift was exactly the same as for the singlet case. The
functional form of the model potential used was that given
by Eq. �24�. The final phase shift at k=0.2a0

−1 was
−0.424 09 rad. The contribution of the polarization potential
for r�R0 was to increase the phase shift by about
0.000 56 rad.

The k=0.2a0
−1 phase shift of −0.424 09 rad is consistent

with the Kohn phase shifts of Schwartz, namely,
−0.4245�5� rad �2� and that of Bhatia and Temkin, namely,
−0.424 18�20� rad �3� when the limitations of the basis sets
of these two earlier calculations are taken into consideration.
The uncertainty of 2�10−4 rad quoted by Bhatia and Temkin
is an estimate of the further increase in the phase shift to be
expected from a calculation that was variationally complete.
The CVM triplet phase shifts can be regarded as the best
variational estimate of this phase shift so far determined.

One limitation of the present calculations concerned lin-
ear dependency issues. It was not possible to increase the
dimension of the augmented basis beyond N=240. When this
was attempted the energy of the lowest states started to ex-
perience big jumps as the inherent linear dependence of the
ECG basis resulted in large round-off errors.

C. Use of a tuning potential with a different functional form

The actual potential between the projectile and the hydro-
gen atom has an attractive integrable singularity at the origin.
This will influence the boundary conditions of the exact scat-
tering wave function at the origin. An alternate parametriza-
tion based on the static potential of the atomic hydrogen
ground state was also used to determine the phase shifts.
This potential was

TABLE III. The confined energies and phase shifts of the e−-H 3Se system as a function of the number of
ECGs, N. The phase shifts from some other calculations at k=0.20a0

−1 are given. Numbers in parentheses are
the estimated uncertainties. Energies and k are given in atomic units.

N E1,N E2,N k1,N k2,N �CVM,1,N �CVM,2,N

100 −0.49426194 −0.47999481 0.1071266 0.2000519 −0.21902 −0.42514

120 −0.49426312 −0.47999828 0.1071156 0.2000172 −0.21866 −0.42444

140 −0.49426333 −0.47999918 0.1071137 0.2000082 −0.21860 −0.42425

165 −0.49426344 −0.47999968 0.1071126 0.2000032 −0.21856 −0.42415

190 −0.49426349 −0.47999990 0.1071122 0.2000010 −0.21855 −0.42411

215 −0.49426351 −0.47999997 0.1071120 0.2000003 −0.21854 −0.42409

240 −0.49426351 −0.48000000 0.1071120 0.2000000 −0.21854 −0.42409

Complex Kohn �3� 0.200 −0.42418�20�
Kohn �2� 0.200 −0.4245�5�
Finite element �37� 0.200 −0.4246

Finite difference �38� 0.200 −0.4245
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VH�r� = �� −
1

r
�exp�− 2r� −

�d

2r4 �1 − exp�− r6/�6�� .

�29�

Using this alternate form of the tuning potential led to no
change in the phase shifts at the reporting precision of
10−5 rad.

D. Test of the BCM

The BCM was also used to extract the phase shifts for this
symmetry. The outgoing wave function was extracted by
multiplying the two-electron wave function by the hydrogen
atom ground state �written as a linear combination of ECGs�
and then integrating over one of the electron coordinates
�14�. The logarithmic derivative was computed at r=R0 and a
correction then applied to take into account the long-range
polarization potential.

The phase shifts were less accurate and were more sus-
ceptible to small changes in the calculation. For example, the
N=240 basis for the e−-H 3Se system gave a phase shift of
−0.424 60 rad at k=0.2a0

−1. When �1 was changed to 19.45
there was a change in E2,240 of 3.0�10−8 hartree. However,
the phase shift changed by 1.4�10−4 rad. This is at least ten
times larger than the change in the phase shift coming from a
CVM analysis. The BCM phase shifts rely on the local value
of the wave function and are therefore not able to reach the
same precision as the CVM.

E. Use of a wider confining potential

Some additional calculations in a wider confining poten-
tial were done to verify that the phase shifts were indepen-
dent of the choice of the confining potential radius. Calcula-
tions were done for both the 1Se and 3Se symmetries.

The singlet confining potential was WCP�r�
=1.888 349 30�10−5�r−23�2. This choice leads to the fourth
confined eigenstate having a momentum of k=0.2a0

−1. The
energy being optimized was the average of the four lowest

energies, i.e., Eopt= �E0+E1+E2+E3� /4. This wider confin-
ing potential had less impact upon the energy of the H−

ground state. Imposition of the confining potential raised the
energy of the ground state by 0.87�10−8 a.u.

The energies of the lowest states at various stages of the
optimization are listed in Table IV. The best energy of
the H− ground state was −0.527 750 995 hartree; this is
1�10−8 hartree from convergence when the confining po-
tential is taken into account. The biggest calculation gave a
phase shift of 2.066 98 rad at k=0.20a0

−1. This is only
1�10−5 rad smaller than the phase shift obtained from the
narrower confining potential. The effects of round-off error
prevented extending the basis beyond the present size, but
examination of the convergence pattern of the k=0.20a0

−1

phase shifts suggests a converged phase shift of
2.066 99 rad.

The wider confining potential for the calculations
upon the e−-H 3Se system was WCP�r�=2.272 320 50
�10−5�r−22�2. This choice resulted in the third confined
eigenstate having a momentum of k=0.2a0

−1. The energy op-
timized was the average of the three lowest energies, i.e.,
Eopt= �E1+E2+E3� /3.

The influence of round-off errors due to the nonorthogo-
nal basis had a more severe impact upon 3Se phase shifts.
The largest possible basis was limited to N=290 and at-
tempting to go beyond this dimension led to a failure in the
diagonalization procedure. The actual sequence of successive
energy increments from 190→240→265→290 did not
show a pattern that permitted an extrapolation to the N→�
limit. The only conclusion that can be made is that the two
3Se calculations gave phase shifts which agreed to
2�10−5 rad, i.e., the two confining potentials gave the same
phase shift to within the uncertainties of the respective cal-
culations.

F. Electron-helium scattering in the 2Se channel

The CVM was applied to the s-wave scattering of elec-
trons from the helium ground state. The SVM was used to

TABLE IV. Energies and phase shifts of the lowest energies of the e−-H 1,3Se systems for the wider confining potentials. The number of
ECGs in the basis is given by N. The energy of the bound H− ground state is denoted by E0. Energies and k are given in atomic units.

N E0,N E1,N E2,N E3,N k1,N k2,N k3,N �CVM,1,N �CVM,2,N �CVM,3,N

1Se symmetry

140 −0.52774652 −0.49645290 −0.48867807 −0.47999690 0.0842271 0.1504788 0.2000155 2.64134 2.29150 2.06583

240 −0.52775055 −0.49645361 −0.48868002 −0.47999985 0.0842187 0.1504658 0.2000008 2.64173 2.29229 2.06692

340 −0.52775092 −0.49645362 −0.48868010 −0.47999996 0.0842185 0.1504653 0.2000002 2.64174 2.29232 2.06697

390 −0.52775099 −0.49645363 −0.48868011 −0.47999998 0.0842184 0.1504652 0.2000001 2.64174 2.29233 2.06697

440 −0.52775100 −0.49645363 −0.48868012 −0.48000000 0.0842184 0.1504651 0.2000000 2.64175 2.29233 2.06698
3Se symmetry

140 −0.49676883 −0.48904093 −0.47999921 0.08038865 0.1480477 0.2000040 −0.16075 −0.30900 −0.42438

190 −0.49676908 −0.48904134 −0.47999987 0.08038647 0.1480450 0.2000006 −0.16066 −0.30885 −0.42415

240 −0.49676903 −0.48904139 −0.47999995 0.08038625 0.1480447 0.2000003 −0.16065 −0.30883 −0.42413

265 −0.49676903 −0.48904140 −0.47999997 0.08038620 0.1480446 0.2000001 −0.16065 −0.30882 −0.42412

290 −0.49676903 −0.48904141 −0.48000000 0.08038617 0.1480446 0.2000000 −0.16065 −0.30882 −0.42411
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optimize the average energy of the lowest two states.
The confining potential used was the potential
WCP�r�=1.059 950�10−4�r−18�2. This potential was
adopted to give an energy close to −2.883 724 377 0 hartree
for the second confined state �this is exactly 0.02 hartree
above the He ground state energy of
−2.903 724 377 0 hartree �1,39,44��. The confining potential
had an insignificant effect on the energy of the helium
ground state. The energy increase when the confining poten-
tial was added was less than 10−15 hartree.

Table V gives the energies of the two lowest states at
various stages of the SVM optimization procedure. A casual
inspection of the sequence of energies suggests that the over-
all level of convergence of the confined energy is between
10−6 and 10−7 hartree. This level of convergence is some-
what worse than the convergence of a purely bound system.
For example, a SVM calculation of the Li ground state en-
ergy was performed. An ECG basis of dimension 1000 gave
an energy of −7.478 060 274 hartree. This is only
5�10−8 hartree above the energy of Pachucki �45�, namely,
−7.478 060 324 hartree.

Convergence was accelerated by augmenting the basis
with functions designed to represent an electron moving in
the static potential of the He ground state. These additional
basis functions were

�out
i = �He�r1,r2�exp�− �ir3

2� , �30�

�He�r1,r2� = 	
k

dkFk
He�r1,r2� . �31�

The He ground wave function �He�r1 ,r2� was written as a
linear combination of 90 ECGs �Fk

He�. This basis gave

−2.903 724 33 a.u. for the He ground state energy. A total
of 40 electron Gaussians, defined by the relation
�i=17.0 /1.45i−1, multiplying the He ground state wave func-
tion were included. The value of �1=17.0 is slightly different
from the value adopted in Ref. �18�. This choice of �1 re-
sulted in the augmented basis energy improvement for the
N=1200 basis being 5�10−8 hartree larger than that
achieved when the choice of �1=19.45 was made �18�. The
energies Ei,N� and derived phase shifts ��CVM,i,N� � for the aug-
mented basis are given in Table V. The potential of Eq. �24�
was used for phase shift reconstruction with the helium di-
pole polarizability set to 1.3832 a.u. �46�. The contribution to
the phase shift from the long-range part of the potential �i.e.,
r�18a0� was only 0.000 19 rad at k=0.2a0

−1.
The advantage of the augmented basis is readily apparent

in Table V. The smallest calculation with the augmented ba-
sis with N=640 gives better phase shifts than the nonaug-
mented basis of dimension 1200. The improvement is also
evident in Fig. 1 which shows the �CVM,2 and �CVM,2� phase
shifts for different sized basis sets plotted against the energy
difference �E= �E2,N� −E2,N�. This difference, �E will tend to
zero as the basis size increases. Continuation of the series of
calculations would result in �CVM,2 and �CVM,2� tending to a
common intercept. The limiting value of the phase shift at
k=0.20a0

−1 was −0.265 03 rad.
As far as we know there have been no large scale calcu-

lations of electron scattering from helium using a correlated
basis. The Kohn-variational �KV� calculations of Nesbet �40�
used a basis of single particle orbitals centered on the
nucleus to represent both that target and scattering electrons.
This is also true of the multiconfiguration Hartree-Fock
�MCHF� calculations of Saha �41�. Another notable calcula-
tion is the R matrix with pseudostates �RMPS� calculation by

TABLE V. Confined energies and phase shifts for the 2Se e−He system as a function of the number of ECGs, N. The phase shifts from
some other calculations at k=0.20a0

−1 are listed. Energies and k are given in atomic units.

N E1,N E2,N k1,N k2,N �CVM,1,N �CVM,2,N

SVM basis

600 −2.89806984 −2.88371635 0.1063442 0.20004016 −0.13752 −0.26660

800 −2.89807164 −2.88372084 0.1063272 0.20001766 −0.13698 −0.26572

1000 −2.89807222 −2.88372247 0.1063217 0.20000956 −0.13681 −0.26540

1200 −2.89807245 −2.88372319 0.1063196 0.20000596 −0.13674 −0.26526

1400 −2.89807260 −2.88372366 0.1063181 0.20000357 −0.13669 −0.26517

1600 −2.89807267 −2.88372384 0.1063175 0.20000267 −0.13667 −0.26513

Augmented SVM basis

640 −2.89807236 −2.88372329 0.1063204 0.20000545 −0.13676 −0.26524

840 −2.89807263 −2.88372393 0.1063179 0.20000224 −0.13668 −0.26512

1040 −2.89807272 −2.88372415 0.1063171 0.20000114 −0.13666 −0.26508

1240 −2.89807275 −2.88372424 0.1063167 0.20000070 −0.13665 −0.26506

1440 −2.89807278 −2.88372429 0.1063165 0.20000042 −0.13664 −0.26505

1640 −2.89807279 −2.88372432 0.1063164 0.20000028 −0.13663 −0.26504

KV �40� 0.1063162 0.20 −0.1368 −0.2655

MCHF �41� 0.20 −0.2630

RM �42� 0.20 −0.265

RMPS �43� 0.20 −0.2607
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Hudson et al. �43�. The RMPS calculation was not aimed
specifically at low energy elastic scattering and the resulting
phase shifts are not regarded as having the same accuracy as
the KV. The KV helium elastic cross section of Nesbet is
often adopted as a theoretical benchmark cross section
�47,48�.

The CVM phase shift at k=0.2a0
−1 is slightly more posi-

tive by 0.0005 rad than the KV phase shift. But this is within
the uncertainty estimate of 0.0005 rad attached to the KV
phase shift. The MCHF phase shift of Saha is 0.002 rad more
positive than the CVM phase shift at this momentum. We
conclude that the MCHF calculation suffers from some small
systematic error that leads it to overestimate the phase shifts
by about 1%.

G. Electron-hydrogen scattering in the 3Po channel

So far all the examples are systems with a total orbital
angular momentum of L=0. It is also possible to apply the
SVM to systems with nonzero angular momentum �17�. The
particular formulation adopted in the present work is that of
the global vector method �17,25�. In this approach the total
angular momentum is introduced using a global function. For
a two-electron system the basis functions are

�LS�r� = A�u1r1 + u2r2�KYLM�u1r1 + u2r2��SMS

��
i=1

N

exp�− �iri
2��

i�j

exp�− �ij�r j − ri�2� ,

�32�

where A is an antisymmetrizer and �SMS
is the spin function

of the particles. The nonlinear variational parameters �i and
�ij are selected by the usual stochastic procedure. Full details
are given in Refs. �17,25�. The spherical part of the ECG
basis functions effectively allows internal angular momen-
tum to be distributed between the different parts of the sys-
tems. Accordingly, Eq. �32� implicitly includes all possible
internal symmetries that can make a contribution to the en-
ergy. This has been verified with test calculations.

The procedure to extract the phase shifts is transparently
similar to the procedure for s-wave scattering. The basis
functions do have additional variational flexibility in that the
parameters of the global vector, u1r1+u2r2, i.e., u1 and u2
can be adjusted and treated as additional parameters in the
stochastic search. This additional degree of flexibility was
not utilized and the choice �u1 ,u2�= �0,1� was adopted for all
the basis functions. The augmented basis functions to repre-
sent a product of a continuum electron and the hydrogen
ground state had the form

�LS�r� = A�r2�KYLM�r2��SMS
� 	H�r1�exp�− �ir2

2� ,

�33�

where 	H�r1� is the Gaussian representation of the H ground
state and the �i are chosen as an even tempered set. The final
confining potential parameters for the 3Po calculation were
G=4.397 948 294�10−5 and R0=18a0.

Table VI records the phase shifts obtained from the CVM
calculation of the 3Po symmetry. Phase shifts from some pre-
vious high accuracy calculations �49–51� are listed. Phase
shifts computed with the perturbation theory expression
�52,53�

tan��l� �
��dk2

�2l − 1��2l + 1��2l + 3�
, l � 0, �34�

are also given. The perturbation theory expression gives
phase shifts which are some 10–20 % smaller than those of
the more exact calculations.

TABLE VI. The lowest two energies of the confined 3Po e−-H system as a function of the number of ECGs, N. The phase shifts from
some other calculations at k=0.20a0

−1 are given. Energies and k are given in atomic units.

N E1,N E2,N k1,N k2,N �CVM,1,N �CVM,2,N

140 −0.49174236 −0.47999981 0.1285118 0.2000010 0.017611 0.045288

190 −0.49174240 −0.47999997 0.1285115 0.2000002 0.017624 0.045328

240 −0.49174241 −0.48000000 0.1285114 0.2000000 0.017626 0.045336

Correlated optical potential �49� 0.200 0.045345

Kohn �50� 0.200 0.0450

Finite element �51� 0.200 0.0452

MERT 0.1285114 0.200 0.01556 0.03768
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FIG. 1. The s-wave phase shifts for e−-He scattering at
k�0.2a0

−1 plotted as a function of �E for different sized basis sets.
The phase shifts derived directly from the SVM calculation,
�CVM,2,N, and that derived with the augmented basis, �CVM,2,N� , are
included.
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The CVM phase shift at k=0.20a0
−1 was 0423 36 rad. The

contribution to this phase shift from the long-range polariza-
tion potential for r�18a0 was about 1%. The CVM phase
shift compares well with the recent value of 0.042 345 rad of
Bhatia that was computed with an optical potential derived
from a correlated basis �COP� �49�. The present CVM calcu-
lation was not driven to convergence. All calculations with
L=0 were performed with a mature program that was con-
sequently efficient and reliable. The computations for the 3Po

symmetry were performed with a completely new SVM pro-
gram. Evaluation of the matrix elements was slower due to
their additional complexity �17,25�. Further, the most effi-
cient search strategies for determining the optimal ECGs ba-
sis set were developed during the course of the calculation
�this would distort any attempt to deduce the variational limit
from the energies listed in Table VI�. So the results presented
in Table VI should be regarded more as a proof of principle
as opposed to the ultimate solution. Even with this caveat,
the CVM 3Po phase shift at k=0.2a0

−1 is still within
1�10−5 rad of the best phase shift ever reported.

V. SUMMARY AND PERSPECTIVES

A method of obtaining phase shifts by adding a confining
potential to the scattering Hamiltonian is developed. First it
was shown that two scattering Hamiltonians with the same
energies in the confining potential must have the same phase
shifts at that energy. This provides a mechanism for adapting
practically any method for solving the bound Schrödinger
equation into a procedure that can also give scattering phase
shifts. One advantage of the CVM is that the initial calcula-
tion of the energy is governed by the variational principle for

bound states. The energy is therefore insensitive to first-order
variations of the wave function from the exact wave func-
tion.

In the present work the SVM has been used as the nu-
merical engine to determine the energies of the confined
Hamiltonian. The use of a nonorthogonal Gaussian-type ba-
sis does impose some restrictions on the functional form of
the confining potential, but these are not so severe as to
effect the utility of the method. Indeed, the CVM S-wave
phase shifts presented here for hydrogen and helium are very
accurate.

The main source of uncertainty is the representation of the
wave function at large distances where the dominant factor is
the polarization potential. However, there was no detectable
change in the e−-H phase shift for scattering calculations
utilizing a wider confining potential. The calculations on the
1Se state suggest the possible variation of the phase due to
the use of a finite R0 would be about 10−5 rad or less.

One application of the CVM would be to study low en-
ergy elastic scattering for physical systems that are not ac-
cessible by standard approaches. An interesting class of sys-
tem worth investigating would be the e�-H2 systems. There
have been no definitive first principles calculations of the
scattering length or low energy phase shifts for these two
systems and it has been shown that ECG basis sets can give
very accurate energies for molecular systems �27,54–56�. It
would first be necessary to generalize the present procedure
to treat nonspherical systems.
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