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We numerically studied two-component planar Coulomb crystals �planar bicrystals� in rf traps. The number
of ions in the inner shell was found to be limited by the mass difference between the two components and we
calculated the maximum possible number of ions in the inner shells for various mass ratios. When large axial
potentials are applied the spatial separation between components depends on the trapping parameters as well as
on the ion masses and charges. We derived the spatial separation both theoretically and numerically and
discussed its effect on the efficiency of sympathetic cooling and on rf heating. We suggest using planar
bicrystals for implementing quantum simulation and computation.
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I. INTRODUCTION

Planar Coulomb crystals in ion traps are interesting ex-
amples of two-dimensional charged-particle systems, their
study having relevance for electrons in quantum dots �1�,
electrons on the surface of liquid helium �2�, dusty plasmas
�3�, or confined ferromagnetic particles �4�. Moreover, planar
Coulomb crystals have recently come into attention due to
the quantum simulation and computation scheme proposed in
�5,6�. Quantum simulation with planar Coulomb crystals
looks very promising and there are already several suggested
applications such as: effective quantum spin models �7,8�,
Bose-Einstein condensation �9�, or spin-boson models �10�.
Furthermore, planar crystals offer the prospect of realizing
large-scale ion-trap quantum computation and even
measurement-based quantum computation �11�.

Planar crystals in ion traps have been studied theoretically
�12� and small crystals �up to 19 ions� have been experimen-
tally realized �13�, but so far they remained no more than a
curiosity. Multicomponent charged particles trapped in a
two-dimensional quadratic trap have been considered in
�14,15� but the particular features of ion traps such as the
mass separation have not been taken into consideration. In
�16� we analyzed one-component planar Coulomb crystals in
detail. In this paper we discuss two- and multicomponent
planar crystals �either different elements or isotopes of the
same element�. We will refer to two-component planar crys-
tals as planar bicrystals. Since the results on planar bicrystals
can be easily extended to the multicomponent case in the
following discussion we will generally consider bicrystals.
Bicrystals have been known for some time and there are
several experimental and theoretical studies that have inves-
tigated their properties �17–19�. However, to the best of our
knowledge there are no results on planar bicrystals in rf
traps. Our motivation for studying planar bicrystals is two-
fold. On one hand we wish to investigate the properties of
planar bicrystals which are particularly interesting from a
theoretical point of view and relevant for several other physi-
cal systems. Due to the anisotropic confinement planar crys-
tals behave very differently from the three-dimensional ones
�12�. Moreover, when two or more species of ions are in-
volved, new features, such as mass separation, for example,
are expected to emerge. On the other hand we envisage using

them for quantum simulation and computation by exploiting
sympathetic cooling.

The paper is structured as follows: first, we review previ-
ous theoretical and experimental results on bicrystals and
planar crystals and describe our simulation methods. In Sec.
IV, we present our results on the structure of planar bicrystals
and the spatial separation. Next, we discuss sympathetic
cooling and rf heating. Finally, we consider the possibility of
implementing quantum simulation and computation with pla-
nar bicrystals, make a few comments on the experimental
issues, and then draw the conclusions.

II. BACKGROUND

Trapped, cooled ions crystallize when the coupling pa-
rameter ��170, �=Q2 /aWSkBT, where aWS is the Wigner-
Seitz radius ��4� /3�n0aWS=1, n0 the particle number den-
sity� and T is the temperature. In the case of infinite plasmas
bcc crystals are expected. However, in experiments the num-
ber of ions is not large enough and the crystal structure is
determined by the boundary conditions set by the confining
potentials. One-dimensional �1D�, 2D, and 3D structures
varying from strings and zigzags to spheroidal crystals have
been observed in experiments �see �20�, Chap. 18�. Planar
crystals are quite special due to the anisotropic confinement
�12�. Because of this the ion density is not constant �21� and
therefore it is not possible to define �. Moreover, due to the
nonuniform density, particular features are expected to
emerge, especially in the rf-heating behavior �16�. The shape
of Coulomb crystals depends on the confining potentials �see
�12,20,21��. It can be described in using the anisotropy pa-
rameter which is the ratio between the axial and radial fre-
quencies, �=�z

2 /�xy
2 . An oblate spheroidal crystal with N

ions will turn into a planar one when the anisotropy param-
eter, � is larger than the threshold �3�N�.

� � �3�N� = � 96N

�3w1
3�1/2

, �1�

where w1=1.11. . .. �20,22�. Since our interest lies especially
in Coulomb crystals in linear rf traps where the confining
potentials near the trap center can be well-approximated as
harmonic, the above theoretical results will be our starting
point.
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In a linear rf trap, because the radial confining potential is
mass dependent while the axial confining potential is not, a
spatial separation leading to complex shell structures occurs.
Lighter ions gather close to the trap axis while the heavier
ones surround them forming a second shell �17,19�. Assum-
ing that the ions’ masses are M1�M2 and the charges are Q1
and Q2, respectively, the ratio of the outer radius of the inner
shell, b1, and the inner radius of the outer shell a2, is propor-
tional to the square root of the ratio of the masses, b1 /a2
= �Q2 /Q1��M1 /M2�1/2 �23,17�. As mentioned before, the
structure of the ground state of multicomponent charged par-
ticles confined in a 2D trap has been investigated in �14,15�.
However, these studies do not consider the spatial separation
due to the mass dependence of the trapping frequencies. Be-
cause of this the shells’ composition and separation are dif-
ferent: the particles having the largest mass-to-charge ratio
are located nearest to the center. As for ions with identical
charge-to-mass ratios it was shown that, after cooling, the
crystallized state consists of a mixed core surrounded by
nearly degenerated double shells of the different species
�18�.

III. SIMULATION

We used molecular dynamics simulations to study planar
bicrystals. Our simulations are designed using the ProtoMol
framework �24�, which has been already extensively tested
for Coulomb crystals simulations �see, for example, �18,19��.
The simulations ran on a Core2Duo 2.4 GHz 2 GB /RAM
machine. The framework gives much flexibility in the pro-
gramming by allowing the modeling of various forces. The
simulation methods have been described in detail in �16�. In
the static approximation, the axial potential for an ion of
mass Mi and charge Qi is

�z =
1

2
Mi�z

2z2, �2�

where �z is the axial confining frequency �for a linear seg-
mented rf trap �z

2=2kQiUz /Miz0
2, where k is a geometric con-

stant, Uz the voltage applied to the outer segments, and 2z0 is
the length of the inner segment�. The radial potential is

�r =
1

2
Mi��r

2 −
1

2
�z

2��x2 + y2� , �3�

where �r is the radial confining frequency �for a linear seg-
mented rf trap �r

2=Qi
2Uac

2 /2Mi
2r0

4�2, where Uac and � are
the amplitude and frequency of the rf field and r0 is the
distance from the trap center to the surface of the electrodes�.
The time-dependent rf potential is

� = Uac cos �t
x2 − y2

2r0
2 +

kUz

z0
2 �z2 −

�x2 + y2�
2

� . �4�

Due to the presence of the axial voltage, the radial potential
is shifted �xy =��r

2− 1
2�z

2 �25�. This has important conse-
quences in the case of planar bicrystals as we will see in the
following section.

IV. RESULTS

A. Structure of planar bicrystals

In the following we will consider the ions being trapped
in a linear segmented rf trap, whose radial and axial poten-
tials have been described above. This approach is more
meaningful than simply considering two arbitrary frequen-
cies �xy and �z because it is directly relevant to the experi-
ment. Note that the trap geometric and operating parameters
can be adjusted in order to obtain the desired frequencies and
the radial frequency shift is taken into consideration. Let us
begin by taking a look at the anisotropy parameter, �
=�z

2 /�xy
2 , for various ion species as a function of the axial

voltage Uz. As Uz increases, the anisotropy parameter in-
creases faster for the heavier ions, therefore, in a bicrystal the
outer shell will become planar before the inner one. This is
illustrated in Fig. 1 by a perfectly planar bicrystal composed
of 20 40Ca+ and 14 44Ca+ and a bicrystal �not planar� com-
posed of 20 24Mg+ and 14 44Ca+. The radial confinement is
much weaker for the 24Mg+− 44Ca+ bicrystal ��=1.2� than
for the 40Ca+− 44Ca+ one ��=9.3� because otherwise the ions
would be forced out of the trap. In the case of the 24Mg+

− 44Ca+ bicrystal no matter how we adjust the trapping
parameters �i.e., increase �� it will not become perfectly pla-
nar. The anisotropy parameter reaches its maximum when

FIG. 1. �Upper� Planar bicrystal composed of 20 40Ca+ �gray�
and 14 44Ca+ �black� ions, radius �40 	m, radial separation
�16 	m. �Lower� Bicrystal composed of 20 24Mg+ �gray� and 14
44Ca+ �black� ions, radius �55 	m, radial separation �32 	m. Ra-
dial and axial plane views. The simulations are performed using
static potential.
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�r
2− 1

2�z
2 is very small �i.e., QiUac

2 z0
2−2kUzMir0

4�2 is very
small�. As QiUac

2 z0
2−2kUzMir0

4�2
0 the ions of type i can-
not be trapped anymore because they are forced out of the
trap by the axial potential which is stronger than the radial
one. It follows that there exists a certain maximum number
of light ions such that both shells are planar. This number,
Nmax, does not depend on the trapping parameters. Consider-
ing a bicrystal with ions of masses M1�M2, �Q1=Q2� Nmax
can be easily derived from the following equation:

�3�Nmax� =
2M1

M2 − M1
. �5�

If the charges are not equal, then �3�Nmax�=2Q2M1 / �Q1M2
−Q2M1�. Note that for species with identical charge-to-mass
ratio the anisotropy parameter is the same. This case is spe-
cial and will be discussed later. Using the above equation, we
can derive the maximum number of ions in the inner shell for
perfectly planar bicrystals �i.e. both the inner and outer shell
are planar�. The results are shown in Fig. 2. We calculated
Nmax as a function of M1 for different values of M2. The
charges are assumed to be equal. When the mass difference
is large one can observe a stepwise behavior that disappears
as the mass difference becomes smaller. Here are some ex-
amples of interest for experiments: 40Ca+− 44Ca+ Nmax=176,
24Mg+− 26Mg+ Nmax=254, 24Mg+− 40Ca+ Nmax=3, 137Ba+

− 200Hg+ Nmax=8, and 87Sr+− 137Ba+ Nmax=5. It follows that
perfectly planar bicrystals with many light ions are not al-
ways possible, especially when the ions have very different
masses. Consequently, planar bicrystals with a large inner
shell are only possible for ions with a very small mass dif-
ference, for example, isotopes of the same element like
44Ca+− 44Ca+ or 24Mg+− 26Mg+.

In Fig. 3 four examples of planar bicrystals with different
numbers and types of ions are shown. The values of � for the
light ions are 3.7 �a�, 9.3 �b� and �c�, and 16 �d�. In �a� and
�b� the number of ions is identical but the ratio of masses is
different so the effect of the spatial separation can be easily
observed. A large separation between the components can be
seen in �a� as compared to �b� where the mass difference
being small, the separation is also small. In �c� the 20 40Ca+

FIG. 2. Nmax as a function of the mass of the light ions for
different values of M2. M2=40 �square�, M2=87 �dot�, and M2

=137 �triangle�.

FIG. 3. Examples of planar bi-
crystals �not to scale�. �a� eight
137Ba+ �gray� and ten 200Hg+

�black� ions, radius �35 	m, �b�
eight 24Mg+ �gray� and ten 26Mg+

�black� ions, radius �33 	m, �c�
20 40Ca+ �gray� and 18 44Ca+

�black� ions, radius �42 	m, and
�d� 100 40Ca+ �gray� and 100
44Ca+ �black� ions, radius
�517 	m. The simulations are
performed using static potential.
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ions are completely surrounded by a ring of 44Ca+ ions. The
same thing happens in �d� where we can observe the 44Ca+

ions forming three rings. For planar bicrystals the inner shell
has the typical structure of a 2D Wigner crystal described in
�26� while the outer shell always consists of well-defined
concentric rings �see Fig. 3�d��. The inner shell has the a nice
triangular-lattice structure that would be useful for imple-
menting quantum simulation and computation. In Fig. 4 two
examples of multicomponent planar crystals are shown: a
planar crystal containing three ion species: m=44, 40, and 34
and a planar crystal containing four ion species: m=44, 40,
38, and 34. For the former the radius is �75.7 	m, while for
the latter the radius is �79 	m. The shell structure is very
obvious here, too.

We also considered planar bicrystals with identical
charge-to-mass ratio. In Fig. 5 an example of such a crystal
containing 20 40Ca+ and 20 80Al2+ ions is shown. The radius
is �35 	m. In this case there are no shells and ions of dif-
ferent masses form a mixed core �see also �18��. The final
configuration depends on the initial conditions. The distance
between neighboring ions is variable because the Coulomb
repulsion is different: the 40Ca+− 80Al2+ minimum distance is
about 9 	m, the 40Ca+− 40Ca+ minimum distance is �8 	m,
and the 80Al2+− 80Al2+ minimum distance is �10 	m. This
special case is not of interest neither for our theoretical re-

sults concerning the spatial separation and the maximum
number of ions in the inner shell nor for implementing quan-
tum simulation and computation. However, it should be men-
tioned as an exceptional case.

B. Spatial separation

For the isotopes of the same element, the spatial separa-
tion between shells is about the same as the average distance
between the ions. This can be seen in Fig. 1 �upper�. As
predicted by theory, for planar bicrystals with a large mass
difference between the two components, the spatial separa-
tion is also large. This is illustrated in Fig. 1 �lower�. The
spatial separation will influence the efficiency of sympathetic
cooling as suggested in �17�. We mentioned in Sec. II that the
spatial separation between ions depends only on the ion
charges and masses. If we denote by bi the outer radius of
shell i �mass Mi� and by ai the corresponding inner radius we
get �23�

bi

ai+1
=

Qi+1

Qi

� Mi

Mi+1
. �6�

We have M1�M2�¯ and of course a1=0. It is obvious that
the separation occurs because the pseudopontentials are un-
equal. If we do not consider the radial frequency shift due to
the application of the static potential Uz �see Sec. III�, the
ratio of the outer and inner radii of the shells depends only
on the ion charges and masses. However, when Uz is large
�as in the case of planar bicrystals� we have to take into
consideration the effect of the radial frequency shift. We de-
rived the spatial separation theoretically like in �23,27� and
obtained

bi

ai+1
=�Qi+1

2 Uac
2 z0

2 − 2kUzQi+1Mi+1r0
4�2

Qi
2Uac

2 z0
2 − 2kUzQiMir0

4�2

Mi

Mi+1
. �7�

By taking Uz=0 V we recover Eq. �6�. In the limit of
Mi	Mi+1 and Qi=Qi+1, bi /ai+1	1 as expected. We com-
pared the theoretical results given by Eq. �7� with the mo-
lecular dynamics simulations and we found them to be in
good agreement. This is shown in Fig. 6. For the numerical
values from the molecular dynamics simulations corrections
were required due to the fact that the estimated bi and ai+1
are not precisely the same as the theoretical ones. In the
simulations when Mi	Mi+1, bi /ai+1 does not become 1. This
is because there is always some distance between the ions so
bi is never quite equal to ai+1 as in the theory. Moreover, as
Mi	Mi+1 the components become mixed and instead of a
shell structure we get something similar to the configuration
in Fig. 5. The corrections were made such that the minimum
distance between the ions is taken into consideration when
calculating bi and ai+1.

V. DISCUSSION

A. Sympathetic cooling and rf heating

The idea of using sympathetic cooling in quantum com-
putation is certainly not new �28,29�. Several studies have
investigated sympathetic cooling using both molecular dy-

FIG. 4. �Left� Planar crystal containing three ion species: m
=44 �black�, m=40 �dark gray� and m=34 �light gray�. The radius
is �75.7 	m. �Right� Planar crystal containing four ion species:
m=44 �black�, m=40 �dark gray�, m=38 �gray� and m=34 �light
gray�. The radius is �79 	m. The simulations are performed using
static potential.

FIG. 5. Planar bicrystal with identical charge-to-mass ratio: 20
40Ca+ �gray� and 20 80Al2+ �black� ions. Radial and axial plane
views. The radius is �35 	m. The simulations are performed using
static potential.
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namics simulations and experimental data �30–32�. However,
sympathetic cooling has not been considered before in the
context of planar crystals. The reason why we are interested
in the sympathetic cooling of planar bicrystals is that we
wish to keep a planar crystal cold for a long time in order to
be able to perform quantum simulation and computation. For
this purpose continuously cooling the outer shell of a planar
bicrystal would help maintain the inner shell at a low tem-
perature, which in turn would allow us to use it for imple-
menting quantum simulation and computation.

Let us first take a look at the theory of sympathetic cool-
ing. It is well-known that the efficiency of sympathetic cool-
ing depends on the number of ions and the spatial overlap
between the two species �20�. The sympathetic cooling of
ions in the gas phase has been investigated in �31�. However,
in the crystal phase the efficiency of sympathetic cooling
depends on the spatial separation as suggested in �17�. The
trapping parameters also influence the sympathetic cooling
rate because they determine the rf-heating rate �see �16��.

Figure 7 illustrates the effect of spatial separation on the
efficiency of sympathetic cooling. Only here we used static
potential such that rf heating does not affect the results. In
both cases we used trapping potentials providing ��5 �for
the light ions� and we directly cooled the heavy ions. We
plotted the average temperatures of the light, the heavy and
all the ions. The upper graph shows the sympathetic cooling
of eight 24Mg+ and eight 26Mg+ �the crystal is shown in the
inset�. Since the separation is small the efficiency of sympa-
thetic cooling is high. The temperature decreases very fast
for both the directly and sympathetically cooled ions. The
final temperatures are in the 	K range. Note that in the simu-
lation we can reach arbitrarily low temperatures �far lower
than the Doppler limit�. This is because heating mechanisms
such as rf heating, heating due to “patch fluctuations” or the
imperfections of the trap electrodes, and diffusive heating are
not taken into consideration. The reason for this is that, ex-
cept for the rf heating, these phenomena are rather difficult to
model and quantify. In the lower graph �eight 137Ba+ and
eight 200Hg+ ions�, due to the large spatial separation, sym-

pathetic cooling is highly inefficient. Due to the heat ex-
change between the two components the decrease of the tem-
perature is very slow. The final temperature for Ba is �1 K
and for Hg�0.03 K. We are currently investigating in detail
the dependence of the efficiency of sympathetic cooling on
various parameters and the results will be reported else-
where.

The rf heating of Coulomb crystals has been investigated
by several groups �21,32–34�. In �16� we studied the rf heat-
ing of planar crystals: the dependence of the heating rate on
the trap parameters and the effects of heating on the structure
of the planar crystals. The rf heating of planar bicrystals has
not been investigated so far. From our molecular dynamics
simulations of rf heating we found out that the ions in the
outer shell have larger rf heating rates. This was to be ex-
pected as farther from the trap center the rf field is changing
more dramatically than near the center. We also expect the
ions in the outer shell to heat more when the spatial separa-
tion is large because they are pushed farther from the center.
This was also confirmed by our simulations. These are illus-
trated in Fig. 8 in which the rf heating rates of the inner and
outer shells for different mass ratios are displayed. Both
shells have eight ions of masses M1 and M2, respectively.
The corresponding bicrystals appear in the insets. For
M1 /M2=1 we plotted the rf-heating rate of all 16 ions in the
crystal. One can see that the heating rate of the heavy ions
�M2� is larger and that for big mass differences �i.e., large
spatial separations� the difference between the rf heating
rates of the two components is also large. Figures 7 and 8
show that a large spatial separation, i.e., large mass differ-
ence, is not desirable from the point of view of efficient
sympathetic cooling or reducing rf heating. The above con-
clusions are especially relevant for experiments on the sym-
pathetic cooling of molecular ions, organic molecules, or

FIG. 6. The spatial separation b1 /a2 as calculated from Eq. �7�
�square�, Eq. �6��dot�, and derived from molecular dynamics simu-
lations �circle�.

FIG. 7. �Upper� Sympathetic cooling of eight 24Mg+ �gray� and
eight 26Mg+ �black�. 26Mg+ is directly cooled. The final tempera-
tures are in the 	K range. �Lower� Sympathetic cooling of eight
137Ba+ �gray� and eight 200Hg+ �black�. 200Hg+ is directly cooled.
The final temperature for Ba is �1 K and for Hg�0.03 K. The
insets show the respective bicrystals. The simulation is performed
using static potential.
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heavy highly charged ions. It is important not to forget that
in Penning traps the spatial separation has a different cause
and therefore Eq. �7� does not apply.

B. Implementing quantum simulation and computation

From the results we presented above it looks like bicrys-
tals composed of isotopes of the same element might be
useful for implementing quantum simulation and computa-
tion. When the mass difference is small, the inner shell can
contain many ions and due to the small radial separation
sympathetic cooling is expected to be efficient. Then by con-
tinuously cooling the outer shell the inner shell will be main-
tained cold and therefore it could be used for implementing
quantum simulation and computation as proposed in �5�. Let
us take the example of a planar bicrystal containing 40Ca+

and 44Ca+ ions like the ones in Figs. 1 upper� or 3�c� and
3�d�. Calcium ions are Doppler cooled using the S1/2-P1/2
transition �397 nm� and repumping from D3/2 to P1/2
�866 nm�. Selective cooling of only one isotope can be real-
ized using the isotope shifts +842 MHz for S1/2-P1/2 and
−4495 MHz for D3/2-P1/2. This was demonstrated by our

group in �35�. We calculated the rf-heating rate of a planar
bicrystal consisting of 20 40Ca+ and 20 44Ca+ with and with-
out continuous cooling of the outer shell. We used the geo-
metric parameters corresponding to the trap in �19� and
Uac=540 V, Uz=80 V. Due to the large Uac we will get large
heating rates as shown in �16�. First all cooling is switched
off and the kinetic energy is recorded for 50 000 rf periods.
The resulting heating rate for 40Ca+ is 1.2�10−2 K /s and for
44Ca+ 1.3�10−2 K /s. Next, we do the same thing just this
time we let the cooling for 44Ca+ stay on. The rf heating is
decreased to 4.1�10−5 K /s for the inner 40Ca+ shell. This
numerical example shows the advantage of using planar bi-
crystals and sympathetic cooling. In experiment, planar bic-
rystals and multicomponent crystals with arbitrary numbers
of ions in each shell could be realized by making use of
selective photoionization loading �36� and selective cooling.
Continuous cooling of the outer shell would reduce the rf
heating of the inner shell significantly and therefore quantum
simulation and computation could be implemented in this
setup.

VI. CONCLUSIONS

We investigated planar bicrystals in rf traps and found that
because of the mass dependence of the radial potential inter-
esting features occur. First, the number of ions in the inner
shell is limited by the mass difference between the two com-
ponents. We calculated the maximum number of ions in the
inner shell as a function of the ion masses. Second, the spa-
tial separation between the shells depends on the trapping
parameters �i.e., the radial frequency shift� as well as the ion
masses and charges. We derived the spatial separation be-
tween the shells when strong axial confinement is applied
both theoretically and numerically. Then we discussed the
effect of spatial separation on sympathetic cooling and rf
heating. Finally, we proposed the use of planar bicrystals for
implementing quantum computation and simulation by ex-
ploiting sympathetic cooling and suggested how this could
be realized experimentally.
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