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Rearrangement reaction in electron scattering from muonic hydrogen ��p� in highly excited states, i.e., e
+�p→�+H, is theoretically investigated by using the R-matrix numerical method, recently developed by the
present author �Phys. Rev. A 76, 042513 �2007��. This process can be identified as dissociative attachment
�DA� if we use the terminology of molecular physics. The present study offers a rigorous treatment of the DA
to the exotic system �p without introducing any type of decoupling approximation. The threshold behavior of
the DA cross sections becomes peculiar because of the dipole interaction between e and �p and the degeneracy
of the hydrogenic �p states.
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I. INTRODUCTION

Research on the atomic and molecular systems involving
antiprotons �p̄� is very interesting in part because the anti-
protons can be regarded as negative point charges much
heavier than electrons. Above all, antiprotonic helium p̄He+

is under recent intense study in this field. In describing the
high orbital motion of p̄-He+�1s�, we can find that a concept
based on the Born-Oppenheimer �BO� separation is appro-
priate �1,2�. This exotic system shows some similarities to
molecules. In the p̄-H system, however, the situation be-
comes quite different because the electron is hardly bound at
small p̄-p distances, as evidenced by the presence of the
so-called Fermi-Teller critical distance RFT=0.639 a.u. �3�.
The molecular approach conventionally applied to low-
energy heavy particle collisions is not useful in such a case.
This was an obstacle to progress of the theoretical study, and
it is only recent that a rigorous quantum-mechanical �QM�
calculation has become possible for the p̄+H collisions
�4–6�.

Muons ��� are much lighter than antiprotons, but are still
considered as heavy negative particles. The light � mass
makes an accurate QM treatment more feasible. Neverthe-
less, only a few QM calculations have been carried out so far
also for the �+H collisions �7–9�. The purpose of the present
study is to get a further understanding of the e-�-p dynamics
from a different aspect. Namely, we consider the inverse pro-
cess of the � capture by H, i.e.,

e + �p�N,L� → � + H�1s� , �1�

where the exotic atom �p is called muonic hydrogen, and
�N ,L� are the principal and angular momentum quantum
numbers. When muons impinge on matter, the muonic hy-
drogen atoms are generally considered to form in high �N ,L�
states. The present study is restricted to such high-lying or-
bitals. This offers the numerical advantage that we can avoid
treating the strong Coulomb attraction near the origin.

In molecular physics, a process such as Eq. �1� is known
as dissociative attachment �DA�. The research of DA to mol-
ecules has a long history �10�. As usually done in the DA
study, we draw in Fig. 1 the potential energy curves of �
+ p and �+H as a function of the relative distance R. The
latter is the lowest 1� adiabatic potential obtained by the BO

approximation, which crosses at R=RFT with the former,
namely, the Coulomb potential. Figure 1 also shows the �p
hydrogenic energy levels. We can see that the DA to the
muonic hydrogen is an endoergic reaction if the principal
quantum number of �p is N�13. In most of the DA to
molecules, electron resonances �i.e., temporally formed
negative ions� in the fixed-nuclei picture are assumed to play
a critical role �10,11�. In the present case, however, it is quite
unlikely that the electron can be temporarily trapped at R
�RFT. The DA to molecules can be treated by a nonreso-
nance method �12�, which directly takes account of the nona-
diabatic effects leading to DA. In the �+H system, it has
been found that the nonadiabatic coupling with electronic
continua remains very strong even at �-H distances twice as
large as RFT �8�. The adiabatic picture would be far from a
good zeroth-order approximation for the understanding of
the present DA dynamics.

In this paper, we present a rigorous QM treatment of the
DA to the exotic system �p. The previous wave-packet
propagation method used for the �+H collisions �7,8� is not
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FIG. 1. The Coulomb potential of �+ p and the 1� adiabatic
�BO� potential of �+H as a function of the �-p relative distance R.
The �p hydrogenic energy levels EN with the principal quantum
number N are indicated on the left side of the figure. The energy
corresponding to the dissociation limit �+H is −0.5 a.u. The verti-
cal line labeled by RFT represents the Fermi-Teller critical distance.
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appropriate if the kinetic energy in the dissociative channel
�+H is low as in the present case. The time-dependent
method of Tong et al. �9� requires time-consuming computa-
tion for each collision energy. Here, we employ the R-matrix
method recently developed by the present author for the p̄
+He+ collisions �13�. In the R-matrix method, once a matrix
defined in the inner region is diagonalized, the scattering
calculation at any energy can be accomplished easily. In-
stead, the inner-region computation is generally laborious.
We consider the initial �p states N=13, 14, and 15, and low
collision energies of electrons. Therefore, any electronic ex-
cited state of H is excluded as the asymptotic channel �
+H. In the present calculation, the nonrelativistic approxima-
tion is assumed, all the particles are considered to be point-
like, and the spin of the particles is omitted for simplicity.

II. SCATTERING THEORY

A. Scattering equation

Using the Jacobi coordinates �R ,r� shown in Fig. 2, the
total Hamiltonian for the e-�-p system can be written as

H̃ = −
1

2mRR

�2

�R2R +
L̃2

2mRR2 −
1

2mrr

�2

�r2r +
l̃2

2mrr
2 + V ,

�2�

where mR is the �-p reduced mass, mr is the e-�p reduced

mass, L̃ is the angular momentum vector �operator� of �-p,

and l̃ is the electronic angular momentum vector. The inter-
action V=V�R ,r ,�� is a function of R, r, and the angle �
between R and r, and is explicitly given by

V = −
1

��mR/mp�R + r�
+

1

��mR/m��R − r�
−

1

R
, �3�

where mp is the p mass, and m� is the � mass. Here and in
the following, we use atomic units unless otherwise stated.

The time-independent Schrödinger equation for the
present system is

H̃��
JM��R,r� = E��

JM��R,r� , �4�

where E is the total energy, �J ,M� are the total angular mo-
mentum quantum numbers, � is the total parity, and � indi-
cates the initial scattering channel.

B. Scattering boundary conditions

For the incident channel e+�p, the total wave function
��

JM� can be given in the form

��
JM��R,r� = �Rr�−1�

NLl

YLl
JM��R̂, r̂�	NL�R�fNLl,�

J� �r� . �5�

The radial function 	NL�R� represents the bound state of the
muonic hydrogen �p with the principal and angular momen-
tum quantum numbers �N ,L�. The angular function

YLl
JM��R̂ , r̂� is given by

YLl
JM��R̂, r̂� = �

m

�LM − m,lm�JM�YLM−m�R̂�Ylm�r̂� , �6�

where l is the electronic angular momentum quantum num-

ber, YLM−m�R̂� and Ylm�r̂� are spherical harmonics, and
�LM −m , lm �JM� is a Clebsch-Gordan coefficient �14�. In the
limit as r→
, the scattering radial function fNLl,�

J� �r� for the
open channel �N ,L , l� satisfies the boundary conditions

fNLl,�
J� �r� � s��,l;r��NLl,� + c��,l;r�KNLl,�

J� , �7�

where KNLl,�
J� is the scattering K-matrix element

s��,l;r� = � mr

2kN
	1/2

sin�kNr − l/2� , �8�

c��,l;r� = � mr

2kN
	1/2

cos�kNr − l/2� , �9�

and

� = E − EN =
kN

2

2mr
, �10�

with the hydrogenic �p energy EN=−mR / �2N2�.
If the distance R is larger than the range of the nonadia-

batic coupling �
1.5 a.u.�, the adiabatic approximation is
very good for the description of the �+H state �8�. For the
dissociative channel �+H, therefore, the total wave function
��

JM��R ,r� at sufficiently large R can be given by �13�

��
JM��R,r� = �Rr�−1DM0

J� �R̂��1��R;r,��F1�,�
J� �R� , �11�

where DM�
J� �R̂� is the parity-specified normalized Wigner’s

rotation matrix element related to the transformation from a
space-fixed frame to a body-fixed �BF� frame in which the z

axis is chosen along R̂: i.e., �= J̃z= l̃z �J̃= L̃+ l̃ being the total
angular momentum vector�, and �1��R ;r ,�� is the adiabatic
wave function of the lowest 1� state with the eigenenergy
E1��R�. The scattering radial function F1�,�

J� �R� can be ex-
pressed as

F1�,�
J� �R� = S�E,J;R��1�,� + C�E,J;R�K1�,�

J� , �12�

where the functions S�E ,J ;R� and C�E ,J ;R� have the
asymptotic forms

S�E,J;R� � � mR

2K1��R��1/2
sin�R

K1��R��dR�� ,

�13�

p

e

µ

r

�

R

FIG. 2. Jacobi coordinates �R ,r� of the e-�-p system.
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C�E,J;R� � � mR

2K1��R��1/2
cos�R

K1��R��dR�� ,

�14�

with

K1��R� = �2mR�E −
�J + 1/2�2

2mRR2 − E1��R���1/2

. �15�

The cross section for the DA to �p�N ,L� can be given by
�15�

��N,L� =


kN
2 �

J�

2J + 1

2L + 1�
l

PJ��N,L,l� , �16�

with the DA probability

PJ��N,L,l� = �S1�,NLl
J� �2, �17�

where S1�,NLl
J� is the scattering S-matrix element for the �

= �N ,L , l�→1� transition. Because the dissociative channel
is the 1� state, only the parity of �= �−1�J is allowed in the
present DA process.

C. R-matrix method

The present treatment of the scattering calculation is
based on the R-matrix method �16,17� using the nonuniform
boundary condition �18�. Here, only its outline is given. For
the details of the numerical method, see Ref. �13�.

We consider the eigenvalue equation

�H̃ + L̃B���
JM��R,r� = E�

J���
JM��R,r� , �18�

where

L̃B =
1

2mRA
��R − A�

�

�R
R +

1

2mra
��r − a�

�

�r
r �19�

is the Bloch operator �19�, and �R=A ,r=a� is the boundary
defining the inner region. The wave function ��

JM��R ,r� can
be normalized to unity, i.e.,

���
JM�����

JM��A,a = ��,��, �20�

where the subscript A, a indicates that the integral range for
R and r is limited to the inner region. We can expand the
R-matrix wave function ��

JM� each near the boundary line as

��
JM��R,r� = �Rr�−1DM0

J� �R̂��1��R;r,��H1�,�
J� �R� �21�

for R�A and

��
JM��R,r� = �Rr�−1�

NLl

YLl
JM��R̂, r̂�	NL�R�hNLl,�

J� �r� ,

�22�

for r�a. Then, the R-matrix elements can be given by �16�

R1�,1�
J� =

1

2mR
�

�

�H1�,�
J� �A��2

E�
J� − E

, �23�

RNLl,N�L�l�
J� =

1

2mr
�

�

hNLl,�
J� �a�hN�L�l�,�

J� �a�

E�
J� − E

, �24�

mRRNLl,1�
J� = mrR1�,NLl

J� =
1

2�
�

hNLl,�
J� �a�H1�,�

J� �A�
E�

J� − E
. �25�

The scattering K and S matrices can be calculated from the R
matrix in the usual way �21�.

To numerically solve the R-matrix eigenvalue equation
�18�, we expand the wave function ��

JM� in the BF frame as
�13�

��
JM��R,r� = �Rr�−1 �

��0
DM�

J� �R̂���
J���R,r,�� . �26�

The function ��
J���R ,r ,�� is calculated by using direct nu-

merical solution based on the grid representation �13�. The
amplitudes H1�,�

J� �A� and hNLl,�
J� �a� needed in Eqs. �23�–�25�

can be obtained by

H1�,�
J� �A� = ���1����

J��=0��R=A, �27�

hNLl,�
J� �a� = �

��0
UL�

J�l��Pl
�	NL���

J����r=a, �28�

where Pl
��cos ��=�2Yl��� ,0� is normalized to unity, and

UL�
J�l = �2L + 1

2J + 1
	1/2

�L0,l��J��
1 + ��− 1�L+l

�2�1 + ��,0��1/2 . �29�

D. Numerical calculations

The scattering calculations were carried out for the initial
states N=13, 14, and 15. Figure 3 shows the energies EN of
these states and the effective potential Veff�R� for the �+H
motion, calculated from the 1� adiabatic potential. The DA
channel becomes open when the total energy is E=�+EN
�E1��
�. In the present case �N�15 and L�10�, the �+ p
motion is localized in the area of R�2.0 a.u. This means that
the DA is forbidden unless the �+H scattering wave func-
tion has a finite amplitude at R�2.0 a.u.
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FIG. 3. Effective potential Veff�R� of the dissociative channel
�+H �the sum of the centrifugal and 1� adiabatic potentials� as a
function of R for J=7−16. The energies are measured from the
dissociation limit. The vertical line labeled by RFT represents the
Fermi-Teller critical distance. The �p hydrogenic energy levels EN

are shown for N=13, 14, and 15.
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We took the boundary values A=3 a.u. and a=10 a.u.,
and included the �=0 and 1 states in the inner-region calcu-
lation. We checked the convergence of the inner-region cal-
culation with respect to the numbers of grid points
�NR ,Nr ,N�� in the �R ,r ,�� coordinate space, as done in Ref.
�13�. The results shown below were calculated by adopting a
set �NR ,Nr ,N��= �30,35,10�, which gave the error of the
transition probabilities less than 1%. Figure 4 shows the de-
viation of the �p energies obtained in the present grid cal-
culation �NR=30� from the accurate value −mR / �2N2� for
N=15. We can see that the calculated energies are less accu-
rate for lower L. This is because the minimum of the effec-
tive potential of �+ p becomes deeper as L decreases.
The incident electrons having the angular momenta l�2
contribute negligibly to the DA. �In the present calculation,
l=0−4 are included.� Therefore, as long as high initial L
states are considered, the poor accuracy for the low L states
does not matter.

In order to calculate the functions S�E ,J ;R� and
C�E ,J ;R� at R=A in Eq. �12�, the asymptotic solutions �13�

and �14� are numerically propagated backward from a suffi-
ciently large distance R. To eliminate the long-range dipole
coupling effect in the e+�p channel, we propagated the R
matrix from r=a to a large distance r=rmax �13,20�. For the
calculation of the DA probabilities, rmax=100 a.u. was cho-
sen unless otherwise stated. �For the convergence of the DA
probabilities with respect to rmax, Fig. 13 serves as a refer-
ence.�

In the time-dependent QM calculation, fortunately Tong
et al. �9� present the N-specified probabilities of �+H
→�p�N�+e at a low energy, which can be directly compared
with the present calculation. The result of the comparison,
shown in Fig. 5, seems to be acceptable.

III. RESULTS AND DISCUSSION

A. DA probabilities and cross sections

The results of the DA probabilities �lP
J��N ,L , l� for the

initial state N=13 are shown as a function of the electron
collision energy � in Fig. 6. The DA reaction for N=13 is
endoergic, and has the threshold energy �thr

DA=E1��
�
−EN=13=1.356 eV. If we look at each partial wave specified
by J, however, the effective DA threshold would be larger
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FIG. 4. The deviation of the �p energies calculated using the
grid of NR=30 from the accurate value −mR / �2N2� for N=15 and
L=0−14.
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FIG. 5. Probabilities of the � capture into �p�N� in the �+H
collisions for J�=10+ at the �+H collision energy T=E−E1��
�
=2.0 eV. The present results are compared with those of Tong et al.
�9�.
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FIG. 6. The sum of the DA probabilities PJ��N ,L , l� over l for
the initial state N=13 as a function of the electron collision energy
�=E−EN=13. �thr

N=14=EN=14−EN=13 is the threshold for the N=14
excitation.
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than �thr
DA because of the centrifugal barrier of the dissociative

channel �+H. The interaction range Rint for the rearrange-
ment reaction �1� is estimated to be Rint
1.5 a.u. from the
study of the � capture by H �8�. Figure 3 shows that the local
maximum of the effective potential Veff�R� for J�14 is al-
ways located at a distance �e.g., =1.75 a.u. for J=14� larger
than Rint. Therefore, the effective DA threshold can be given
by the barrier height of Veff�R� if J�14. For the initial state
N�14 �Figs. 7 and 8�, the DA reaction is exoergic, and is
allowed at all the electron energies � if J�12 �N=14� or if
J�14 �N=15�, as can be expected from Fig. 3. If N=15 and
J=15, the radial turning point RTP of the �+H motion, esti-
mated from Veff�R�, is slightly larger than Rint at �=0, and
accordingly the DA probability becomes very small as �
→0. In all the cases shown here, the DA probabilities are
very small ��10−3� if J takes the values of �J−L � �2. This is
because only the electrons with the low angular momentum
l=0 or 1 can sufficiently approach �p at low energies.

The DA cross sections ��N ,L� for the initial states N
=13, 14, and 15 are shown in Figs. 9–11, respectively. Espe-
cially for N=13 and also for �N ,L�= �14,13�, because the
DA probabilities are rapidly rising as the energy increases
from the J-dependent effective threshold, the DA cross sec-
tions have complicated energy dependence. For the other ini-

tial states, in contrast, the cross sections are monotonically
decreasing with �.

The muonic hydrogen �p in high N states is also consid-
ered as a typical dipole. Because of the degeneracy of the
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FIG. 7. The sum of the DA probabilities PJ��N ,L , l� over l for
the initial state N=14 as a function of the electron collision energy
�=E−EN=14.
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FIG. 8. The sum of the DA probabilities PJ��N ,L , l� over l for
the initial state N=15 as a function of the electron collision energy
�=E−EN=15.
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FIG. 9. DA cross sections ��N ,L� for the initial state N=13 as a
function of the electron collision energy �=E−EN=13. �thr

N=14

=EN=14−EN=13 is the threshold for the N=14 excitation.

DISSOCIATIVE ELECTRON ATTACHMENT TO MUONIC … PHYSICAL REVIEW A 78, 042509 �2008�

042509-5



hydrogenic states, the e+�p system effectively has an
asymptotic dipole potential still proportional to r−2 �i.e., the
linear Stark effect� �22�. Then, it becomes probable that the
effective long-range dipole force becomes attractive, and
overcomes the centrifugal repulsion. This causes some inter-
esting phenomena �23–25�, which will be discussed in the
next section.

B. Effects of dipole interaction

In the limit as r→
, the sum of the centrifugal potential
and the interaction �3� becomes

l̃2

2mrr
2 + V →

l̃2 + 2mrR cos �

2mrr
2 −

1

R
. �30�

For each fixed N, we diagonalize the matrix elements defined
by �22,25�

�YLl
JM�	NL�l̃2 + 2mrR cos ��YL�l�

JM�
	NL�� , �31�

and denote the eigenvalues by ��
J�N with �=1,2 , . . . . Then,

the Hamiltonian �2� at large r can be reduced to

H̄asym = −
1

2mrr

�2

�r2r +
��

J�N

2mrr
2 + EN. �32�

Therefore, the potential for the electron radial motion at large
r is given by ��

J�N / �2mrr
2� and not simply by l�l

+1� / �2mrr
2�. If ��

J�N�−1 /4, the situation becomes exactly
the same as that holding in the presence of the Coulomb
attraction: the tail of the potential ��

J�N / �2mrr
2� supports an

infinite number of bound states �26� and furthermore the
transition probability of the collisional excitation differs
from zero in the vicinity of the excitation threshold �23,24�.

Figure 12 shows the lowest eigenvalue ��=1
J�N as a function

of the total angular momentum J for N=2–15. If N=14,
��=1

J�N is only slightly less than −1 /4 for J=12, and becomes
more negative as J decreases. Accordingly, we can see that
the DA probabilities �lP

J��N ,L , l� especially for N=13 and
J�11 �Fig. 6� have the anomalies at the N=14 excitation
threshold �thr

N=14=EN=14−EN=13=2.061 eV, and furthermore
the DA probabilities for N=14 and J�12 and for N=15 and
J�14 �Figs. 7 and 8� remain finite at zero energy �=0.
Because of the finite probability at �=0, the DA cross section
diverges as �−1 in the limit of zero electron energy �Figs. 10
and 11�. This behavior is quite different from the zero-energy
limit ���−1/2� in the DA to ordinary molecules �10�.

Detailed behavior of the DA probabilities in the neighbor-
hood of �=0 is shown in Fig. 13 for �N ,L�= �14,11� and �14,
12�. In the numerical calculation, rmax must be taken larger as
� decreases. The figure also includes the results obtained by
further choosing rmax=150 and 200 a.u. We can see that a
much larger value of rmax is needed if the energy is ��5
�10−3 eV. It should be mentioned furthermore that an accu-
rate calculation of the probabilities is still more difficult at
energies very near �=0 also because of the limited accuracy
of the �p energy levels. Figure 4 implies that, for example,
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FIG. 10. DA cross sections ��N ,L� for the initial state N=14 as
a function of the electron collision energy �=E−EN=14.
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FIG. 11. DA cross sections ��N ,L� for the initial state N=15 as
a function of the electron collision energy �=E−EN=15.
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FIG. 12. The lowest eigenvalue ��=1
J�N as a function of the total

angular momentum J for �= �−1�J and N=2–15.

KAZUHIRO SAKIMOTO PHYSICAL REVIEW A 78, 042509 �2008�

042509-6



the electron energies of ��10−4 eV have no physical mean-
ing for �N ,L�= �15,10� in the present calculation.

Resonances are of special significance in the e-p̄-He2+

system. Originally, the antiprotonic helium p̄He+ can be ob-
served only as resonance states �1�. In the p̄+He+ collisions,
it has been further found that the p̄ capture probability shows
a saw-edged structure owing to the overcrowding of the
p̄He+ resonances, and the resonance process makes a domi-
nant contribution to the p̄ capture �13,27�. A huge number of
the resonances originate from the long-range Coulomb at-
traction inherent in each of the rearrangement channels. How
does the situation change for the e-�-p system? The fact that
the potential ��

J�N / �2mrr
2� can support the bound states

bears mathematical evidence of the existence of �e�p�− reso-
nances. The physical solution g�r� /r for the Hamiltonian
�32� which decays to zero at infinity is given in terms of a
modified Bessel function �22,25�. As done by Shimamura
�25�, we can roughly estimate the resonance energy positions
by setting

g�a��dg�a�
dr

�−1

= RN�,N�
J� , �33�

where RN�,NL�
J� is the diagonal element of the R matrix for

the transformed �N ,L , l⇒N ,�� closed channel at r=a. Fig-
ure 14 shows a typical example, related to the Feshbach reso-
nances �e -�p�N=15��** �i.e., E=�+EN=14�EN=15�, and im-
plies that the resonances appear in a narrow range of energies
just below the N=15 excitation threshold �thr

N=15 �i.e., �E
−EN=15��10−5 eV�. In order to properly describe these reso-
nances, the accuracy of the calculated excitation energies
must be better than the energy difference �E−EN=15�. How-
ever, Fig. 4 shows that the desired accuracy achieves only for
L�12. Therefore, the present calculation is not appropriate
for the investigation of these resonances. In fact, efforts to
find out the resonances �also associated with other excitation
energies EN� failed in the present study. In any case, because
the resonances exist only in the localized areas, we can con-

clude that the resonances are insignificant at these low ener-
gies. In the present case, ��=1

J�N �−1.5 a.u. at minimum. If
��=1

J�N took a much more negative value ��−1 a.u.�, the reso-
nances would be located at energies far below the excitation
threshold, and could be detected in the present numerical
study.

If we consider the resonances characterized as ��-H�n
=2��** with n being the principal quantum number of the
hydrogen, the lowest eigenvalue of the corresponding cen-
trifugal and dipole matrix elements becomes �

−1000 a.u. for J=10. As discussed by Shimamura �25�,
prominent resonances could be easily found in such a case.
However, these resonances appear at energies much higher
than those considered in this study.

IV. SUMMARY

The R-matrix method, developed by the present author
�13�, is applied to the DA to muonic hydrogen. The dipole
interaction between e and �p and the hydrogenic degeneracy
of �p produce the peculiarities in the DA cross section, and
further support resonances just below the �p excitation en-
ergies. Unfortunately, no such resonances could be found in
the present calculation. For a resonance search at low ener-
gies, the numerical computation with much higher accuracy
is needed though it becomes extremely laborious. This rather
ensures that the contribution of these resonances is negligible
in the DA to �p. As a process similar to the present exotic
DA, we can consider e+ p̄He2+→ p̄+He+, which may be
identified as dissociative recombination �DR�. It is expected
in this case that the resonances are significant, and play a
dominant role �27�. The application of the present R-matrix
method to this DR process is very interesting, and will be
reported in the near future.
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FIG. 13. The sum of the DA probabilities PJ��N ,L , l� over l for
J�=11− and N=14 in the neighborhood of the electron collision
energy �=E−EN=14=0, obtained by choosing rmax=100, 150, and
200 a.u.
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FIG. 14. The diagonal R-matrix element for J�=10+, N=15,
and a=10 a.u. as a function of the energy EN=15−E ��0�, obtained
by the physical solution g�r� /r expressible in terms of the modified
Bessel function and by the numerical calculation for the trans-
formed closed channel �.
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