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A procedure is developed to construct improved wave functions for the bound states in various four-electron
atoms and ions. The bound state wave functions are improved in the sense that our trial wave functions are
compact and accurate. We employ two independent four-electron spin functions �1=����+����−����
−���� and �2=2����+2����−����−����−����−���� in each trial wave function. Optimization of
the nonlinear parameters is performed for each radial function. Our procedure is applied to obtain the total
energies of the ground 1Se states in the following four-electron berylliumlike systems: Li−, Be, B+, C2+, N3+,
O4+, F5+, Ne6+, Na7+, and Mg8+. All our trial wave functions used in this study are very compact. In fact, each
of these functions contains only 300 basis �radial� functions which are constructed from ten-dimensional
gaussoids of the five-body relative coordinates r12, r13, r14, r15, r23, r24, r25, r34, r35, and r45.
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I. INTRODUCTION

In this study we consider the electronic structure of the
ground 1Se states in a number of four-electron atoms and
ions. Our goal is to construct very compact approximate
wave functions for arbitrary four-electron atomic systems.
Such functions must be “sufficiently accurate,” i.e., the total
energies and other bound state properties computed with
these wave functions must be accurate enough to be useful in
applications to various problems in atomic physics. In this
work, we restrict ourselves to the consideration of the fol-
lowing systems: the negative Li− ion, neutral beryllium atom
Be, and a number of positively charged berylliumlike ions:
B+, C2+ , . . . , Mg8+. Each of these systems contains four
electrons and one heavy positively charged nucleus. All par-
ticles �i.e., electrons and nuclei� are considered as point par-
ticles with masses me and M and electric charges q=−e and
Qe, respectively. In atomic units, where �=1, me=1, �e�=1,
these values are me=1, M = M

me
, q=−1, and Q, respectively. In

fact, everywhere below in this study only atomic units are
used. In these units the nonrelativistic Hamiltonian of an
arbitrary four-electron berylliumlike system takes the form
�see, e.g., �1��
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where the subscripts 1, 2, 3, 4 designate four electrons, while
the subscript 5 means the positively charged nucleus. Also,
in Eq. �1� �i= � �

�xi
, �

�yi
, �

�zi
� is the gradient operator of the ith

particle �i=1,2 , . . . ,5�. The notation rij stands for the
�ij�-relative distance or coordinate between ith and jth par-
ticles, i.e., rij = �ri−r j�=rji, where ri are the Cartesian coordi-
nates of the ith particle. The notation M in Eq. �1� stands for
the mass of the central �heavy� nucleus. For all atoms and
ions considered in this study M �1.

Our first aim is to determine the highly accurate solutions
of the Schrödinger equation H�=E� where H is the Hamil-
tonian, Eq. �1�, while E is the eigenvalue �total energy� of the
considered bound state and � is the corresponding wave
function. In fact, in this study we consider only the ground

1Se states in four-electron �berylliumlike� systems. The varia-
tional method developed here allows us to construct suffi-
ciently accurate variational wave functions for an arbitrary
four-electron atomic system. Note that all our trial wave
functions are very compact and that in contrast with other
methods our approach is relatively simple.

II. VARIATIONAL WAVE FUNCTIONS

In our case the variational wave functions � must be
constructed for four-electron atomic systems with one heavy
nucleus. In general, this is a very complex problem, since
such a wave function includes a number of different terms in
its spin part. For the ground 1Se state of the four-electron
system there are two independent spin functions �1 and �2.
The wave function of the ground 1Se state of the four-
electron berylliumlike atom or ion can be written in the form
�see, e.g., �2��

� = �L=0�A;	rij
��1 + 	L=0�B;	rij
��2, �2�

where �L=0�A ; 	rij
� and 	L=0�B ; 	rij
� are the two indepen-
dent radial parts �spatial parts� of the total wave function.
The notations A and B in Eq. �2� designate the different sets
of nonlinear parameters used in the two radial parts of the
total wave function �radial wave functions, for short�. As we
mentioned above there are two independent spin functions
for the ground 1Se states in four-electron atomic systems.
Below, we shall choose the two independent spin functions
�1 and �2 in Eq. �2� in the following form �2�:

�1 = ���� + ���� − ���� − ���� , �3�

�2 = 2���� + 2���� − ���� − ���� − ���� − ���� ,

�4�

where � and � are the spin-up and spin-down single electron
functions, i.e., 
̂z�=� and 
̂z�=−�. In general, any two lin-
ear and pairwise orthogonal combinations of the �1 and �2
spin functions can also be considered as possible spin func-
tions of the four-electron system with S2=0 and Sz=0, where
S=s1+s2+s3+s4 is the total electron spin. The most general
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form of the four-electron spin function which corresponds to
the S2=0 and Sz=0 values can be represented in the follow-
ing one-parametric form �see, e.g., �3� and references
therein�:
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where � is the free angular parameter. In this equation the six
basic spin functions are designated as the Dirac �ket� vectors,
e.g., ������. By choosing the different values of the angular
parameter � one finds a few different spin functions for an
arbitrary four-electron system �but only two of them are re-
ally independent�. For instance, by choosing �=0 and �= �

2
in the last formula one finds the spin functions �1 and �2
from Eqs. �3� and �4�. Note that the effective methods for
constructing different spin-isospin functions with the re-
quired permutation symmetry in various few-body systems
have been developed in few-body nuclear physics. In this
study, we shall use the two independent spin functions �1
and �2, Eqs. �3� and �4�. Note that these two functions have
been used earlier in computations of the ground state in the
four-electron berylliumlike systems �2�.

The radial parts �L=0�A ; 	rij
� and 	L=0�B ; 	rij
� of the to-
tal wave function, Eq. �2�, in this work are represented in the
form �4,5�
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NA

Ck exp− �
ij

�ij
�k�rij

2� , �6�

	L=0�B;	rij
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k=1

NB

C̃k exp− �
ij

�ij
�k�rij

2� , �7�

where NA and NB are the number of basis functions used, Ck

and C̃k are the linear parameters of the variational expan-
sions, Eq. �6� and �7�, while 	rij
 is designated the set of
relative coordinates which are needed for complete descrip-
tion of the five-body systems. In fact, for all berylliumlike
ions and atoms considered in this study the notation 	rij

stands for ten relative coordinates r12, r13, r14, r15, r23, r24,
r25, r34, r35, and r45. In respect to this, the radial basis func-
tions in Eqs. �6� and �7� are called the ten-dimensional gaus-
soids of the relative coordinates. This name was used in �4�
where these basis functions were invented. The summation
over �ij�= �ji� in the exponents of Eqs. �6� and �7� is taken
over all possible different pairs of particles. The projectors
P1 and P2 produce the trial wave functions with the correct
permutation symmetry between all electrons �see below�.
The symbol L in Eq. �6� is used for the total orbital angular

momentum of the considered system. In fact, for the ground
state of any Be-like system we always have L=0 and the
total spin of such states equals zero. Furthermore, the parity
of these states in the four-electron systems is even, in respect
of which we shall henceforth designate these states as the 1Se

states, or 1 1Se states.
All numerical computations of the bound states in four-

electron atomic systems include the nontrivial step of anti-
symmetrization upon all electronic variables, i.e., upon vari-
ables 1, 2, 3, and 4 in our present notations. The trial wave
function �, Eq. �2�, must be antisymmetric upon all electron
variables �variables 1, 2, 3, and 4 in our notations�, i.e.,

Â�=−�, where

Â = ê − P̂12 − P̂13 − P̂23 − P̂14 − P̂24 − P̂34 + P̂123 + P̂132 + P̂124

+ P̂142 + P̂134 + P̂143 + P̂234 + P̂243 − P̂1234 − P̂1243 − P̂1324

− P̂1342 − P̂1423 − P̂1432 + P̂12 · P̂34 + P̂13 · P̂24 + P̂14 · P̂23

�8�

is the complete four-particle antisymmetrizer. Here ê is the

identity permutation, while P̂ij is the permutation of the ith

and jth particles. Analogously, the operators P̂ijk and P̂ijkl are
the permutations of three particles �i, j, and k� and four par-
ticles �i, j, k, and l�, respectively. In actual variational com-
putations, however, it is important to know the correspond-
ing operator that symmetrizes the spatial parts of the total
wave function. From the explicit form of the trial wave func-
tion �, Eq. �2�, it follows that in actual computations with
the symmetric Hamiltonian and overlap matrices, only the
four following permutation operators for spatial parts are im-
portant: P��, P�	, P	�, and P		. In reality, since P�	

=P	�, one needs to use only three such operators P��, P�	,
and P		. The explicit expressions for these operators are
very complex and here we present only one such formula for
the P�� operator or projector

P�� =
1

4�3
�2ê + 2P̂12 − P̂13 − P̂23 − P̂14 − P̂24 + 2P̂34

+ 2P̂12P̂34 + 2P̂13P̂24 + 2P̂14P̂23 − P̂123 − P̂132 − P̂124

− P̂142 − P̂134 − P̂143 − P̂234 − P̂243 − P̂1234 − P̂1243

+ 2P̂1324 − P̂1342 − P̂1432 + 2P̂1423� . �9�

The two other permutation operators P�	 and P		 needed in
actual computations have analogous structure and they are
orthogonal to each other and to P��. The use of these three
projectors for matrix elements is equivalent to the operations
with the trial wave functions with the correct permutation
symmetry between all identical particles �electrons�. Below,
we present the explicit formulas for all matrix elements
needed in computations with many-dimensional gaussoids.

III. MATRIX ELEMENTS

The computation of matrix elements with the five-body
gaussoids, Eqs. �6� and �7�, is well described in the literature
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�see, e.g., �4,5��. In fact, it is possible to obtain the universal
formulas for all matrix elements which contain the total
number of particles A in the system as an explicit parameter
�4�. Let us present the explicit formulas for all matrix ele-
ments needed in computations. Below we shall use the fol-
lowing compact �4� notation

��� = ���k�� = exp− �
i�j=1

A

�ij
k rij

2�
and

��� = ������ = exp− �
i�j=1

A

�ij
� rij

2� , �10�

where A is the total number of particles in the system. In this
notation the overlap matrix element �� ��� takes the form

����� = ���k������� = �3�A−1�/2D−3/2, �11�

where D is the determinant of the �A−1� �A−1� matrix B̂
with the matrix elements

bii = �
j�i

A

��ij
k + �ij

� �, i = 1,2, . . . ,A − 1,

bij = − ��ij
k + �ij

� �, i � j = 1,2, . . . ,A − 1. �12�

In particular, the explicit expression for the �k ,�� matrix el-

ement of the B̂ matrix in the case of A=5 is a 44 matrix.
Analytical and/or numerical computations of the determinant
of this matrix and all its first order derivatives is straightfor-
ward.

Now, consider the matrix elements of the potential energy
V. For an arbitrary inter-particle potential which may be
written as the sum of the central �pair� potentials, i.e., W
=��ij�V�ij��rij�, the formula for the appropriate matrix ele-
ments can be written in the form

�
�ij�

���V�ij��rij���� =
4

��
������

ij
�

0

+�

V�ij�x�Dij

D
�

exp�− x2�x2dx , �13�

where Dij =
�D
��ij

= �D
��ij

. The explicit expressions for various in-
terparticle potentials often used in bound state calculations
can be found in �4�. The formulas in �4� include the case of
the Coulomb, Yukawa-type, exponential, oscillator, and
many other potentials. For all such cases the expressions for
lower bound estimates �EL� have also been derived for an
arbitrary A-particle system in �4�. The explicit analytical re-
sult for the matrix elements of the Coulomb potential energy
is �in atomic units�

�
�ij�

���Vij�rij���� = �
�ij�

���
qiqj

rij
��� = 2�D

�
������

�ij�

qiqj

�Dij

,

�14�

where �ij�= �ji�= �12� , �13� , �14� , �15� , . . . , �35� , �45� and
�� ��� is the overlap matrix element. In Eq. �14� the notation
qi �i=1,2 , . . . ,A� stands for the charges of the particles and

Dij =
�D
��ij

= �D
��ij

. The matrix elements of the kinetic energy take
the form �in atomic units�

���T��� =
3

2D� �
ijk=1

A
�ik� jk

mk
�Dik + Djk − Dij������� �15�

where mi �i=1,2 , . . . ,A� are the masses of the particles and
i� j�k in Eq. �15�. The ensuing symmetrization of the
given expressions in the case of identical particles does not
present any difficulty.

For an arbitrary self-adjoint operator X̂ the corresponding
bound state property �or the expectation value� is determined
as follows:

�X� =
���X̂���
�����

, �16�

where ��� is the wave function obtained in variational calcu-

lations. If X̂= f�rij�, then one finds the following formula for
the matrix elements:

���f�rij���� = ���k��f�rij�������

=
4

��
������

0

+�

fx�Dij

D
�exp�− x2�x2dx .

�17�

The one-dimensional integral in the last equation can be
computed analytically for a large number of actual interpar-
ticle potentials. In particular, for f�y�=y2n−1 �n=0,1 ,2 , . . . �
one finds from Eq. �17�

���rij
2n−1��� =

2
��

�����n!Dij

D
��2n−1/2�

�18�

while for f�y�=y2n �n=0,1 ,2 , . . . � we have

���rij
2n��� =

�2n + 1�!!
2n Dij

D
�n

����� �19�

where the notation �2n+1�!! stands for the product 13
5 ¯  �2n+1� �odd factorial�. In the case when f�y�
=y−2 �i.e., n=−1 in the last formula� the appropriate expres-
sion takes the form

���rij
−2��� = 2�����

D

Dij
. �20�

In some problems the expectation values of the two-, three-,
and many-particle delta functions are important. The analyti-
cal formulas for the expectation values of various few-
particle delta functions can be found in �5�.

The formulas for matrix elements presented above allow
one to conduct accurate variational computations, in prin-
ciple, for all many-body systems with a variety of interpar-
ticle interactions. In particular, the variational methods based
on the use of many-dimensional gaussoids have been found
to be very effective in applications to various few-electron
systems. For atomic systems with four and more electrons,
the method developed in �4� is, in fact, one of a very few
accurate procedures which work effectively in such cases. In
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actual applications, however, this method becomes effective,
if �and only if� the nonlinear parameters in Eqs. �6� and �7�
are optimized carefully. The optimization of these parameters
is discussed below.

Note that the approach developed in �4� was based on the
method proposed in earlier work �6� �for nuclear three-body
systems�. In theoretical chemistry a similar approach has
been developed by Singer �7� and Boys �8�. The last ap-
proach is, in fact, a different method from �4�, since it does
not include the integration upon internuclear coordinates.

Optimization of the nonlinear parameters

The radial parts of our trial wave functions, Eqs. �6� and
�7�, are represented as the variational sums of ten-
dimensional �or five-body� gaussoids. All gaussoids have in-
correct asymptotic behavior at very large interparticle dis-
tance in many-body Coulomb systems. This means that the
variational expansion based on the use of Eqs. �2�, �6�, and
�7� cannot provide very high accuracy for such systems. In
fact, our variational expansion becomes accurate only if the
nonlinear parameters 	�ij

�k�
 in the radial functions Eqs. �6�
and �7� are also varied or optimized. To perform accurate
variational computations in various atomic systems with
three, four, five, and many electrons we have developed a
number of different optimization strategies. Some of these
strategies are effective in calculations with a relatively small
number of nonlinear parameters. Other strategies are applied
when the total number of varied nonlinear parameters is not
very large ��300–3000�. In calculations with the large
��5000� and extremely large ��20 000� numbers of the var-
ied nonlinear parameters one has to apply completely differ-
ent optimization strategies. All such details are analyzed in
our earlier study �9� and here we do not want to repeat that
discussion. Instead, we discuss the principal difference be-
tween our optimization approach and methods used by other
authors.

The most important difference is the use of two spin con-
figurations in our computations. Briefly, this means that the
nonlinear parameters in the radial functions which are asso-
ciated with the second spin configuration are varied indepen-
dently from analogous parameters in the radial functions as-
sociated with the first spin configuration. The variation of
nonlinear parameters in the two parts of the trial wave func-
tions provides additional flexibility and allows us to improve
substantially the overall convergence rate of our method.
Moreover, even very accurate and detailed optimization in
the second part of the total wave function cannot produce
any linear dependence between basis functions. Another ad-
vantage of our total wave function is related to the fact that it
already contains two spin configurations which must be in
the exact wave function. If accurate computations in few-
electron atomic systems were performed with the use of only
one spin function, then one finds a number of problems re-
lated with computations of some bound state properties, vari-
ous reaction, and transition probabilities. The well known
example is the accurate computation of the Fermi contact
term �10� for three-electron atomic systems which is de-
scribed in detail, e.g., in �11�.

Let Ni be the total number of radial functions associated
with the �i spin function, where i=1,2. By varying the non-
linear parameters in radial functions associated with each
spin configurations we have arrived to the following conclu-
sion. If the sum N1+N2=N is fixed and nonlinear parameters
in each basis function are varied, then the minimal energy is
reached at N1�N2� N

2 . In fact, for our wave functions with
300 radial functions �see below� we have found that the op-
timal ratio between numbers of radial functions N1 and N2 is
�2:1. The opposite ratio �1:2 also produces the total en-
ergies which are close to optimal �minimal� values. In con-
trast with this, in almost all previous works on four-electron
atomic systems only one spin function �1 was used.

IV. NUMERICAL RESULTS

Let us discuss some numerical results obtained for a num-
ber of four-electron �berylliumlike� systems, in particular
Li−, Be, B+, . . ., Na7+, Mg8+; note that the negative Li− ion is
the first stable four-electron system in the sequence. Our
main interest in this study is related to the total energies
computed with the use of very compact variational wave
functions. The analogous atomic systems with only three
electrons were considered in similar studies �12� �see also
�9��. However, the three-electron negatively charged helium
ion �He− ion� is not bound and one must begin the sequence
of three-electron systems with a neutral species, namely Li
atom.

In our present computations we have used trial wave
functions with 300 basis functions each. The first 200 basis
functions correspond to the �1 spin function, while the last
100 basis functions correspond to the �2 spin function. The
nonlinear parameters in each basis function �ten such param-
eters per each basis function� have been varied independently
�see the discussion above�. All nonlinear parameters were
assumed to be positive. A possibility to use some negative
nonlinear parameters in Eqs. �6� and �7� does exist �13�, but
it was not used in our actual calculations. The results of our
calculations can be found in Table I which contains the total
energies of all systems considered in this work �in a.u.�. In
calculations for Table I we have assumed that all nuclear
masses are infinite, i.e., M =� in Eq. �1�. This is not a prin-
cipal restriction for our method. For instance, for the ground
state of the �Li− ion one finds from Table I E=E��Li�
=−7.500 582 03 a.u. With the same wave function, but using

TABLE I. The nonrelativistic energies of the ground states of
some berylliumlike systems computed with the use of the trial wave
function, Eq. �2�. The nuclear masses are infinite for all atomic
systems mentioned in this table.

System E �a.u.� System E �a.u.�

Li− −7.5005825 O4+ −68.4112548

Be −14.6672858 F5+ −88.1005581

B+ −24.3487629 Ne6+ −110.290464

C2+ −36.5346987 Na7+ −134.980025

N3+ −51.2224986 Mg8+ −162.170163
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the actual 7Li nuclear mass M�7Li�=12 786.3927me �14,15�,
one finds the following total energy for the ground 1Se state
of the 7Li− ion: E=−7.499 971 41 a.u.. In fact, all such com-
putations with the finite nuclear masses formally require only
a one-line change in the code. However, the following fast
and very approximate re-optimization of nonlinear param-
eters is feasible and can significantly improve the overall
accuracy of the wave function constructed for atomic sys-
tems with the finite nuclear mass.

Note that the first computations of the bound states in
four-electron atoms or ions with the use of correlated elec-
tron wave functions were started by Sims and Hagstrom in
1971 �16�. The ground state energies of many four-electron
atoms and ions have been determined in a number of earlier
studies �see, e.g., �2,16–24��. By analyzing our total energies
determined with the use of very compact wave functions,
one finds that these energies are lower �and even much
lower� than the values obtained in �2,16–24� �see also refer-
ences mentioned in these works�. The only exception is the
ground state energy of the �Be atom computed in �24� �see
also �22��. Currently, to obtain the energy comparable with
their value we need to use 600–700 basis wave functions
with well optimized nonlinear parameters.

In general, our results obtained for four-electron atomic
systems are very comparable �and even better� than analo-
gous results obtained with the use of other methods. This
shows a great potential of our current procedure and compact
wave functions for accurate solutions of the bound state
problems in four-electron atomic systems. In turn, this opens
a new avenue for the use of these compact �but accurate�
wave functions in various problems related with the analysis
of electron density distribution in different four-electron
atomic systems and atomic excitations in such systems.

To conclude this section we want to construct a few ap-
proximate formulas for the Q−1 expansion �Q is the nuclear
charge� for the total energies of the four-electron atomic sys-
tems. Our total energies determined for different four-
electron atoms �see Table I� will be used as the test points to
obtain a number of first coefficients in the E�Q� expansion.
Note that in contrast with �25� our E�Q� expansion is written
for the total energy, rather than for ionization potential. The
explicit formula is written as a Laurent expansion �here and
below Q�3�, i.e., it takes the form

E�Q� = a2Q2 + a1Q + a0 + b1Q−1 + b2Q−2 + b3Q−3 + b4Q−4

+ ¯ , �21�

where numerical values of the coefficients
a2 ,a1 ,a0 ,b1 ,b2 ,b3 , . . . must be determined from fitting the
results of accurate numerical computations to Eq. �21�. Note
that the principal part of the expansion Eq. �21� includes only
integer powers of Q−1. Such an expansion essentially follows
from the Poincaré’s theorem applied to the Schrödinger
equation with the Hamiltonian, Eq. �1�. For degenerate
bound states the expansion analogous Eq. �21� must also

include the noninteger powers of Q �so-called Puiseux series
�26��. However, this is not the case for the ground 1 1Se

states in four-electron atomic systems. The coefficients
a2 ,a1 ,a0 ,b1 ,b2 ,b3 , . . . determined with our variational ener-
gies for four-electron atoms or ions can be found in Table II.
In fact, in this work we have used the formula, Eq. �21�, with
four, five, and six terms in it. Numerical values of the first,
second, and third coefficients a2, a1, and a0 coincide well
with the values �−1.25, �1.55, and �−0.8� obtained from
computations with large numbers of basis functions. These
values can also be established by considering the asymptotic
case of large Q in which only three leading terms in Eq. �21�
survive.

V. CONCLUSIONS

In this work we have developed a variational method
which allows one to construct very compact and relatively
accurate wave functions for the four-electron atomic sys-
tems. Moreover, in contrast with other methods our proce-
dure is relatively simple in applications and can be used for
an arbitrary four-electron atomic system. Our variational ex-
pansion is written in the basis of ten-dimensional gaussoids,
each of which contains ten relative coordinates
r12,r13,r14,r15,r23,r24,r25,r34,r35,r45 and ten corresponding
nonlinear parameters. In our method the two spin functions
��1 and �2; see above� are used on an equal footing. This
means that the nonlinear parameters in all spatial terms as-
sociated with �1 spin function are varied independently from
analogous variations in all spatial terms associated with �2
spin function. Briefly, we can say that the terms associated
with the second spin function �2 used in our variational ex-
pansion allow us to improve drastically the overall conver-
gence rate of the method. Finally, we can construct, in prin-
ciple, very compact and accurate wave functions for an
arbitrary four-electron atom or ion. It should be mentioned
that in almost all previous works related to the beryllium
atoms and berylliumlike ions only one spin function ��1� has
been used in computations.

Finally, we want to note that the current accuracy of our
compact wave functions ��300 basis functions� is sufficient
for applications to various atomic problems: photodetach-
ment, electron scattering, atomic excitations during various
nuclear reactions and decays, etc. The wave functions used
in previous studies require significantly larger numbers of

TABLE II. The coefficients of the Q−1 expansion constructed for
the total energies of the ground 1 1S states in four-electron ions, Eq.
�2�. Expansions with N=4, 5, and 6 terms are considered.

a2 −1.24916893 −1.25023612 −1.24960246

a1 1.53995665 1.56666629 1.54629748

a0 −0.72961516 −0.96119275 −0.71363865

b1 −0.44483674 0.38132362 −1.04034589

b2 −1.02933292 2.83411527

b3 −3.98341752
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basis functions to achieve comparable accuracy. In future
studies we will try to generalize our procedure to computa-
tion of rotationally excited states in four-electron atoms or
ions. Another possible direction is the analysis of the bound
states in five-electron atomic systems. However, the ground
bound state in boronlike atoms or ions is the doublet 2P state
�more precisely, the 2P1/2 state, while analogous 2P3/2 state is
quasistable �27��. Currently, it seems to be a situation which

may complicate our variational computations of the five-
electron atomic systems.
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