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A many-body Green’s function approach to the microscopic theory of surface-enhanced Raman scattering is
presented. Interaction effects between a general molecular system and a spatially anisotropic metal particle
supporting plasmon excitations in the presence of an external radiation field are systematically included
through many-body perturbation theory. Reduction of the exact effects of molecular-electronic correlation to
the level of Hartree-Fock mean-field theory is made for practical initial implementation, while description of
collective oscillations of conduction electrons in the metal is reduced to that of a classical plasma density;
extension of the former to a Kohn-Sham density-functional or second-order Møller-Plesset perturbation theory
is discussed; further specialization of the latter to the random-phase approximation allows for several salient
features of the formalism to be highlighted without need for numerical computation. Scattering and linear-
response properties of the coupled system subjected to an external perturbing electric field in the electric-dipole
interaction approximation are investigated. Both damping and finite-lifetime effects of molecular-electronic
excitations as well as the characteristic fourth-power enhancement of the molecular Raman scattering intensity
are elucidated from first principles. It is demonstrated that the presented theory reduces to previous models of
surface-enhanced Raman scattering and leads naturally to a semiclassical picture of the response of a quantum-
mechanical molecular system interacting with a spatially anisotropic classical metal particle with electronic
polarization approximated by a discretized collection of electric dipoles.
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I. INTRODUCTION

Inherently exceedingly weak, Raman scattering �1� of in-
cident electromagnetic radiation from a molecular target oc-
curs, approximately, only once out of every million photon-
molecule scattering events. These few inelastically scattered
photons carry away a fraction of energy less or more than
they had originally with the difference being deposited into
or liberated from molecular vibrational, or, to a lesser extent
rotational, excitation. Resultant changes in electronic polar-
izability with respect to underlying nuclear geometry ulti-
mately are encoded in spectral fingerprints of molecular
structure. Discerning such small Raman signals from a large
elastic Rayleigh-scattering background is challenging, yet
potentially rewarding, as Raman spectra can reveal detailed
molecular structural information unresolved by other spec-
troscopies.

In the 1970s it was first observed �2� and later understood
�3,4� that certain molecules, if adsorbed onto roughened
noble-metal substrates having structure on the subwave-
length scale, experience a surface-enhanced Raman scatter-
ing �SERS� of incident photons that manifests itself in ap-
proximately a millon-fold boost in signal in comparison to
the normal Raman effect. Out of this phenomenon, the field
of surface-enhanced Raman spectroscopy was rapidly born;
early reviews can be found in Refs. �5–8�. Two mechanisms
are generally believed to account for enhancement of the
Raman-scattered field: one of chemical and the other of elec-
tromagnetic origin. The former rests upon the idea that a
chemical bond is formed between the adsorbed molecule and

the metal, thus allowing for charge-transfer excitations to
occur between the two systems. The latter, which is widely
regarded as being dominant �9�, involves the coupling of
external radiation to surface-plasmon excitations at the
metal-dielectric interface; plasmons are quantized collective
oscillations of conduction electrons against the positive ionic
background that can act to enhance and focus incident light
to subwavelength dimension below the diffraction limit.
When optically excited, these plasmons broadcast their en-
hanced field to nearby Raman-active molecules which inelas-
tically Raman scatter photons back to the metal. The scat-
tered photons can recouple into the plasmon modes of the
metal and, subsequently, be rebroadcasted toward a detector.
Both normal and surface-enhanced Raman scattering events
are linear processes �depending only upon the linear polariz-
ability� yet, if both incident and Raman scattered frequencies
are resonant with plasmon excitations in the metal, their en-
hancements can multiply together to yield a fourth-power
enhancement of the normal Raman-scattering intensity.

Recently, surface-enhanced Raman spectroscopy has gone
through a renaissance which is, in part, attributable to the
first observation of single-molecule SERS in the late 1990s
�10,11�. Exhibiting a giant boost in Raman signal �by ten or
more orders of magnitude in comparison to the normal Ra-
man scattering from a single molecule in free space�, single-
molecule surface-enhanced Raman spectroscopy provides an
even richer variety of molecular structural information that is
free from ensemble averaging. With the ability to measure
single-molecule Raman spectra, basic research has continued
to progress under the impetus of utilizing SERS techniques,
inter alia, as an ultrasensitive analytical probe having broad
utility in the biological sciences; see, e.g., Refs. �12–14�.

Today, over thirty years after its initial discovery and a
decade after the observation of single-molecule SERS, sig-
nificant work is underway to systematically characterize the
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best conditions for single-molecule SERS activity in indi-
vidual and arrays of nanoscale metal particles as a function
of size, shape, and interparticle separation, among others,
with respect to the wavelength of light �15�. Independent
variation of each of these nanoscale characteristics is control-
lable in the laboratory, with the number of permutations ex-
ceedingly large. Guidance from predictive theory would be
of immense utility in this pursuit, however, current theoreti-
cal methods cannot completely meet this challenge.

Involving the coupling and interaction of a Raman-active
molecular system with one or more nanoscale metal particles
under the influence of an external radiation field, the SERS
effect presents a complicated many-body problem blending
together concepts from quantum chemistry and molecular
spectroscopy, condensed-matter physics, and electromagne-
tism. Undoubtedly, its present incomplete theoretical descrip-
tion is rooted in the complexity of its basic processes. As it is
not our intent to exhaustively summarize thirty years of the-
oretical progress, we defer to the reviews �5–9� and briefly
discuss only a few recent and notable approaches based upon
the complementary starting points of classical and quantum
mechanics �16�. Almost all previous approaches can be
placed into one of these two categories.

The optical and plasmonic properties of spatially aniso-
tropic nanoscale metal particles �and particle arrays�, which
may have dimensions from tens to hundreds of nanometers,
are well described within classical electromagnetic theory.
Useful physical information can be gleaned from electro-
static model calculations �17,18� as well as from full numeri-
cal solution of Maxwell’s equations �19,20�, such as the
magnitude and location of enhanced electromagnetic fields
located near the particle’s surface �21�: so-called electromag-
netic hot spots. However, while a classical description based
upon the metal’s underlying continuum dielectric function
may be appropriate for a nanoscale particle, an adsorbed mo-
lecular system undergoing inelastic Raman scattering of pho-
tons is properly described only from a microscopic point of
view.

To this end, recently, a fully quantum description of the
combined nanoparticle-molecule system has been developed
within the Kohn-Sham framework of time-dependent
density-functional theory �22�. Both particle and molecule
are represented by the same total wave function. Leaving
aside shortcomings inherent in the choice of electronic-
correlation functional and its nonsystematic improvability,
this approach is limited, due to computational restrictions, to
the treatment of small metal particles containing, at most, on
the order of one hundred atoms �23�. With such small num-
bers, metallic particles display the discrete electronic-
excitation structure more typical of clusters than of the bulk-
like resonance continuum exhibited on the nanoscale. In this
single-particle picture, molecular electronically excited states
have an infinite lifetime as there is no mechanism for their
damping due to the presence of the metallic system; this is a
consequence of the fact that there is no explicit treatment of
the interaction between molecule and particle beyond that
specified in the single-particle Kohn-Sham formalism. Ad
hoc empirical parametrization is employed to mimic these
basic interactions, and, in turn, damp molecular-electronic
excitation. In this way, deficiencies in the theory are cor-

rected, leading to predictions which compare sensibly with
experiment �22,24,25�. Two additional notable quantum ap-
proaches to SERS based upon density-matrix calculations
have recently appeared in the literature �26,27�. The interac-
tion of a Raman-active molecule supporting two electronic
states �plus several vibrational substates� with two nearby
nanoscale Ag spheres, described through an extended Mie
theory, is presented in Ref. �26�. With appropriate choice of
parameters and inclusion of phenomenological damping
mechanisms, Raman-scattering cross sections enhanced by
ten orders of magnitude are demonstrated in comparison to
the normal Raman effect. Second, in Ref. �27�, enhanced
resonance Raman phenomena are studied within a combined
eight-state density-matrix approach where the molecular sub-
system is represented in a four-state basis involving molecu-
lar ground and electronic, vibrational, and electronic and vi-
brational excited states while the particle subsystem is
represented in a two-state basis consisting of ground and
excited states. Within this model, it is predicted that the larg-
est resonance Raman enhancements occur when a molecule,
which absorbs light far from the particle’s resonance maxi-
mum, is excited at the resonance maximum of the particle.
This prediction is believed to be caused by the shifting of
molecular resonances due to the strong coupling between
molecule and particle.

Each of the approaches described above have both posi-
tive and negative attributes. It is therefore natural to envision
blending their best features and, simultaneously, to explicitly
treat the coupling between molecule and particle so as to
avoid parametrization. It is the purpose of this article to do
exactly that.

Here we present a formal ab initio many-body theory un-
derlying a unified and didactic approach to the description of
single-molecule SERS from a nanoscale metal particle at
zero temperature. Emphasis is placed on developing a rigor-
ous, yet computationally tractable formalism. In anticipation
of practical initial numerical implementation, specialization
is made, within the Born-Oppenheimer approximation, to a
Hartree-Fock �HF� mean-field description of the electronic
states of the molecule, while quantized collective oscillations
of metallic conduction electrons are described by their clas-
sical plasma density. These approximations, as we have ap-
plied them within our minimal model, limit the possibility
for charge transfer between molecule and metal, and effec-
tively restrict our current presentation to the electromagnetic
mechanism of SERS. We point out that a program similar to
the minimal implementation of our approach has already
been introduced in the time domain at the level of time-
dependent HF theory for the molecular system and an elec-
tromagnetic boundary-element method for the particle �28�.
Our approach is complementary and more general in the
sense that we develop the full many-body theory starting
from the exact many-body Hamiltonian for the interacting
molecule-particle system and its interaction with an external
electric field in the dipole approximation. Using a general-
ized Møller-Plesset perturbation theory �29�, the effects of
interaction with both particle and field are systematically and
explicitly built into both nonperturbative and perturbative ex-
pressions for the molecular-electronic Green’s function.
Electronic-correlation effects beyond HF theory such as
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those of nth-order Møller-Plesset perturbation theory may be
rigorously and straightforwardly included, while, alterna-
tively, it is also clear how to treat the molecular-electronic
sector of our theory within a Kohn-Sham formalism �30�.
Due to its general formulation, our approach recovers other

approximate results from the literature, and, further, admits
certain well-known observable features analytically upon in-
voking an analytic model for the particle’s response. In par-
ticular, a closed-form expression for the quantum many-body
SERS intensity, which is of the generic form

ISERS�k��
I0�k�

=
�k�k�

3

c4 �N� + 1�k�����
r;J

�̂��
�−��k�� · grq� �− ��k�� · ��J���QJ − Q0� · �QJ

�̃pq,rr
M ���k,− ��k����J	 · grq���k� · �̂�

�+��k��2

with polarizability transition moments �̃pq
M , normal mode co-

ordinates QJ, and incident and Raman-scattered enhance-
ment factors g and g�, is developed and presented below in
Eq. �79�. To our knowledge, this is the first place in the
literature where a SERS intensity is derived, entirely from
first principles, that explicitly treats the coupling and back
reaction of a quantum molecular-electronic system with a
nearby metallic particle in the presence of external perturb-
ing radiation.

In Sec. II, we review an early and insightful classical
model of SERS based upon the coupling and interaction of
two dipoles with each other and with the external electric
field. Two basic and essential types of interaction, the image
effect and the local-field effect, are discussed and used to
motivate our quantum-mechanical generalization. Starting
from the exact molecule-particle Hamiltonian, the quantum
many-body theory of SERS is developed in Sec. III where
the effects of interaction of molecular electrons with metallic
conduction electrons and with the external electric field are
built into the underlying molecular-electronic Green’s func-
tions. The former effect, which accounts for the repeated
interaction of the molecule with its own image, is included to
infinite order in Sec. III C 1, while the latter effect, which
describes the interaction of the molecule with the local elec-
tric field of the particle, is included perturbatively in Sec.
III C 2. The random-phase approximation of the particle’s
polarizability is invoked in Sec. III C 3 in order to demon-
strate certain key properties analytically. Connection be-
tween the Green’s function and scattering T matrix is re-
viewed in Sec. III D, and, subsequently, allows for the
quantum-mechanical normal Raman-scattering intensity and
enhanced Raman-scattering intensity to be computed in Secs.
III D 1 and III D 2, respectively. Equation �79�, which dis-
plays a first-principles quantum-mechanical expression for
the SERS intensity, is a major result of our work. Lastly, in
Sec. III E 1, linear-response theory is reviewed and used to
compute the induced density of the interacting molecular
system in Sec. III E 2 and its influence upon the dynamics of
the conduction electrons of the particle in Sec. III E 3. Two
appendixes are devoted to the inclusion of molecular
electron-electron interaction effects with density-functional
theory, and to the Green’s function based definition of the
polarization propagator and linear polarizability.

Summation is implied over all repeated Greek indices. All
integrals of the form 
d3x are taken over the volume of all
space, while those of the form 
d4x�
d3xdt are taken over
the volume of all space and over all times from negative to

positive infinity. Further, unless otherwise indicated, all time
and frequency integrals run from negative to positive infinity.
Molecular electronic state labels i , j ,k , l , . . . refer to occupied
or hole states, labels a ,b ,c ,d , . . . refer to unoccupied or par-
ticle states, while the labels p ,q ,r ,s , . . . are reserved for un-
specified states.

II. REVIEW OF CLASSICAL MODEL OF SERS

Enhanced Raman scattering from a molecule can already
be described to some extent at a classical level of theory. In
1980, Gersten and Nitzan �31� proposed a simple model con-
sisting of two interacting electric dipoles: one dipole d�1�

representing a molecule and the other p�1� representing an
arbitrary polarizable body �taken here to be a metal particle�
located nearby; see Fig. 1.

Both dipoles are induced, at first order, by an external
electric field E0 that varies harmonically in time with fre-
quency �k and have corresponding molecular and particle
polarizabilities �̃M � �̃M�Q� and �̃P, where Q labels a
nuclear vibrational coordinate of the molecule; �̃M and �̃P
may additionally depend upon frequency; tildes denote Fou-
rier inversion to the frequency domain. Additionally, within
the dipole approximation, both dipoles feel the effects of the
incident radiation as rebroadcasted through electric dipole
fields emanating from each other. In symbols, that is

x1 − x2 = rr̂

p(1)

d(1)

E0

FIG. 1. �Color online� In the SERS process, an incident external
electric field E0 induces first-order molecular and particle dipole
moments d�1� and p�1�, which rebroadcast the incident radiation and,
in doing so, couple to each other. Such a picture, which includes the
reaction and back reaction of the dipoles to the incident field and
among themselves, provides a insightful classical description of
SERS.
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d�1� = �̃M · �E0 + EP� ,

p�1� = �̃P · �E0 + EM� , �1�

where the electric dipole fields EP
� =��	p	

�1� and EM
�

=��	d	
�1� are expressed in terms of the matrix elements ��	

= �3r̂�r̂	−
�	� /r3 of the second-rank dipole tensor � �� ,	
=x ,y ,z�. It is assumed here and throughout this article that
the distance r= �x1−x2� between molecule and particle is
much less than the wavelength associated with E0.

In this way, enhanced Raman scattering from the coupled
system of dipoles is achieved by allowing d�1� and p�1� in Eq.
�1� to couple to and reach self-consistency with each other.
From the total dipole moment d�1�+p�1�= �̃tot ·E0, the total
system polarizability

�̃tot = �1 − �̃M · � · �̃P · ��−1 · �̃M · �1 + � · �̃P�

+ �1 − �̃P · � · �̃M · ��−1 · �̃P · �1 + � · �̃M� �2�

may be directly obtained. The inverse matrix �1
− �̃M ·� · �̃P ·��−1 accounts for the classical image effect
where the molecule’s dipole moment repeatedly interacts
through the particle with its own image dipole, while the
term � · �̃P �recall EP�� · �̃P ·E0� accounts for the local-
field effect of the particle’s dipole electric field upon the mol-
ecule. The second term accounts for the analogous image and
local-field interactions where the roles of molecule and par-
ticle are reversed. Both of these effects will be generalized to
a quantum-mechanical framework in the following.

The enhanced Raman polarizability

�̃SERS = �Q��/�Q��̃tot �3�

is related to �̃tot by differentiation along the coordinate Q
with amplitude Q �32,33�. After some algebra, it is found that

the enhanced Raman scattering intensity in the direction k̂�
with polarization �� from the coupled system of dipoles is
composed of the product of two terms: a normal Raman
scattering intensity from the molecular dipole d�1� in the ab-
sence of the particle dipole p�1�, and an enhancement factor
stemming from the self-consistent coupling of the two di-
poles, i.e.,

ISERS�k��
I0�k�

=
�k�k�

3

c4 �N� + 1�k�����̂���k�� · �̃SERS · �̂��k��2

=
IRaman�k��

I0�k�
�enhancement factor�2, �4�

where the normal Raman scattering intensity

IRaman�k��
I0�k�

=
�k�k�

3

c4 �N� + 1�k�����̂��
� �k���Q

��̃M
�	

�Q
�̂�

	�k��2

.

�5�

Here, k and k� are the wave vectors of the incident and
Raman scattered electric fields with associated frequencies
�k and �k� and polarizations �̂��k� and �̂���k��, where
� ,��=1,2. The intensity of the incident field is denoted by
I0�k� and N k���

� is the number of Raman-scattered photons
in the direction k� with polarization ��. For the purpose of

computing the intensities in Eqs. �4� and �5�, we have taken
the amplitude of E0 equal to i
2
��kNk� /L3�̂��k�, where
L3 is the quantization volume of the electric field. This ad
hoc choice was taken in anticipation of comparison to later
results.

In the limit where the molecular and particle dipole mo-
ments are aligned with each other and with E0 and point
along the z axis, the enhancement factor in Eq. �4� is greatly
simplified and takes the form �34�

�enhancement factor�2 = � �1 + �2/r3��̃P�2

�1 − �̃P�̃M�2/r3�2�2�2

� �1 + �2/r3��̃P�4, �6�

where it is assumed that �k=�k�, �̃M and �̃P are isotropic,
and, in the second line, that �̃P�r3 and �̃M �r3. This result,
which is a straightforward extension of the ideas presented in
Ref. �31�, demonstrates the characteristic fourth-power be-
havior of the SERS enhancement arising whenever a second
polarizable body is able to react to and act back upon the
first: with the largest enhancements occurring at a resonance
of �̃P. Here, it should be pointed out that the SERS enhance-
ment observed in experiment would scale in the same way if
both the incident frequency and Raman-scattered frequency
were the same. Further, it is clear that any quantum-
mechanical generalization of the SERS mechanism should
reduce in the appropriate limit to the classical results re-
viewed here.

III. QUANTUM-MECHANICAL APPROACH TO SERS

The quantum many-body problem of SERS, consisting of
a molecular-electronic system adsorbed to a metal particle
having dimensions between tens and a few hundred nanom-
eters and containing hundreds of thousands of atoms, poses a
difficult theoretical and computational challenge. Response
of such a system to an external perturbation presents one
example where the associated properties are often suffi-
ciently average to permit, to lowest order, a first-principles
theoretical description �35�. It is precisely this situation that
we now study in detail.

A. Green’s functions and many-body Hamiltonian of coupled
molecule-particle system

Basic to the theory of response of a zero-temperature
quantum-mechanical many-body system to an external per-
turbing field is the one-body Green’s function �36–39�

iG�x,t;x�,t�� = ��0
N�T��̂�x,t��̂†�x�,t�����0

N	 , �7�

defined as the expectation value of the time-ordered product

of Heisenberg field operators �̂ and �̂† in the normalized
and interacting many-particle ground state ��0

N	. It measures
the probability amplitude for an extra particle �or hole� to
propagate under the action of the full many-body Hamil-

tonian Ĥ= ĥ+ V̂ through an interacting assembly of N par-
ticles from the space-time point �x� , t�� to a later �earlier�
point �x , t�, there being found in the ground state ��0

N	. We
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note that application of Green’s function methods to finite,
nonuniform systems such as molecules �40–42�, atoms
�43,44�, and atomic nuclei �35,45� have been extensively
studied in the literature; see, e.g., Ref. �46� for a modern
account.

Here we focus on the many-body SERS problem consist-
ing of a Raman-active molecular system coupled to a nearby
metallic particle supporting collective oscillation of its con-
duction electrons driven by an external perturbing field. As
we are interested in the dynamics of the molecular electrons
in this article, we henceforth specialize to the case of fermion

statistics where �̂ and �̂† are electron field operators satis-
fying standard anticommutation relations at equal times, and
��0

N	 is the exact N-electron ground state normalized to unity.
Effects of electronic spin do not alter our proposed method-
ology in any significant way; we therefore omit the spin
degree of freedom from all equations for simplicity.

In order to describe the quantum-mechanical interaction
between molecular electrons and a metal particle illuminated
by an external electric field, it will be necessary to introduce
additional quantum fields for photons and for the quantized
collective excitations of conduction electrons in the metal,
known as plasmons. However, it is well known that the basic
features of the electromagnetic enhancement mechanism of

SERS can be explained by a classical description of the
metal and field; see, e.g., Ref. �16�. In light of this fact, it is
our desire to build a theory where both the conduction elec-
trons in the metal particle and the external field are treated
classically, yet the molecular-electronic system remains
quantum mechanical. Henceforth, we assume that the quan-

tized electric field Ê0 is well approximated by the classical
field E0�t�=E0

�+��t�+E0
�−��t�, and we further assume a Bogo-

liubov decomposition �47� of the quantized plasmon field

�̂�x,t� = 
n�x,t� + 
�̂�x,t� �8�

in terms of the classical conduction electron density n and

small-amplitude quantum fluctuations 
�̂ around n. The spe-
cific form of this classical component will be expounded
upon in the following. We note that 
n�x , t�d3x is approxi-
mately equal to the total number of conduction electrons
participating in collective excitation; nonetheless, such exci-
tations will continue to be called plasmons in spite of their
representation by a classical field.

In terms of �̂ and �̂, the many-body Hamiltonian of the
interacting molecular electron-plasmon assembly may be
written in second quantization as

Ĥtot = VN +� �̂†�x,t�h�x��̂�x,t�d3x +� �̂†�x,t�h�x��̂�x,t�d3x + �1/2� � �̂†�x,t��̂†�x�,t�V�x,x���̂�x�,t��̂�x,t�d3xd3x�

+ �1/2� � �̂†�x,t��̂†�x�,t�V�x,x���̂�x�,t��̂�x,t�d3xd3x� +� �̂†�x,t��̂†�x�,t�V�x,x���̂�x�,t��̂�x,t�d3xd3x�, �9�

where a Born-Oppenheimer separation has been made be-
tween electron and nuclear coordinates �48� and all off-
diagonal terms in the field operators are omitted. Here, VN

�VN��R�� is the nuclear-nuclear repulsion energy which de-
pends upon the set �R���R1 , . . . ,RM� of all M nuclear co-
ordinates; note that the nuclear kinetic energy TN�TN��R��
does not appear in Eq. �9� as Ĥ describes only the molecular
electron-plasmon physics. Terms two and three, involving h,
represent the single-particle Hamiltonians for noninteracting
electron and plasmon systems, including the external
electron-nuclear attraction, perturbed by a common exter-
nally applied classical electric field E0 within the dipole in-
teraction approximation. Introducing molecular and particle

dipole moments d̂�t�=
�̂†�x , t��−ex��̂�x , t�d3x and p�t�
�
�−ex�n�x , t�d3x, respectively, this perturbation takes the

standard form −d̂ ·E0 and −p ·E0, where the electric field is
evaluated at the molecular-frame origin �x1=0�. Terms four
and five represent the potential energy of pairwise repulsive
interaction between electrons and, separately, plasmons; the
last term expresses the potential energy of interaction be-
tween molecular electrons and plasmons. The two-body po-
tential V�x ,x��=e2 / �x−x�� appearing above is the instanta-
neous Coulomb interaction with electronic charge −e.

We now invoke a second Born-Oppenheimer-like separa-
tion between molecular electrons and metallic conduction
electrons; here we consider only the molecular part of the
Hamiltonian in Eq. �9� including its interaction with the ex-
ternal radiation field and metallic conduction electrons. Ef-
fects stemming from the noninteracting plasmon Hamil-
tonian �term three� as well as the plasmon-plasmon
interaction �term five� are implicitly accounted for through
the dynamics of the particle’s induced electronic density,
which evolves under the action of

ĤP = W +� �̂†�x,t�h�x��̂�x,t�d3x

+ �1/2� � �̂†�x,t��̂†�x�,t�V�x,x���̂�x�,t��̂�x,t�d3xd3x�,

�10�

where W, defined below in Eq. �23�, is the interacting mo-
lecular ground-state potential energy dependent upon the un-
derlying classical plasmon density n. The associated re-
sponse of the particle is detailed below in Sec. III E 3.
Eliminating these terms leaves the simplified molecular
Hamiltonian
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Ĥ = VN +� �̂†�x,t�h�x��̂�x,t�d3x +� V�x,x���̂†�x,t���1/2��̂†�x�,t��̂�x�,t� + �̂†�x�,t��̂�x�,t���̂�x,t�d3xd3x�

� VN +� �̂†�x,t�h�x��̂�x,t�d3x +� V�x,x���̂†�x,t���1/2��̂†�x�,t��̂�x�,t� + n�x�,t���̂�x,t�d3xd3x�, �11�

where the plasmon field operator is expanded to lowest order

and the products �̂†�̂ are replaced by the classical conduc-
tion electron density n. Here, h=h0− �−ex� ·E0 and h0 con-
tains the molecular-electronic kinetic energy and external
electron-nuclear attraction.

The Heisenberg electron field operator �̂�x , t�
=exp�iĤt /���̂�x�exp�−iĤt /�� with �̂�x�=�p�p�x�ĉp may
now be expanded onto the basis of electron annihilation op-
erators

ĉp = �1 − �p�âp + �pb̂p
† �12�

expressed in terms of the particle and hole operators âp and

b̂p through canonical transformation. These fermionic opera-
tors all satisfy standard anticommutation relations. The occu-
pation numbers �p, which are eigenvalues of the exact one-
body reduced density

��x,x�� = ��0
N��†�x���x����0

N	 = �
pq

�
p
*�x��pq�q�x��

�13�

with matrix elements �pq= ��0
N�ĉp

†ĉq��0
N	, take values of 0 or

1 depending on the occupation of the pth single-particle
state.

In terms of these basic operators and one-body wave
functions �molecular orbitals� �p�x�= �x ��p	��x � p	
= �x � ĉp

† �vac	 with physical vacuum �vac	, the electronic
Hamiltonian reduces to

Ĥ = VN + �
pq

�p�h + U�q	ĉp
†ĉq +

1

2 �
pqrs

�pq�V�rs	ĉp
†ĉq

†ĉsĉr,

�14�

where the sum runs over all N electrons of the molecular
system, and the explicit time dependence of the external
fields have been omitted for simplicity of notation. The

molecular dipole moment is expanded as d̂=�pq�p�
−ex�q	ĉp

†ĉq and included within the one-electron Hamiltonian
h. Here, U�x , t�=
V�x ,x��n�x� , t�d3x� is the plasmon poten-
tial with matrix elements

�p�U�t��q	 =� d3x��p�V�q	�x��n�x�,t� . �15�

The collective electronic density of the particle

n�x,t� = n0�x� + 
n�x,t� �16�

may be decomposed into the sum of a static density n0 and
low-amplitude excitations 
n�nint induced by some interac-
tion to be specified later. Similarly, U�x , t�=U0�x�
+Uint�x , t� factors into a static potential U0 and an induced
potential Uint associated with n0 and nint, respectively.

Application of Wick’s theorem reduces the above elec-
tronic Hamiltonian �14� to the sum of three parts: a scalar
constant

E0 = VN + �
k

�k�h0 + ex · E0 + U�k	 +
1

2�
kl

�kl�V�kl − lk	 ,

�17�

a one-body term quadratic in electron operators

F̂ = �
pqk

��p�h0 + ex · E0 + U�q	 + �pk�V�qk − kq	�N�ĉp
†ĉq�

= F̂0 + �
pq

�p�ex · E0 + Uint�q	N�ĉp
†ĉq� , �18�

and a two-body term involving the product of four electron
operators

Ĥint =
1

2 �
pqrs

�pq�V�rs	N�ĉp
†ĉq

†ĉsĉr� . �19�

In the above, normal ordering is taken with respect to par-

ticles and holes �i.e., âp and b̂q� rather than basic electron
operators ĉp. Also, note that E0 in Eq. �17� represents the
scalar mean-field energy of N electrons, while E0 represents
the external electric field.

The quadratic term F̂ in Eq. �18� is decomposable into the

sum of the Fock operator F̂0=�pq�p�F0�q	N�ĉp
†ĉq� and a one-

body electron-field and electron-plasmon interaction

F̂int = �
pq

�p�ex · E0 + Uint�q	N�ĉp
†ĉq� . �20�

Choosing the underlying molecular orbitals �p to diagonalize
the Fock matrix �p�F0�q	��p�h0+U0�q	+�k�pk�V�qk−kq	
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=
pq�p
0, yields the familiar HF orbital equation with effective

potential U0

�h0�x� + U0�x���q�x� + �
k

��k�V�k	�x��q�x�

− �k�V�q	�x��k�x�� = �q
0�q�x� �21�

for �q and with orbital energy �q
0= �q�h0+U0�q	

+�k�qk�V�qk−kq	. Here, and throughout, �pq�V�rs−sr	
��pq�V�rs	− �pq�V�sr	 are antisymmetrized matrix elements
of the two-body potential V.

Through this normal ordering, the electronic Hamiltonian
in Eq. �11� now takes the Møller-Plesset form �49�

Ĥ = E0 + F̂0 + F̂int + Ĥint, �22�

where F̂0=�p�p
0N�ĉp

†ĉp�=�a�a
0âa

†âa−�k�k
0b̂k

†b̂k is diagonal
when expressed in the HF basis. Associated with it are the
formally exact ground-state energy W and ground-state vec-
tor ��0

N	 stemming from the interacting molecular
Schrödinger equation

Ĥ��0
N	 = �E0 + F̂0 + F̂int + Ĥint���0

N	 = W��0
N	 . �23�

The ground-state energy W depends parametrically upon the

underlying classical plasmon density n. Separation of Ĥ into

an unperturbed component Ĥ0=E0+ F̂0 and a perturbation

F̂int+ Ĥint provides a natural ansatz for the application of
many-body perturbation theory �see, e.g., Ref. �49��. This
will be the subject of Sec. III C.

B. Interaction picture

We now adopt the interaction picture with respect to the
uncorrelated noninteracting N-electron HF ground state

��HF
N 	=�sĉs

†�vac	 at zero temperature; it satisfies F̂0��HF
N 	=

−�k�k
0��HF

N 	 and is normalized to unity. The reference state
��HF

N 	 is the Fermi vacuum for the electron creation and an-
nihilation operators �and particle-hole operators�. Hence-
forth, all expectation values will be computed within ��HF

N 	.
The molecular orbitals �p underlying ��HF

N 	 are determined
self-consistently and satisfy �p �q	=
pq; it will assumed that
both ��HF

N 	 and the corresponding orbitals and orbital ener-
gies are known.

The zero-temperature HF one-body Green’s function
�38,39� is defined with respect to the Fermi vacuum as

iG�0��x,t;x�,t�� = ��HF
N �T��̂�x,t��̂†�x�,t�����HF

N 	

= �
pq

�p�x�iGpq
�0��t,t���q

*�x�� , �24�

where iGpq
�0��t , t��= ��HF

N �T�ĉp�t�ĉq
†�t�����HF

N 	 represents the
Fock-space matrix elements of iG�0� and ĉp�t�
=exp�iF̂0t /��ĉp exp�−iF̂0t /��=exp�−i�p

0t /��ĉp in the

interaction-picture representation. The orbitals �q are solu-
tions of the HF equations �21�. In Fourier space, it has the
Lehmann spectral representation

G̃�0��x,x�;��

= �
pq

�p�x�G̃pq
�0�����

q
*�x��

= �
pq

�p�x�
pq� 1 − �p
0

� + i0+ − �p
0/�

+
�p

0

� − i0+ − �p
0/���

q
*�x�� ,

�25�

where the eigenvalue �p
0 of the HF one-matrix �pq

= ��HF
N �ĉp

†ĉq��HF
N 	=�p

0
pq is the occupation number of the pth
single-particle state and 0+ is a positive infinitesimal needed
only to damp and subsequently converge certain Fourier in-
tegrals; 0+ should be taken to zero at the end of all calcula-
tions. The retarded component of the time-ordered Green’s

function G̃�0�,

�G̃�0�
R �pq��� =


pq

� + i0+ − �p
0/�

, �26�

will be of use in the following. In Eq. �24�, Gpq
�0� is the zeroth-

order propagator for an extra electron to propagate from the
state q to the state p within the N-particle noninteracting
background ��HF

N 	. In this approximation, the electron does
not interact directly with any other particle nor is it scattered
out of the single-particle state p �due to the delta function 
pq
in Eq. �25��. Interaction effects will now be systematically
built in through the machinery of time-dependent many-body
perturbation theory �39,50�.

C. Many-body perturbation theory

Until this point we have developed an essentially exact
many-body theory of SERS including the coupling of a gen-
eral molecule to a plasmon-supporting metallic system under
the influence of an external perturbing electric field. Building
from the noninteracting HF reference state of the molecule, it
will now be demonstrated how to systematically incorporate
these interaction effects to arbitrary order through the ma-
chinery of many-body perturbation theory. As a first step in
this direction, we choose to consider only those interactions
originating from the external electric field and from collec-
tive excitations of conduction electrons in the metal particle
induced by both the external field and by interactions with
the molecule, and truncate the level of molecular-electronic
correlation to HF mean-field theory; therefore, we suppress

the two-body electron-electron interaction Ĥint in Eq. �19�
and focus upon the perturbations stemming from F̂int. It is,
however, important to note that, due to the generality of our

approach, electronic-correlation effects �from Ĥint� may be
included by using the same perturbation techniques de-
scribed below, or, alternatively, may be added in the spirit of
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a Kohn-Sham density-functional theory approach �30�.
Within this context we note that the chemical mechanism of
SERS may be explored by including a subset of the metallic
conduction electrons in addition to the molecular electrons
within the density-functional theory; see Appendix A for de-
tails.

1. Interaction of molecular electrons with a metal particle

We focus first on the perturbations of the molecular-
electronic system induced by the presence of a metal particle
nearby. From Eq. �16�, the collective electronic density of the
particle

n�x,t� = n0�x� + nM�x,t� �27�

may be decomposed as the sum of a static density n0 and
low-amplitude excitations 
n�nM induced by the molecule
itself. This will be shown to underlie the quantum-
mechanical analog of the image effect discussed in Ref. �31�.
Associated with these densities are the static and induced
dipole moments p0 and pM of the particle. With this decom-
position, the interaction between molecular electrons and the
induced density nM in the particle can be written to lowest
order as

Fpq
int�t� → Fpq

P �t� = �p� � d3x�V�x,x��nM�x�,t��q	

� − �p� − ex�q	 ·
3r̂�pM�t� · r̂� − pM�t�

r3

�28�

following multipole expansion of the potential V, where x1

−x2=rr̂ and where the pM�t�=
�−ex�nM�x , t�d3x is the di-
pole moment induced in the particle by the molecule. Effects
of retardation are neglected. In principle there is no reason to
additionally impose a dipole interaction approximation be-
tween molecule and particle; however, since we are inter-
ested here in developing a quantum-mechanical generaliza-
tion of the classical dipole model presented in Sec. II, we
choose to do so. Note that the interaction between molecular
electrons and the static part of the density n0 is already ac-
counted for in the reference system; see, e.g., Eq. �21�. The
above expression represents the interaction energy between

the molecular dipole moment d̂ and a molecule-induced ex-
citation of conduction electrons in the metal particle. It can
be rewritten in more compact form as

F̂int�t� → F̂P�t� = �
pq

�p�UP�t��q	N�ĉp
†�t�ĉq�t��

� − d̂�t� · � · pM�t� , �29�

where, as before, ��	= �3r̂�r̂	−
�	� /r3 are the matrix ele-
ments of the second-rank dipole tensor �.

Dyson has provided an algorithm for computing the exact
interacting N-body Green’s function by perturbative expan-
sion from the noninteracting reference state of the interaction
picture �39�, where the effects of interaction are encapsulated
within the irreducible self energy ��� �51�. In the particular

case of the perturbation F̂P=−d̂ ·� ·pM, Dyson’s expansion
yields

iGpq�t,t�� = �
n=0

�
�− i/��n

n!
� dt1 ¯ dtn��HF

N �T��− d̂�t1� · � · pM�t1� ¯ − d̂�tn� · � · pM�tn��ĉp�t�ĉq
†�t�����HF

N 	C

= iGpq
�0��t,t�� +

i

�
�
rs
� d4x1Gpr

�0��t,t1��r�ex�s	 · � · �− ex1�nM�x1,t1�Gsq
�0��t1,t�� +

i

�2 �
rstu

� d4x1d4x1�Gpr
�0��t,t1��

��r�ex��t	��	�ex1
	�i�P�x1,t1;x1�,t1���ex1�

�����Gtu
�0��t1�,t1��u�ex���s	Gsq

�0��t1,t�� + ¯ , �30�

where �¯	C indicates that only linked or connected diagrams
contribute in the expansion �52�.

The classical polarization propagator of the molecule-
induced density fluctuations nM =n−n0 in the particle can be
identified in the second-order term above as

i�P�x,t;x�,t�� = nM�x,t�nM�x�,t�� �31�

in analogy to the quantum-mechanical noninteracting HF po-
larization propagator �38,39� defined in Eq. �B1� in Appen-
dix B. From the retarded component of �P, the molecule-
induced classical linear polarizability of the particle can be
written as

− i��P
�	�t,t�� =� d3xd3x��− ex��i�P

R�x,t;x�,t���− ex�	�

= ��t − t��pM
� �t�pM

	 �t�� �32�

and has a mathematical structure similar to the noninteract-
ing HF molecular linear polarizability �B3� defined in Ap-
pendix B. Following omission of the first-order perturbative
correction, which is of no importance in the following �and
can be renormalized away�, the retarded component of Eq.
�30� becomes
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Gpq
R �t,t�� − �G�0�

R �pq�t,t��

= �
rs
� dt1dt1��G�0�

R �pr�t,t1��− 1

�2 �
tu

�r�ex�t	 · � · i��P�t1,t1�� · � · �G�0�
R �tu�t1�,t1��u�ex��s	��G�0�

R �sq�t1,t�� + ¯ �33�

with irreducible self-energy

���R
��pq�t1,t1�� =

− 1

�
�
rs

�p�ex�r	 · �

· i��P�t1,t1�� · � · �G�0�
R �rs�t1�,t1��s�ex��q	

+ ¯ . �34�

Here, the first term on the right-hand side already contains
the desired effects of polarization. We, therefore, truncate the

above perturbation series for ��� at second order in F̂P and
define the spectral representation of the second-order irre-
ducible self-energy by

���̃R
��pq

�P,2����

= �
rs

�p� − ex�r	 · �

· � d��

2
i
�̃P�����G̃�0�

R �rs�� + ��� · � · �s� − ex��q	 .

�35�

An approximate yet infinite-order nonperturbative represen-
tation of the exact interacting one-body retarded Green’s
function may now be constructed by resumming the Dyson
series

�G̃P
R�pq��� = �G̃�0�

R �pq��� + �
rs

�G̃�0�
R �pr�����̃R

��rs
�P,2�����G̃P

R�sq���

�36�

stemming from the second-order perturbative approximation

�̃R
� ���̃R

���P,2� �53�. Such an approximation corresponds to
the physical scenario where the molecule is able to repeat-
edly excite density fluctuations in and polarize the particle
and these excitations act back upon the molecule to infinite
order. Said differently, the quantum analog of the classical
image effect discussed in Ref. �31� is included by resumming

the Dyson series based upon the above second-order trunca-
tion of the self-energy. For simplicity of notation we drop the

label 2 in the following so that ��̃R
��P���̃R

���P,2�. Note that

��̃R
��P contains only one of several irreducible terms occur-

ring at second order in perturbation theory �39�; however,
among all others, this is the only contribution that includes
the desired polarization effects.

In similar spirit, the approximate time-ordered one-body

Green’s function G̃P may be compactly expressed by the
Dyson expansion

G̃pq
P ��� = G̃pq

�0���� + �
rs

G̃pr
�0������̃P

��rs���G̃sq
P ��� . �37�

In analogy to Eq. �36�, solving this recursive equation for G̃P

resumes the infinite class of diagrams spanned by the
second-order perturbative truncation of the time-ordered self-

energy �̃����̃���P,2�� �̃P
�. Equation �37� has the inverse so-

lution

�G̃P
−1�pq��� = �G̃�0�

−1�pq��� − ��̃P
��pq��� , �38�

which may be written in matrix form as

G̃P
−1 =��G̃�0�

−1�• − �̃P•
� − �̃P�

�

− �̃P∨
� �G̃�0�

−1�� − �̃P�
� � , �39�

where we have used the fact that the one-body HF Green’s

function �25� is diagonal in its indices; �G̃�0�
−1�•− �̃P•

� and

�G̃�0�
−1��− �̃P�

� represent diagonal particle-particle and hole-

hole matrices, while �̃P�
� and �̃P∨

� represent off-diagonal
particle-hole and hole-particle block matrix contributions to

G̃P
−1. Formal inversion may be expressed in terms of minors

as

G̃pq
P = �det G̃P

−1�−1�− �p+qminor�G̃P
−1�qp. �40�

Alternatively, we make use of the block-matrix inverse

G̃P =� ��G̃�0�
−1�• − �̃P•

� �−1 ��G̃�0�
−1�• − �̃P•

� �−1�̃P�
� ��G̃�0�

−1�� − �̃P�
� �−1

��G̃�0�
−1�� − �̃P�

� �−1�̃P∨
� ��G̃�0�

−1�• − �̃P•
� �−1 ��G̃�0�

−1�� − �̃P�
� �−1 � �41�
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together with the weak-coupling approximation where

��̃P
��pq , ��̃P

��qp� ��̃P
��pp , ��̃P

��qq. Here, the infinitesimals �i0+

are omitted from G�0� as the self-energy �35� is complex
valued and has an imaginary component that changes sign
with respect to the chemical potential according to
Im �P

�����0 when ��� /� and Im �P
�����0 when �

�� /�. Like G̃pq
�0� , G̃pq

P in Eq. �41� accounts for the propaga-
tion of an extra electron from the single-particle state q to p;
however, unlike the noninteracting Green’s function where

p=q , G̃pq
P also permits electrons to scatter out of q and into

the single-particle state p�q. This latter process is described
through the off-diagonal components

G̃ib
P ��� = �

ja


ij

� − �i
0/� − ��̃P

��ii���

���̃P
�� ja���


ab

� − �b
0/� − ��̃P

��bb���

G̃aj
P ��� = �

ib


ab

� − �a
0/� − ��̃P

��aa���

���̃P
��bi���


ij

� − � j
0/� − ��̃P

�� j j���
, �42�

which are here derived in the weak-coupling limit.
This interacting molecular-electronic one-body Green’s

function G̃P has the space- and frequency-dependent form

G̃P�x,x�;�� = �
pq

 p�x�G̃pq
P ��� 

q
*�x�� �43�

with interacting Dyson orbitals  q�x�=�r�r�x�Urq satisfying
the nonlinear integrodifferential equation

�h0�x� + U0�x�� q�x� + �
k

��k�V�k	�x� q�x�

− �k�V�q	�x� k�x�� +� d3x���̃P
��x,x�;�� q�x��

= ��q
0 + ���̃P

��qq���� q�x� �44�

expressed in terms of the nonlocal frequency-dependent

�energy-dependent� effective potential �̃P
��x ,x� ;��

=�pq p�x���̃P
��pq��� 

q
*�x��. It is derived by applying the op-

erator

LHF�x,x�;�� = ��� − �h0�x� + U0�x���
�x − x��

− �
k

��k�V�k	�x�
�x − x��

−  
k
*�x��V�x,x�� k�x�� , �45�

which is defined in terms of  k, to G̃P in Eq. �43� and then
projecting against  q; LHF can equivalently be written in
terms of the HF orbitals �k where it satisfies


d3yLHF�x ,y ;��G̃�0��y ,x� ;��=�
�x−x��. Equation �44� in-
corporates the image interaction associated with the
molecule-induced excitations of the particle into the molecu-

lar HF mean-field equations �21� through the irreducible self-
energy ��P

� in Eq. �35�. These interacting orbitals and orbital
energies, which are solutions of Eq. �44�, must reach self-

consistency with ���̃P
��pq defined in Eq. �58� as the self-

energy both determines and is determined by the new inter-
acting orbitals. In this way, consistent solutions of the
interacting molecule-particle system may be obtained.

2. Interaction of coupled molecule-particle system with an
external electric field

Now that we have derived an expression for the molecular
one-body Green’s function interacting with its self-induced
electronic density fluctuations in a nearby metal particle �i.e.,
its image�, we are ready to build in the perturbing effects of
an external classical electric field

E0�t� = E0
�+�e−i�kt + E0

�−�ei�kt �46�

with frequency �k upon the combined and coupled system.
The field interacts directly with the molecule and, addition-
ally, indirectly by inducing small-amplitude collective exci-
tations of conduction electrons in the particle described by
nE. This latter interaction is described in Ref. �31� as the
local-field effect. Following Eq. �16�, the particle’s electronic
density can be decomposed as

n�x,t� = n0�x� + nE�x,t� = n0�x� + nE
�+��x,t� + nE

�−��x,t�
�47�

in the linear response limit of the external field, where the
labels �!�, ��� refer to excitations set up by the incoming
and outgoing components E0

�+� and E0
�−�, respectively, of E0.

Despite our classical treatment of the external electric field,
we continue to speak of photons and will, when justifiable
and appropriately pointed out, need to make an ad hoc ad-
justment of photon occupation number as a result of our
classical-field ansatz. Of course, we could have treated the
external field quantum mechanically and introduced the ap-
propriate photon Green’s functions needed to carry its dy-
namics. However, it is our aim to keep this presentation as
clear as possible and elucidate only the lowest-order pro-
cesses governing SERS, which, save a small error in photon
occupation number, is describable without resorting to field
quantization.

Multipole expansion of the electron-field and electron-

plasmon interaction Hamiltonian F̂int, given in Eq. �20�, re-
sults in the following expression

Fpq
int�t� = − �p� − ex�q	 · E0�t� + �p� � d3xnE�x,t�V�x,x���q	

� − �p� − ex�q	 · �E0�t� +
3r̂�pE�t� · r̂� − pE�t�

r3 �
�48�

for its matrix elements at dipole order. The second term in
brackets is the classical electric dipole field EP�t�=� ·pE�t�
=� ·
�−ex�nE�x , t�d3x of the metal particle’s dipole plasmon
as induced by E0. Similar to Eq. �29�, it contributes the ef-
fective plasmon potential
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Uint�x,t� → UE�x,t� � − �− ex� · � · pE�t� = − �− ex� · EP�t� ,

�49�

where, similar to nE and pE, EP is an abbreviation for
EP

�+�+EP
�−�. Since we choose to specialize to the dipole ap-

proximation for simplicity, no other multipole contributions
will be considered. Therefore, perturbations to the molecular-
electronic system from E0 arise directly and indirectly
through

F̂int�t� → F̂E�t� = − d̂�t� · �E0�t� + EP�t��

= − �
pq

�p� − ex�q	N�Ĉp
†�t�Ĉq�t��

· �E0�t� + EP�t�� , �50�

where the new interacting molecular electron operators
Ĉp�t�=�qUpqĉq�t� are related to the old noninteracting opera-
tors ĉp�t� by the same unitary transformation U that affected
the molecular orbitals.

As before, Dyson’s expansion provides a systematic way

to build in the interaction effects of F̂E into the molecular
one-body Green’s function. In contrast to the previous appli-
cation of the Dyson expansion where the interaction effects

of F̂P were included on top of the noninteracting HF one-
body Green’s function G�0�, here we build the interaction

effects of F̂E upon the interacting one-body Green’s function

Gpq
P �t , t��= ��HF

N �T�Ĉp�t�Ĉq
†�t�����HF

N 	 that describes the cou-
pling between molecular electrons and their image as medi-
ated by the conduction electrons of a metallic particle. We
see that

iGpq
int�t,t�� = �

n=0

�
�− i/��n

n!
� dt1 ¯ dtn��HF

N �T�− d̂�t1� · �E0�t1� + EP�t1�� ¯ − d̂�tn� · �E0�tn� + EP�tn��Ĉp�t�Ĉq
†�t�����HF

N 	C

= iGpq
P �t,t�� +

i

�
�
rs
� dt1Gpr

P �t,t1��r�ex�s	Gsq
P �t1,t�� · �E0�t1� + EP�t1��

+
i

�2 �
rstu

� dt1dt2Gpr
P �t,t1��r� − ex��t	Gtu

P �t1,t2��u� − ex�	�s	Gsq
P �t2,t���E0

��t1�E0
	�t2� + E0

��t1�EP
	�t2� + EP

� �t1�E0
	�t2�

+ EP
� �t1�EP

	�t2�� + ¯ , �51�

where, as was discussed previously in the context of �P, the time-ordering affects the classical fields through

E0
��t1�E0

	�t2� = T�E0
��t1�E0

	�t2��

= ��t1 − t2�E0
��t1�E0

	�t2� + ��t2 − t1�E0
	�t2�E0

��t1� . �52�

Similar expressions can be written for the remaining three terms in curly brackets above. Truncating the perturbation series in

Eq. �51� at second order in F̂E results in the second-order perturbative approximation to the interacting one-body Green’s
function

Gpq
int�2��t,t�� = Gpq

P �t,t�� + �
rs
� dt1dt1�Gpr

P �t,t1��rs
��E,2��t1,t1��Gsq

P �t1,t��

= Gpq
P �t,t�� + �

rs
� dt1dt2Gpr

P �t,t1�� 1

�2�
tu

�r� − ex��t	Gtu
P �t1,t2��u� − ex�	�s	�E0

��t1�E0
	�t2�

+ E0
��t1�EP

	�t2� + EP
� �t1�E0

	�t2� + EP
� �t1�EP

	�t2���Gsq
P �t2,t�� , �53�

where we have omitted the first-order perturbative correction
as it describes only the stimulated absorption and emission of
E0 and EP which are of no importance in the following �and
can be renormalized away�; see Fig. 2.

Indeed it is not until second order in the external field
perturbation that Raman scattering from the molecular sys-
tem can be described. Other competing processes occur at

second order as well, such as those of two photon-absorption
or two-photon emission. However, we are not interested in
describing these events and, consequently, prune away all
terms in Eq. �53� not related to Raman scattering. Due to the
presence of both E0 and EP, several types of Raman pro-
cesses are present in the remaining expression. Note that the
electric field EP stems from collective excitation of conduc-
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tion electrons in the metal particle induced either by the ex-
ternal field �i.e., the local-field effect� or by the Raman-
scattered field of the molecule. In either case, it may be
written in Fourier space as

ẼP
������ = � · p̃E

������ = �� · �̃P��� · Ẽ0
����2

�� � �k,k��

= Ẽ0P
������2

�� � �k,k�� �54�

in terms of the linear polarizability defined in Eq. �32�,
where the wave vector k is associated with the incoming
field labeled by �!� while the wave vector k� is associated
with the outgoing field labeled by ���; they satisfy

�Ẽ0
�+��*= Ẽ0

�−�.

Together with this expression for ẼP
���, the interacting

one-body Green’s function in Eq. �53� enjoys the Fourier
decomposition

G̃pq
int�2���� = G̃pq

P ��� + �
rs

G̃pr
P ����̃rs

��E,2����G̃sq
P ��� �55�

with second-order irreducible self-energy for Raman scatter-
ing

��̃pq
��E,2���� �

1

�
�
rs

�p� − ex��r	G̃rs
P ����s� − ex�	�q	

��
Ẽ0�

�−�Ẽ0	
�+� + Ẽ0�

�+�Ẽ0	
�−�

+ Ẽ0P�
�−� �− �k��Ẽ0	

�+� + Ẽ0P�
�+� ��k�Ẽ0	

�−�

+ Ẽ0�
�−�Ẽ0P	

�+� ��k� + Ẽ0�
�+�Ẽ0P	

�−� �− �k��

+ Ẽ0P�
�−� �− �k��Ẽ0P	

�+� ��k�

+ Ẽ0P�
�+� ��k�Ẽ0P	

�−� �− �k��
�
�56�

where the energies of the intermediate electronically excited
molecular states r and s both include the additional energy
��k �−��k�� of a single absorbed �emitted� photon. By re-

placing G̃P by G̃�0�, the first pair of terms in brackets repre-
sents ordinary Raman scattering from the molecule in the
absence of the particle. Terms three and four are associated
with the mixed event in which the incident field directly
interacts with the molecule while the molecular Raman-
scattered field scatters off of the particle before detection;
terms five and six represent the opposite time ordering of
terms three and four. The last pair of terms are associated
with the scattering event where the incident field is first scat-
tered by the particle. This enhanced field interacts with the
molecule, which subsequently Raman scatters the radiation
back to the particle. In the final step, the particle rebroadcasts
the molecular Raman field to the detector. These processes
are all summarized in Fig. 2. While they are present in the
formalism, crossed events where a photon is first scattered
and, later, a second photon is absorbed are omitted from the
figure. As we are interested only in Raman scattering, two-
photon absorption or emission processes, which would in-

volve terms such as Ẽ0�
�+�Ẽ0	

�+� or Ẽ0�
�−�Ẽ0	

�−� are not considered.
Note that additional diagrams would be present had we cho-
sen to quantize the electric field. Henceforth, for simplicity

of notation we drop the label 2 so that �̃E
� � �̃�E,2�

� .

3. Random-phase approximation

Until this point we have assumed that the collective exci-
tations of conduction electrons in the metal particle can be
represented entirely by their classical density n. When a
molecular-electronic system is brought into the vicinity of a
particle it induces density fluctuations in the metal that are,
to first order, describable by nM =n−n0. For the purpose of
demonstrating certain properties of our formalism, we here
invoke the further approximation that the conduction elec-
trons of the spatially anisotropic metal particle are well de-
scribed as a homogeneous electron gas �or electron plasma�
in the high-density limit. This approximation becomes appro-
priate when the spatial dimensions of the particle are larger
than the mean-free path of its conduction electrons. For Au
and Ag, which are typical SERS substrates, the mean-free

pppp

qqqq �E
(+)
0

�E
(+)
0

�E
(+)
0P

�E
(+)
0P

�E
(−)
0

�E
(−)
0

�E
(−)
0P

�E
(−)
0P

(a.) (b.) (c.) (d.)

�Gint(2)
pq (ω) − �GP

pq(ω)

FIG. 2. �Color online� Enhanced Raman-scattering Feynman diagrams occurring at second order in perturbation theory in the interaction

F̂E=−d̂ · �E0+EP�. Diagram �a� is analogous to normal Raman scattering of the field Ẽ0
���. Diagrams �b� and �c� represent a particle-mediated

Raman-scattering process where either the Raman scattered field �diagram �b�� or the incident field �diagram �c�� is scattered by the particle.
Diagram �d� represents the process where both the incident and Raman-scattered fields are mediated by the particle. This particle-mediated

field Ẽ0P
���=� · �̃P · Ẽ0

��� is defined in terms of the particle’s polarizability �̃P �32�. While retained in the formalism �see, e.g., Eq. �56��,
crossed diagrams are not drawn for simplicity in presentation. However, all two-photon absorption and two-photon emission processes are
omitted here and in the theory as they are not relevant to Raman scattering. Note that all molecular-electronic propagators are interacting

one-body Green’s functions G̃P defined in Eq. �41�.
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path of conduction electrons is approximately 40 and 50 nm,
respectively. This justifies the replacement of the particle’s
polarization propagator by the random-phase approximation
�RPA� result �54,55�, i.e., �P→�RPA=�P�1−FP�P�−1

=�P"−1, where "=1− ��0 /��2 is the generalized dielectric
function of the particle in the RPA. Similarly, the polarizabil-
ity of the metal particle takes on the RPA form

�̃P
�	��� → �̃RPA

�	 ��� =
− e2/m

�2 − �0
2
�	, �57�

where �0=
4
e2nF /m is the bulk plasma frequency and
nF=kF

3 /3
2 is the density of the free electron gas with Fermi
wave vector kF=
2m�F /�2. It is, of course, a severe approxi-
mation to assume that the polarization propagator of an arbi-
trarily sized and shaped particle will have the RPA form.
�Extension to a damped Drude or Lorentz oscillator model

with several resonant frequencies would be straightforward.�
Rather the dynamics of the metal particle’s conduction elec-
trons and their induced dipole moments pM should be solved
for explicitly. While this ultimately is our desire and is the
subject of Sec. III E 3 below, such a task requires tremen-
dous numerical effort and, at this stage, it is only our intent
to lay out the basic working equations of our model and to
highlight some of its general results and salient features.
Choosing, for this purpose, to temporarily make a detour and
invoke the RPA provides a physically reasonable analytical
model of the particle’s response that is sufficiently rich to
allow us to do so without having to explicitly compute the
electronic dynamics of the metal particle.

The self-energy ��̃P
�, accounting for the particle-mediated

interaction of molecular electrons with their own image, is
hereafter approximated in the RPA �57� as

���̃P
��pq��� � �

rs

�p� − ex�r	 · � ·� d��

2
i
�̃RPA����G̃rs

�0��� + ��� · � · �s� − ex��q	

=
e2

2m�0r3�
s

�p� − ex�s	 · � · �s� − ex��q	� �s
0

�s
0/� − �0 − � + i0+ +

1 − �s
0

�s
0/� + �0 − � − i0+� . �58�

Here, the near idempotency of �#�=−r3�#	�	� has been
exploited to simplify the expression. The diagrammatic rep-

resentation of G̃pq
P is displayed in Fig. 3. Note that the sum

runs over the set of all single-particle states which depend
parametrically upon the M nuclear coordinates.

The complex-valued and frequency-dependent irreducible

self-energy ��̃P
� may be decomposed into real and imaginary

components as

��̃R
��P��� + i0+� = �P���� − �i/2�$P���� . �59�

By appealing to the identity �x� i0+�−1= P�x−1�%
i
�x�
with principle value P, its real diagonal matrix elements

�p
P��p

0� � Re��̃R
��pp

P ��p
0�

=
e2

2m�0r3 P�
s

�p�− ex�s	 · � · �s�− ex��p	

�� �s
0

�s
0 − �p

0 − ��0

+
1 − �s

0

�s
0 − �p

0 + ��0
� �60�

account for the shifting of the pth orbital energy while its
imaginary diagonal matrix elements

− �1/2�$pp
P ��p

0� � Im ��̃R
��pp

P ��p
0�

=

e2

2m�0r3�
s

�p�− ex�s	 · � · �s�− ex��p	

���1 − �s
0�
��s

0 − �p
0 + ��0�

− �s
0
��s

0 − �p
0 − ��0�� �61�

account for the rate of spontaneous emission of a plasmon
with energy ��0 from the electronically excited state p �first
term� or the rate of spontaneous absorption of a plasmon
with energy ��0 into the state p �second term�, both induc-
ing molecular-electronic transitions to the state s, where we
have assumed that �P and $P vary so slowly with energy that
we may choose ��=�p

0; both effects are due to the interac-

qq

pp

�ΠRPA(ω)
�GP
pq(ω)

FIG. 3. �Color online� Second-order �second Born approxima-

tion beyond HF� one-body Green’s function G̃P accounting for the
interaction of molecular electrons with collective excitations of con-
duction electrons in a nearby metal particle described by the RPA

polarization propagator �̃RPA. Here, the molecular-electronic propa-

gators are one-body HF Green’s functions G̃�0�.
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tion between molecular electrons and the induced plasma
density in the particle and are, here, rigorously included from
first principles. From the point of view of the molecule, these
interactions underlie a state-by-state broadening of the mol-
ecule’s electronically excited states. It is precisely this inter-
action physics that is not explicitly treated in Refs.
�22,24,25�, but is, rather, implicitly encapsulated within a
common phenomenological damping factor for all
electronically-excited states. A generic consequence occur-
ring whenever $P�0 is that the effective Hamiltonian of the
coupled molecule-particle system is no longer Hermitian.
For completeness we note that both �P and $P are related to
each other by Hilbert transformation �53�.

This approximation of the metal particle’s electrons as a
homogeneous electron gas supporting collective excitation at
the bulk plasma frequency is applied in the following to
analytically demonstrate an enhanced Raman scattering from
the coupled molecule-particle system in analogy to the clas-
sical result �31� reviewed in Sec. II.

D. Scattering T matrix

Transition amplitudes between initial and final eigenstates
of an arbitrary reference Hamiltonian underlie the computa-
tion of many different observable quantities; such amplitudes
are directly related to the scattering T matrix which is the
subject of this section. Recalling that time-dependent
Green’s functions are propagators in the sense that they de-
scribe the propagation of particles in time through an inter-
acting many-particle assembly, it is not surprising that a con-
nection exists between the exact one-body Green’s function
and the S matrix of scattering theory; see, e.g., Ref. �56�.
Specifically, their relationship for t�0 is given by

S fi = lim
t→�

ei��p+�q�t/2��
C+

dz

2
i
G̃pq

R �z�

= 
pq − 2
i
��p − �q�Tpq �62�

in the interaction representation, with one-body interaction

V̂. The effects of scattering from an initial many-body state
with underlying one-body states labeled by q to a final many-
body state with underlying one-body states labeled by p are
encapsulated in the one-body T-matrix elements �53�

T fi = �p�V�q	 + �
rs

�p�V�r	G̃rs
R ��q��s�V�q	 . �63�

Here the retarded Green’s function G̃R�z� is analytically con-
tinued away from the real axis and into the complex z-plane
where new features such as complex poles �also called reso-
nances� and complex thresholds may be revealed on higher
or lower Riemann sheets.

As we will be concerned with perturbations stemming
from an external electric field E0, we make the dipole-

interaction approximation and take V̂=−d̂ ·E0 for the pur-
poses of the present discussion. The contour C+, which is
displayed in Fig. 4, is rerouted to avoid the branch point
resulting from the �real� threshold where an electronic con-
tinuum channel opens due to the absorption or emission of a

photon from or to the field E0. An associated branch cut
connects this branch point to its terminal branch point chosen
at z= �+� ,0�. As a result of this particular route for C+, the
contour integration moves onto the second Riemann sheet on
the right-hand side �shown in red in Fig. 4�, where it encloses
resonances at the points z1, z2, and z3 �assuming, for the
purpose of demonstration, that only three exist�. What were
real eigenenergies of the unperturbed Hamiltonian now be-
come complex eigenenergies �Im zj�0, j=1,2 ,3� of the in-
teracting system. The particular locations of these complex
poles of the exact one-body Green’s function are due to the

analytic continuation of G̃R from the upper-half plane onto
the second Riemann sheet in lower-half plane.

1. Normal Raman scattering from a noninteracting molecular
system

We are now in a position to compute Raman transition
amplitudes between states of the interacting molecule-

particle system induced by the perturbation V̂= F̂E=−d̂ · �E0
+EP�. However, before computing the associated interacting
scattering T matrix, we first make a detour and consider the
case of normal Raman scattering from an isolated Raman-
active molecule using the many-body Green’s function for-
malism. A more thorough theoretical development of Raman
scattering that does not involve Green’s functions can be
found in Ref. �57�, while an advanced review covering linear
and nonlinear optical processes from a Green’s function per-
spective can be found in Ref. �58�. Here, noninteracting mo-
lecular electrons are described at the level of HF mean-field
theory by the one-body HF Green’s function G�0� defined
previously in Eqs. �24� and �25�; molecular-nuclear degrees
of freedom J=1, . . . ,M, which underlie all electronic states
within the Born-Oppenheimer approximation, are repre-
sented by the one-body vibrational states ��J	. In the har-
monic approximation, the total M-body molecular-
vibrational wave function is equal to the unsymmetrized
�Hartree� product �J=1

M �QJ ��J	 of one-body vibrational wave
functions �QJ ��J	 for each degree of freedom. Molecular ro-
tations are not resolved in our presentation. Perturbed by the
external field E0, the scattering T matrix of the molecular
system may be approximated at second order in the dipole-

interaction perturbation V̂=−d̂ ·E0 as

C+

z1
z2

z3

FIG. 4. �Color online� Complex contour associated with the
S-matrix integral in Eq. �62�. The contour wraps around the branch
point, where a molecular-electronic continuum channel opens due
to interaction with the external field E0, and passes onto the second
Riemann sheet on the right-hand side; the associated part of C+ is
indicated with a dashed red line. There it encloses complex poles
�resonances� at the points z1, z2, and z3. A branch cut �blue� extends
from the first threshold to z= �+� ,0�.
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��J��T fi
HF�2���J	 = �

rs

��J���Ẽ0
�−� · �p�ex�r	�G̃�0�

R �rs��q
0 + ��k��s�ex��q	 · Ẽ0

�+� + Ẽ0
�+� · �p�ex�r	�G̃�0�

R �rs��q
0 − ��k���s�ex��q	 · Ẽ0

�−����J	

� �
rs

Ẽ0�
�−���J��� �p�ex��r	
rs�s�ex�	�q	

�q
0 − �s

0 + ��k + i0+ +
�p�ex	�r	
rs�s�ex���q	
�q

0 − �s
0 − ��k� + i0+ ���J	Ẽ0	

�+�, �64�

which is expressed in terms of the retarded HF Green’s func-

tion G̃�0�
R �26�. Here, in addition to the sum over the interme-

diate electronic states r and s, there should be a sum over the
intermediate vibrational states of the molecule; however, for
simplicity in presentation, we omit the vibrational energy
differences in the denominator �in comparison to the elec-
tronic energy differences� here and in the following and ap-
peal to the closure relation 1=����J	��J� in the numerator
�57�. It is also important to note that, due to Kronecker delta

rs in the numerator, the intermediate electronic states must
be the same and, further, must label either particle-particle or
hole-hole states; no particle-hole or hole-particle intermedi-
ate states contribute to Raman scattering. This point will be
important in deriving an expression for the SERS intensity in
Sec. III D 2 below.

The one-body states which underlie the initial and final
molecular states for normal Raman scattering are

�q	��J	 � ��q;��J;Nk�,Nk���
� �	��J	 ,

�p	��J�	 � ��p;��J�;�N − 1�k�,�N� + 1�k����	��J�	 , �65�

where the incident and Raman-scattered fields are implicitly
labeled in the molecular-electronic states only to motivate
proper field normalization; here N �N−1� photons are ini-
tially �finally� in the state �k ;�	 with wave vector k, polar-
ization �, and energy ��k, and N� �N�+1� photons are ini-
tially �finally� in the state �k� ;��	 with wave vector k�,
polarization ��, and energy ��k�. As previously discussed,
within the Born-Oppenheimer approximation, the molecular-
electronic and nuclear coordinates are separated as
�q ; ��J�	��J	 and �p ; ��J��	��J�	, where �J and �J� label the initial
and final vibrational quanta associated with the particular
normal-mode coordinate QJ.

Recognizing the inverse of the retarded HF polarization

propagator �̃�0�
R �Eq. �B2�� in the denominator of Eq. �64�

and recalling the connection between �̃�0�
R and the linear po-

larizability defined in Eq. �B4�, we find that

��J��T fi
HF�2���J	 = − Ẽ0

�−� · ��J���̃ fi
M���k,− ��k����J	 · Ẽ0

�+�

= − �− i�
2
��k��N� + 1�k���

L3 i
2
��kNk�

L3 �̂��
�−��k�� · ��J���̃ fi

M���k,− ��k����J	 · �̂�
�+��k� , �66�

where, as in Sec. II, the incident electric field amplitude is
i
2
��kNk� /L3�̂�

�+��k� as is consistent with the field occu-
pation numbers in Eq. �65�. For completeness we point out
that had E0 been properly treated as a quantum-mechanical
field, the number of scattered photons in Eq. �66� would have
rigorously been �N�+1�k���; see, e.g., Ref. �59�. A diagram-
matic representation of the electric field interaction and
nuclear vibrational processes occurring in normal Raman
scattering is displayed in Fig. 5.

Fermi’s “golden rule” of time-dependent perturbation
theory �50� dictates that the rate of transition w between
states f and i is related to the transition amplitude by

wfi
HF�2� =

2


�
����k�����J��T fi

HF�2���J	�2 �67�

for the particular case of normal Raman scattering from a
noninteracting molecular system, where ����k��

= �L /2
c�3��k�
2 /��d�k� is the density of states of the emitted

electric field propagating in the k� direction. It is now
straightforward to compute the Raman-scattering intensity in
the direction k� from a single molecular scatterer to be

IRaman�k��
I0�k�

=
�k�k�

3

c4 �N� + 1�k�����
J

�̂��
�−��k�� · ��J���QJ − Q0�

· �QJ
�̃ fi

M���k,− ��k����J	 · �̂�
�+��k��2

, �68�

where I0�k� is the intensity of the incident field in the direc-
tion k with polarization �, and where only the linear term in
the Taylor expansion of the electronic polarizability
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�̃M��Q�� = �̃M�Q0� + �
J

�QJ − Q0� · �QJ
�̃M�Q0� + ¯

�69�

around the molecular equilibrium geometry Q0 was retained.
Here the sum runs over all M normal-mode coordinates �Q�

of the molecule and it is simple to show that ��J���QJ
−Q0���J	 is nonzero whenever �J�=�J�1. Elastic Rayleigh
scattering is described by the first term, while inelastic Ra-
man scattering, at lowest order, occurs through the second.
Raman-scattering overtones beyond the fundamental depend
upon higher-order terms. This expression is the quantum-
mechanical analog of the classical expression derived in Eq.
�5� for a polarizable molecule interacting with the external
field E0.

2. Enhanced Raman scattering from an interacting system

Having briefly reviewed the theory of normal Raman scat-
tering from a noninteracting molecular-electronic system
within the many-body Green’s function formalism, we now
turn to the case where the molecule is itself interacting with
a nearby metal particle, including both image and local-field
effects. The one-body Green’s function GP developed in Sec.
III C 1 was designed specifically to incorporate this physics;
it includes the self-induced polarization effects of a nearby
classical metallic particle to infinite order in perturbation
theory �i.e., the image effects� and, for the purpose of dem-
onstration only, assumes that the conduction electrons of the
metal are well-described by the RPA. Comparison of the ex-
pression �63� for the scattering T matrix with the second-
order perturbative approximation to the irreducible self-

energy ��̃E
� displayed in Eq. �56� shows that

��J��T fi
int�2���J	 = ��J�����̃R

��E��q
0 + ��k���J	 + ��J�����̃R

��E��q
0 − ��k����J	

= �
rs;XY

��J���ẼX
�−� · �p�ex�r	�G̃P

R�rs��q
0 + ��k��s�ex��q	 · ẼY

�+� + ẼY
�+� · �p�ex�r	�G̃P

R�rs��q
0 − ��k���s�ex��q	 · ẼX

�−����J	 ,

�70�

which is defined in terms of the retarded interacting one-

body Green’s function G̃P
R, and where the energy of the inci-

dent field is ��k �60�. The underlying one-body states asso-
ciated with enhanced Raman scattering are similar to those
previously defined in Eq. �65� for normal Raman scattering,
e.g.,

�q	��J	 � � q;��J;Nk�,Nk���
� �	��J	 ,

�p	��J�	 � � p;��J�;�N − 1�k�,�N� + 1�k����	��J�	 . �71�

As previous, they label both electronic and nuclear vibra-
tional states of the molecule. However, here, the one-body
electronic states are described by the interacting Dyson or-
bitals  q, which are solutions of the Dyson equation �44�,
rather than by the noninteracting HF orbitals �q. The labels

X ,Y � �0,0P� refer to either the external field Ẽ0
��� or to the

field of the particle Ẽ0P
���. From the two terms in Eq. �70�

there are eight possible ways to arrange these two fields be-
tween the two states X ,Y: four from the first term �uncrossed
interactions� and four from the second term �crossed interac-
tions�. All eight terms are included in the formalism; they
enumerate all possible time orderings between uncrossed and
crossed interactions. In this sense, the scattering theory de-
scription is noncausal with each interaction event equally as
important as all others �61,62�. Note that this expression con-
stitutes the Born approximation to the field perturbation as

G̃P itself does not include any effects of field interaction.

Dyson’s expansion of G̃P subjected to the field would provide
a systematic way to build in these effects perturbatively.

From Eq. �70�, the Born approximation to the interacting
scattering T matrix with respect to the external fields E0 and
EP is given by

p

q

�αM
fi

νJ

ν�J

�E
(+)
0

�E
(−)
0

FIG. 5. �Color online� Diagrammatic representation of the pro-
cesses occurring in normal Raman scattering from a molecular tar-
get with electronic transition polarizability �̃ fi

M. Molecular vibra-
tional states �red� are labeled by �J and �J� and the incident and

Raman-scattered electric field �green� by Ẽ0
�+� and Ẽ0

�−�. Both are
implicitly accounted for in our semiclassical approach through the
state labels.
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��J��T fi
int�2���J	 = �

rs=ij,ab;XY

��J���ẼX
�−� · �p�ex�r	


rs

��k + �q
0 − �r

0 − ���̃R
��rr

P ��q
0 + ��k�

�s�ex��q	 · ẼY
�+�

+ ẼX
�+� · �p�ex�r	


rs

− ��k� + �q
0 − �r

0 − ���̃R
��rr

P ��q
0 − ��k��

�s�ex��q	 · ẼY
�−����J	

+ �
rs=ib,aj;XY

��J���ẼX
�−� · �p�ex�r	�G̃P

R�rs��q
0 + ��k��s�ex��q	 · ẼY

�+�

+ ẼY
�+� · �p�ex�r	�G̃P

R�rs��q
0 − ��k���s�ex��q	 · ẼX

�−����J	 , �72�

where the off-diagonal matrix elements of the interacting

molecular Green’s function G̃P
R in the last two terms were

given in Eq. �42�. As discussed previously below Eq. �64�,
the intermediate states associated with Raman scattering are
restricted to particle-particle and hole-hole states; no
particle-hole or hole-particle intermediate states contribute to
its lowest-order theoretical description. Consequently, in the

following, we omit the off-diagonal components of G̃P
R un-

derlying the interacting scattering T matrix. The first �diago-

nal� term stemming from ��̃E
���q

0+��k� represents the un-
crossed scattering contributions analogous to those shown in
Fig. 2, while the second �diagonal� term stemming from

��̃E
���q

0−��k�� represents the crossed terms �not shown�
where a Raman-scattered photon is emitted in the initial mo-
lecular state and an incident photon strikes in the final state.

By including only particle-particle and hole-hole interme-
diate molecular-electronic states, the interacting scattering T
matrix reduces to

��J��T fi
int�2���J	 � �

rs=ij,ab;XY

��J��ẼX�
�−�� �p�ex��r	
rs�s�ex�	�q	

��k + �q
0 − �r

0 − ���̃R
��rr

P ��q
0 + ��k�

+
�p�ex	�r	
rs�s�ex���q	

− ��k� + �q
0 − �r

0 − ���̃R
��rr

P ��q
0 − ��k��

�ẼY	
�+���J	

= �
rs=ij,ab;XY

��J��ẼX�
�−�� �p�ex��r	
rs��̃�0�

R �rq���k��s�ex�	�q	

1 − ��̃�0�
R �rq���k����̃R

��rr
P ��q

0 + ��k�
+

�p�ex	�r	
rs��̃�0�
R �rq�− ��k���s�ex���q	

1 − ��̃�0�
R �rq�− ��k�����̃R

��rr
P ��q

0 − ��k��
�ẼY	

�+���J	

� �
rs=ij,ab;XY

ẼX�
�−���J��

− ��̃M�pq,rs
�	 ���k,− ��k��
rs

�1 − ��̃�0�
R �rq���k����̃R

��rr
P ��q

0 + ��k���1 − ��̃�0�
R �rq�− ��k�����̃R

��rr
P ��q

0 − ��k���
��J	ẼY	

�+�,

�73�

where two terms in the numerator which stem from finding a
common denominator have been omitted in the third line. As
with the off-diagonal terms, these terms involve higher pow-
ers of the molecular polarizability and correspond to re-
peated photon scattering events with the molecule. Identifi-
cation of the inverse retarded HF polarization propagator
from Eq. �B2� in the denominator of this expression has been
made and can be used to simplify the denominator in the last
line as

��̃�0�
R �rq����k,k�����̃R

��rr
P ��q

0 � ��k,k��

= �
tu

Tr��̃rq,ut
M ����k,k�� · �

·� d��

2
i
�2�̃RPA�����G̃�0�

R �tu��q
0 � ��k,k� + ��� · �� .

�74�

Within the RPA, the integral in this expression is the retarded
component of the integral computed previously in Eq. �58�.
Two different transition polarizabilities appear in Eqs. �73�
and �74�; in light of Eq. �B4� they are

− �̃pq,rs
M ���k,− ��k�� = �p�ex�r	��̃�0�

R �rq���k��s�ex��q	

+ �p�ex�r	��̃�0�
R �rq�− ��k���s�ex��q	 ,

�̃rq,ut
M ����k,k�� = �u�ex�r	��̃�0�

R �rq����k,k���r�ex��t	 .

�75�

Performing the summation over X ,Y results in the following
expression for the interacting scattering T matrix
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��J��T fi
int�2���J	 = − �

rs=ij,ab

��J��

rs

�1 − ��̃�0�
R �rq���k����̃R

��rr
P ��q

0 + ��k���1 − ��̃�0�
R �rq�− ��k�����̃R

��rr
P ��q

0 − ��k���

��Ẽ0
�−� · �̃pq,rs

M ���k,− ��k�� · Ẽ0
�+� + Ẽ0P

�−��− �k�� · �̃pq,rs
M ���k,− ��k�� · Ẽ0

�+� + Ẽ0
�−� · �̃pq,rs

M ���k,− ��k�� · Ẽ0P
�+���k�

+ Ẽ0P
�−��− �k�� · �̃pq,rs

M ���k,− ��k�� · Ẽ0P
�+���k����J	

= − �
r

Ẽ0�
�−���J����̃M�pq,rr

�# ���k,− ��k����J	Ẽ0	
�+�

�

��
#	 + �̃RPA

�
 �− �k���

�
#	 + 
���#��̃RPA

�	 ��k� + �̃RPA
�
 �− �k���


��#��̃RPA
�	 ��k�

�1 − ��̃�0�
R �rq���k����̃R

��rr
P ��q

0 + ��k���1 − ��̃�0�
R �rq�− ��k�����̃R

��rr
P ��q

0 − ��k���
. �76�

The numerator is of the form �1+ �̃RPA��2, while, in light of
Eq. �74�, the denominator is of the form �1− �̃M��̃RPA��2;
both are perfect squares when �k�=�k. Further, with Eq.
�74�, the following incident and Raman �anti-�Stokes shifted
�unitless� enhancement factors �7,18� may be rigorously de-
fined by

grq�
���− ��k�� =


�� + �̃RPA
�
 �− �k���


�

1 − ��̃�0�
R �rq�− ��k�����̃R

��rr
P ��q

0 − ��k��
,

grq
#	���k� =


#	 + �#��̃RPA
�	 ��k�

1 − ��̃�0�
R �rq���k����̃R

��rr
P ��q

0 + ��k�
, �77�

in terms of which the transition amplitude becomes

��J��T fi
int�2���J	 = − �

r;J
Ẽ0�

�−�grq�
���− ��k��

���J����̃M�pq,rr
�# ���k,− ��k����J	grq

#	���k�Ẽ0	
�+�.

�78�

Due to this factorization, the quantum-mechanical Raman-
scattering intensity associated with the interacting molecule-
particle system displays a fourth-power enhancement when
both incident and Raman scattered fields share the same fre-
quency, in analogy to the classical case of two coupled di-
poles discussed in Sec. II; see, e.g., Eq. �4�. Otherwise, g and
g� do not maximally constructively multiply but, rather, con-
tribute a factor of �gg��2 to the enhanced Raman-scattering
intensity.

Upon expanding the molecular-electronic polarizability
�̃M in Eq. �78� around the molecule’s equilibrium geometry
Q0 and keeping only the linear term, subsequent application
of Fermi’s “golden rule” yields the following quantum-
mechanical result for the SERS intensity:

ISERS�k��
I0�k�

=
�k�k�

3

c4 �N� + 1�k�����
r;J

�̂��
�−���k����J���QJ − Q0� · �QJ

��̃M�pq,rr
�# ���k,− ��k����J	�̂�

�+�	�k�

�

��
#	 + �̃RPA

�
 �− �k���

�
#	 + 
���#��̃RPA

�	 ��k� + �̃RPA
�
 �− �k���


��#��̃RPA
�	 ��k�

�1 − �tuTr��̃rq,ut
M ���k,k�� · � · 
�d��/2
i��̃RPA�����G̃�0�

R �tu��q
0/� � �k,k� + ��� · ���2�2

�79�

in the k� direction with polarization ���
�−��k�� from a single

molecule that is interacting with its self-induced plasma den-
sity fluctuations in a nearby classical metallic particle in the
presence of an external radiation source propagating in the k
direction with polarization ��

�+��k�. To our knowledge, this is
the first place in the literature where a SERS intensity has
been derived entirely from first principles that explicitly
treats the coupling and back-reaction effects of a quantum-
mechanical molecular-electronic system with a nearby metal-

lic particle supporting collective excitation of conduction
electrons in the presence of a perturbing radiation field. Both
image and local-field effects, which contain the essential
physics underlying the electromagnetic mechanism of SERS,
have been generalized beyond the classical model of Sec. II
to a quantum-mechanical setting.

We note that it is not possible to exactly factor this gen-
eral expression into a normal Raman-scattering component
and an enhancement factor as was done in the classical case
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beyond what was already written in Eqs. �77� and �78�. This
is due to the summation over the molecular states r and
contraction on spatial �Greek� indices that connect all parts
of the expression together. Nonetheless, it is still possible to
identify a normal Raman-like component and an enhance-
ment factor as the prefactor and quotient, respectively in Eq.
�79�. As in the case of normal Raman scattering, ��J���QJ
−Q0���J	 is nonzero whenever �J�=�J�1. Note that, due to
formatting constraints, the square in the denominator is to be
understood as the product of two separate factors: one asso-
ciated with an incident photon with frequency �k and an-
other associated with a Raman �anti-�Stokes scattered photon
with frequency �k�.

E. Molecular and particle response

In the previous sections we have developed both nonper-
turbative and perturbative expressions for the one-body
molecular-electronic Green’s function that built in the effects
of interaction with a nearby metal particle under the influ-
ence of an external radiation field. Together with the scatter-
ing T matrix it was demonstrated that these Green’s function
techniques underlie a quantum-mechanical picture of SERS
that generalizes �and, in the appropriate limits, reduces to�
the classical theory presented in Sec. II.

Until this point only perturbations acting upon the mo-
lecular system have been treated. Where the particle’s re-
sponse to the molecule and field is prescribed by the RPA
polarizability �57� or some variant, e.g., a Drude polarizabil-
ity, there is no need to explicitly quantify their perturbing
effects. However, it is our desire to go beyond the RPA and
solve for the classical dynamics of the particle’s first-order
induced dipole moment p�1� and resultant polarizability �P as
set up by a nearby Raman-active molecule �both image and
local-field effects� and external radiation field. Incorporation
of the latter interaction is straightforward, however, before
including the former, we must first compute the induced
molecular-electronic dipole moment d�1� of the interacting
molecular system. Knowledge of d�1� closes our theoretical
formulation of the many-body SERS problem and renders it
computationally well defined. It is our goal here to compute
this molecular response and develop basic governing equa-
tions for the dynamics of the metallic particle.

1. Review of linear-response theory

The linear response of a quantum many-body system
�39,45,63,64� subjected to a sufficiently weak external time-

dependent perturbation V̂�t�=
�̂�x , t�&�x , t�d3x may be char-
acterized by the first-order fluctuations in its charge density �̂
according to

��̂�x,t�	ext − ��x,t�

= ��1��x,t� + ¯

=
i

�
� d3x��

−�

t

dt����̂�x�,t��, �̂�x,t��	&�x�,t�� + ¯ ,

�80�

where the expectation value �¯	 is taken within some unper-

turbed many-particle reference state, while the many-particle
states underlying �¯	ext include the effects of the external

perturbation V̂ ; �¯	ext reduces to �¯	 in the limit of V̂→0.
For definiteness and continuity with the previous we

henceforth choose the states underlying �¯	 to be the non-
interacting HF reference state ��HF

N 	 and work in the interac-
tion picture with respect to it. From Eq. �80�, we see that the
zeroth-order �static� unperturbed HF density �
= ��HF

N ��̂��HF
N 	, while the first-order density fluctuations

��1��x,t� =
1

�
� d4x���0�

R �x,t;x�,t��&�x�,t�� �81�

can be reexpressed in terms of the retarded HF polarization
propagator ��0�

R defined in Eq. �B2�. Here, the time integral is
extended to all times through the definition

i��0�
R �x,t;x�,t�� = ��t − t����HF

N ���̂�x,t�, �̂�x�,t�����HF
N 	

= ��t − t����HF
N ��
�̂�x,t�,
�̂�x�,t�����HF

N 	 ,

�82�

where, as before, 
�̂= �̂− ��HF
N ��̂��HF

N 	= �̂−�.
Taking the external perturbing potential &�x , t�=

−�−ex� ·E0�x=0 , t� in the electric dipole-interaction approxi-
mation, we can derive an explicit expression for the first-

order induced dipole moment d�1� generated by V̂. It is

d�1��t� =� d3x�− ex���1��x,t�

=
− 1

�
� d3xd4x��− ex���0�

R �x,t;x�,t���− ex�� · E0�t��

=� dt��M�t,t�� · E0�t�� , �83�

where the molecular-electronic HF polarizability �B3� may
also be defined by

− i��M�t,t�� =� d3xd3x��− ex�i��0�
R �x,t;x�,t���− ex��

= ��t − t����HF
N ��
d̂�t�,
d̂�t�����HF

N 	 . �84�

From Eqs. �83� and �B2�, we see that, through the underlying
polarization propagator ��0�

R , the polarizability �M acts as a
integral response kernel that depends upon the set of all
single-particle electronic states of the molecule and para-
metrically upon all underlying nuclear coordinates. The ex-
ternal field E0 induces electronic density fluctuations that
oscillate with the field until the field frequency is close to an
excitation energy of the molecule. In this way, information
on molecular electronically excited states and transition am-
plitudes can be obtained, among other quantities.

2. Molecular response to perturbations induced by a metallic
particle and external electric field

Equation �81� prescribes a method to compute the first-
order density fluctuations of a noninteracting molecular sys-
tem induced by the external potential &�x , t�=−�−ex� ·E0�t�
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from integration of & against the kernel ��0�
R . The quantity

��1� describes how the molecular-electronic density alone re-
sponds to the perturbation &. However, we are not interested
in knowing how the noninteracting molecular system re-
sponds to &, but, rather, want to study the response of an
interacting molecule-particle system. Replacing the noninter-
acting integral kernel ��0�

R with the interacting polarization
propagator �M

R describing the coupling between molecular
electrons and conduction electrons in the particle achieves
precisely this goal. In particular, it is desired for �M

R to in-
corporate those effects already built into the interacting
molecular-electronic Green’s function GP.

A simple and general relationship exists between the po-
larization propagator and the one-body Green’s function. Ap-
plication of Wick’s theorem to the full �M, defined in anal-
ogy to Eq. �B1�, reveals that

i�M�x,t;x�,t��

= ��HF
N �T��̂†�x,t��̂�x,t��̂†�x�,t���̂�x�,t�����HF

N 	

− ��HF
N ��̂†�x,t��̂�x,t���HF

N 	

���HF
N ��̂†�x�,t���̂�x�,t����HF

N 	

= − iGP�x,t;x�,t��iGP�x�,t�;x,t� , �85�

where the electron field operators are expanded onto the un-
derlying basis of interacting orbitals  q and interacting elec-

tronic creation and annihilation operators Ĉq defined in Sec.
III C 1. This result together with Eq. �81�, demonstrates that
the first-order density fluctuations of the interacting
molecule-particle system may be computed from

�M
�1��x,t� =

1

�
� d4x��M

R �x,t;x�,t��&�x�,t��

=
1

i�
� d4x��GP�x,t;x�,t��GP�x�,t�;x,t��R&�x�,t�� ,

�86�

or, alternatively, from the spectral form

�̃M
�1��x,�� =

1

�
� d3x��̃M

R �x,x�;��&̃�x�,�� =
1

�
� d3x��� d��

2
i
G̃P�x,x�;� + ���G̃P�x�,x;����

R

&̃�x�,�� �87�

with pq-matrix elements

��̃M
�1��pq��� =

1

�
�
rs

��̃M
R �pqrs���&̃sq���

=
1

�
�
rs
�� d��

2
i
G̃pr

P �� + ���G̃sq
P �����

R

&̃sq��� .

�88�

From this last expression it is clear that knowledge of �̃M
�1�

may be attained once the �retarded component of the� inter-

acting molecular polarization propagator �̃M is known. By
assuming that the self-energy varies so slowly with fre-

quency that it is appropriate to approximate ��̃P
��pp���

���̃P
��pp��p

0 /�� and ��̃P
��pq������̃P

��pq��p
0 /��, the interact-

ing �̃M
R reduces to

��̃M
R �pqrs���

=

pr
sq

� − �p
0/� + �s

0/� − ��̃R
��pp

P + ��̃A
��qq

P

=

pr
sq

� − �p
0/� + �s

0/� − ��pp
P − �i/2�$pp

P � + ��qq
P + �i/2�$qq

P �
�89�

in the weak-coupling limit. The shifting ��P� and broadening

�$P� of the single-particle states p and s due to the explicit
treatment of interaction have been quantified previously in
Eqs. �60� and �61�.

Together with Eq. �88�, this approximate expression for
the interacting molecular-electronic polarization propagator
can be used to compute the first-order electronic density fluc-
tuations �̃M

�1� in the molecule induced by the external field E0

and, through G̃P, by interaction with molecule-induced den-
sity fluctuations nM in a nearby classical metal particle. In
the dipole approximation, the electric field at the point x2
generated from �̃M

�1� located at the origin is given by

ẼM�x2,�� = � · d̃M
�1���� = � ·� �− ex��̃M

�1��x,��d3x

�90�

in the frequency domain. It will now be demonstrated how

the induced local molecular electric field ẼM influences the
dynamics of the conduction electrons in a nearby particle.

3. Particle response to perturbations induced by molecular
electrons and external electric field

In order to expose certain notable features of our formal-
ism, such as the enhanced Raman-scattering intensity in Eq.
�79�, we have imposed a predetermined dynamics upon the
collective excitations of conduction electrons in the metal
particle: namely, that of the RPA high-density electron gas
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�57�. This ad hoc choice has facilitated analytical derivation.
Here we provide the minimal theoretical framework neces-
sary to go beyond such a formalism and treat the dynamics
of the metal particle’s conduction electrons explicitly.

In Eq. �10� of Sec. III, the many-body Hamiltonian ĤP of
the particle and its interaction with a nearby Raman-active
molecule under the influence of an external electric field was
presented. Its external interaction component can be decom-
posed according to

Ĥint
P �t� � − p�t� · �E0�x2,t� + � · d̂M

�1��t�� , �91�

where the interaction potential W�−p ·� ·dM
�1� has been mul-

tipole expanded and only the term of dipole order was re-
tained. Linear-response theory may now be employed to
compute the electronic density fluctuations induced in the
particle by interactions with the external field E0 and with
the dipole field of the molecule � ·dM

�1�. This latter term rep-
resents the local-field effect of the molecule upon the par-
ticle.

By discretizing the particle’s associated electric dipole
fluctuations onto a three-dimensional spatial grid, the result-
ing response equation for the jth induced dipole moment is
given by

p j
�1��t� =� dt��Pj�t,t�� · �E0j�t�� + �

k�j

� jk� · pk
�1��t��

+ � j · dM
�1��t��� , �92�

where � jk�
�	= �3r̂ jk

� r̂ jk
	 −
�	� /rjk

3 with rjk= �x2j −x2k� is the di-
pole tensor associated with the interaction of two such dis-
cretized induced dipoles in the particle labeled by j ,k �k
� j�, and � j

�	= �3r̂ j
�r̂ j

	−
�	� /rj
3 with rj = �x1−x2j� is the dipole

tensor associated with the interaction of the discretized in-
duced dipole in the particle labeled by j with the induced

molecular dipole moment d̂M
�1� located at x1, which may be

taken as the coordinate origin. The underlying particle polar-
izability �Pj in Eq. �92� may be approximated by an appro-
priately discretized polarizability that is consistent with the
optical theorem �65�. Both image and local-field effects are
included in this expression by the terms �k�j� jk� ·pk

�1� and
� j ·dM

�1�, respectively.
In Fourier space, p j

�1� takes the form

p̃ j
�1���� = �̃Pj��� · �Ẽ0j��� + �

k�j

� jk� · p̃k
�1���� + � j · d̃M

�1����� ,

�93�

which may be inverted to yield

�
k

��̃Pj
−1���
 jk − �1 − 
 jk�� jk� �p̃k

�1���� = Ẽ0j��� + ẼMj��� .

�94�

Hence, discretization leads to a linear AX=B system of equa-
tions that are solvable by standard linear algebra routines
�66�. Similar response equations are well known in the lit-
erature; see, e.g., Ref. �65�. This spatial discretization en-

ables the practical treatment of anisotropic metal particles of
arbitrary shape and size.

In the dipole approximation, the �continuum� electric field
stemming from the solution of these equations may be writ-

ten as ẼP=� · p̃�1�. By allowing the induced electric field of
the particle’s conduction electrons to act back upon the mo-
lecular system through, e.g., Eq. �50�, the many-body for-
malism presented in this article is mathematically closed and
well defined. Iteration between a quantum-chemical molecu-

lar response calculation where the incident field Ẽ0 and in-

duced field of the particle ẼP enter as perturbations and a
classical-electrodynamical metal particle response calcula-

tion where the incident field Ẽ0 and induced field of the

molecule ẼM enter as perturbations should be performed un-
til self-consistency is reached between the two systems.

IV. SUMMARY AND CONCLUSIONS

We have presented a unified and didactic approach to the
understanding of the microscopic theory of single-molecule
SERS from a nanoscale metal particle at zero temperature.
Nonperturbative and perturbative many-body Green’s func-
tion techniques are employed to build in the interaction be-
tween a molecular-electronic system and the conduction
electrons of a nearby metallic particle in the presence of an
external radiation field from first principles. Both image and
local-field effects between molecule and metal are explicitly
included. Due to its generality, other relevant approaches
from the literature, including those that are purely classical
and purely quantum mechanical, are obtained by taking ap-
propriate limits of our formalism.

With emphasis placed upon practical initial numerical
implementation, molecular-electronic correlation is restricted
to the level of Hartree-Fock mean-field theory, while a Bo-
goliubov decomposition of the metallic particle’s plasmon
field is effected to reduce these collective electronic excita-
tions to a classical field; extension of former through a
Kohn-Sham density-functional or Møller-Plesset perturba-
tion theory is discussed; specialization of the latter to the
RPA allows for the analytic presentation of several salient
features of the theory such as the enhanced Raman-scattering
intensity in Eq. �79� and incident and Raman �anti-�Stokes
scattered enhancement factors in Eq. �77�. We believe that
such expressions, where interaction effects are systematically
included from first principles, have never before appeared in
the literature.

Going beyond the RPA, we explicitly describe the re-
sponse of the metal particle’s conduction electrons to the
external field and to the induced electronic density in a
nearby molecule by discretizing the associated classical re-
sponse equations onto a spatial grid. By iteration until self-
consistency is reached, the reaction and back-reaction effects
between molecular and particle systems with each other and
with the external perturbing radiation field may be incorpo-
rated: thereby mathematically closing the theory. Having laid

MANY-BODY THEORY OF SURFACE-ENHANCED RAMAN… PHYSICAL REVIEW A 78, 042505 �2008�

042505-21



out our many-body formalism in this article and demon-
strated its relation to and generalization of other approaches
from the literature, as well as some of its important proper-
ties, implementation is currently underway to numerically
realize these equations and provide theoretical support to
current single-molecule SERS experiments.
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APPENDIX A: INCLUSION OF ELECTRON-ELECTRON
INTERACTION EFFECTS

The effects of electron-electron interaction stemming

from Ĥint in Eq. �19� may be straightforwardly included in
the above formalism with either Møller-Plesset perturbation
theory or density-functional theory. In the latter case, the HF
orbital equation �21� is replaced by the Kohn-Sham orbital
equation

0 = �h0�x� + U0�x� − �q
KS�'q�x� + �

k

�k�V�k	�x�'q�x�

+ �
EXC
M ���/
��x��'q�x� , �A1�

where the total molecular-electronic energy

EM =� ��x��U0�x� + Vext�x��d3x

+ �1/2� � ��x�V�x,x����x��d3xd3x� + G��� �A2�

may be expressed as the sum of the external electron-nuclear
attraction Vext and the universal functional

G��� = T0��� + EXC
M ��� �A3�

with noninteracting electronic kinetic energy T0�T0���. If,
in addition, EXC

M included the interaction effects among con-
duction electrons within the metal particle �or a subset
thereof� and between these conduction electrons and the
molecular-electronic system, then the present approach �with
a few minor modifications� would recover the work pre-
sented in Refs. �22–25�. In this way, the chemical mechanism
of SERS can additionally be incorporated within the present
formalism.

APPENDIX B: POLARIZATION PROPAGATOR AND
LINEAR POLARIZABILITY

The noninteracting HF polarization propagator �38,39� is
defined by the expectation

i��0��x,t;x�,t�� = ��HF
N �T�
�̂�x,t�
�̂�x�,t�����HF

N 	

= �
pqrs

�
q
*�x��p�x�i�pqrs

�0� �t,t���r
*�x���s�x��

=� d�

2

e−i��t−t�� �

pqrs

�
q
*�x��p�x�i�
pr
sq� �1 − �p

0��q
0

� + i0+ + ��q
0 − �p

0�/�
−

�p
0�1 − �q

0�
� − i0+ + ��q

0 − �p
0�/����

r
*�x���s�x�� .

�B1�

It has the retarded component

i�̃�0�
R �x,t;x�,t�� = ��t − t����HF

N ��
�̂�x,t�,
�̂�x�,t�����HF
N 	

= �
pqrs

�
q
*�x��p�x�i���0�

R �pqrs�t,t���r
*�x���s�x��

=� d�

2

e−i��t−t�� �

pqrs

�
q
*�x��p�x�i�
pr
sq

�q
0 − �p

0

� + i0+ + ��q
0 − �p

0�/���
r
*�x���s�x�� �B2�

expressed in terms of the commutator �·,·�. It represents the
probability amplitude that a molecular-electronic density dis-
turbance 
�̂ originating at the space-time point �x� , t�� will
be found later within the N-electron Fermi vacuum ��HF

N 	 at
the space-time point �x , t�, where the electron density opera-

tor �̂�x , t�=�̂†�x , t��̂�x , t� is decomposed into static and

interaction-induced excitation parts according to �̂
= ��HF

N � �̂ ��HF
N 	+
�̂. Proof of Eq. �31� may be demonstrated

by retaining the plasmon field operators �̂ to second order in
perturbation theory in Eq. �30�, defining plasmon Green’s
functions, and then effecting the Bogoliubov decomposition
�8� together with the Heaviside identity ��x�+��−x�=1.
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From Eq. �B2�, the linear HF polarizability is defined by

− i��M
�	�t,t�� = �

pqrs

�q�− ex��p	i���0�
R �pqrs�t,t���r�− ex	�s	

= ��t − t����HF
N ��
d̂��t�,
d̂	�t�����HF

N 	

=� d�

2
i
e−i��t−t���

pq

�p
0� �q�− ex��p	�p�− ex�	�q	

��q
0 − �p

0�/� + � + i0+

+
�q�− ex�	�p	�p�− ex��q	
��q

0 − �p
0�/� − � − i0+ � �B3�

with interaction-induced dipole moment 
d̂�t�
=
�−ex�
�̂�x , t�d3x being related to its expectation value in

an externally perturbed reference state �¯	ext by �
d̂�t�	ext
�d�1��t�+ ¯ =
dt��M�t , t�� ·E0�t��+¯; see Sec. III E 1 for
a review of linear-response theory, and, in particular Eq.
�83�. It can be shown that �M satisfies ��̃M����*= �̃M�−��.
We note that there has been an ongoing debate in the litera-
ture regarding the damping sign ��i0+� convention in the

linear �Kramers-Heisenberg� polarizability. This issue has re-
cently been positively resolved by Bialynicki-Birula and
Sowiński �61� for linear processes and by Mukamel �62� for
nonlinear processes, and the differences between scattering
and response points of view have been clarified. To briefly
summarize, both signs are correct but apply to different
physical situations �61�. The fundamental principle of cau-
sality is always respected, however, response theory de-
scribes interaction processes occurring with a particular
causal time ordering where the initial state and form of in-
teraction are specified and a sum over final states is per-
formed, while scattering theory equally includes all possible
time orderings of interactions between specific initial and
final states and, in this sense, is noncausal �62�. The response
functions �e.g., Eq. �B3�� and transition amplitudes �e.g., Eq.
�B4�� computed here from a many-body perspective are con-
sistent with Refs. �61,62�; the differences in damping sign
between Eq. �B3� and Eq. �B4� below are correct.

In order to compute Raman transition amplitudes, we in-
troduce the Lehmann representation of the generalized non-
interacting molecular transition polarizability

− ���̃M�pq
�	��,− ��� = �

rs

��p�− ex��r	
rs��̃�0�
R �rq����s�− ex�	�q	 + �p�− ex�	�r	
rs��̃�0�

R �rq�− ����s�− ex��q	�

= �
rs
� �p�− ex��r	
rs�s�− ex�	�q	

��q
0 − �r

0�/� + � + i0+ +
�p�− ex�	�r	
rs�s�− ex��q	

��q
0 − �r

0�/� − �� + i0+ � �B4�

between the single-particle states q and p with two potentially different frequencies � and ��, defined in terms of the rq-matrix
elements of the retarded HF polarization propagator as

��̃�0�
R �rqps��� = 
rp
sq��q

0 − �r
0���̃�0�

R �rq��� . �B5�

We point out that the sums in all previous expressions for the polarization propagator and polarizability extend over the set of
all single-particle states of the molecule �67�.
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