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Tomography of the two-qubit density matrix shared by Alice and Bob is an essential ingredient for guaran-
teeing an acceptable margin of confidentiality during the establishment of a secure fresh key through the
quantum key distribution scheme. We show how the Singapore protocol for key distribution is optimal from
this point of view, due to the fact that it is based on so-called symmetric informationally complete positive-
operator-valued measure �SIC POVM� qubit tomography which allows the most accurate full tomographic
reconstruction of an unknown density matrix on the basis of a restricted set of experimental data. We illustrate
with the help of experimental data the deep connections that exist between SIC POVM tomography and
discrete Wigner representations. We also emphasize the special role played by Bell states in this approach and
propose a protocol for quantum key distribution during which a third party is able to concede or to deny a
posteriori to the authorized users the ability to build a fresh cryptographic key.
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I. INTRODUCTION

The goal of quantum cryptographic protocols is to distill a
fresh cryptographic key from data encoded in noncommuting
bases. In order to guarantee the confidentiality of the key, it
is essential that Alice and Bob, the authorized users of the
channel, check the correlations between their respective sig-
nals in order to estimate the noise present along the trans-
mission line. This procedure imposes severe constraints to a
hypothetical eavesdropper �Eve� who cannot manipulate the
signal at will and sees her freedom of action seriously lim-
ited by the control performed by Alice and Bob. This control
procedure is optimal when the correlations tested by Alice
and Bob are such that they allow them to carry out a full
tomography of the signal �1�. This is the case, for instance,
with the so-called six states protocol �2� during which Alice
and Bob analyze their qubits in three mutually unbiased
bases, which allows them to reconstruct the full density ma-
trix of the signal. Due to the fact that in realistic situations
the length of the key is always finite and that it is preferable
that Alice and Bob do not sacrifice too many data during
their check of the correlations, the optimal tomographic pro-
cedure is the one for which Alice and Bob are able to maxi-
mize the accuracy of their estimation of the signal, keeping
fixed the quantity of data that they sacrifice in order to esti-
mate the correlations. This problem has been studied in the
past and it appears that the optimal procedure for performing
full tomography �according to this figure of merit� is to mea-
sure a symmetric informationally complete positive-
operator-valued measure �SIC POVM� �3–5�. This approach
is at the core of the so-called Singapore protocol �6� for
quantum key distribution where the signal is encrypted in

such a way that Alice and Bob directly measure the SIC
POVM distribution of their respective bits, and are conse-
quently able to reconstitute the two-qubit density matrix of
the full signal.

In the present paper we shall discuss certain advantages of
the double qubit SIC POVM scheme from the point of view
of tomography �Sec. II�. We shall then establish a relation
between SIC POVM tomography and the discrete Wigner
representation �Sec. III and the Appendix�. We shall also
show �Sec. IV� that the Bell states constitute the optimal
signal for the establishment of a cryptographic key. In the
same section, we shall show how it is possible, thanks to
slight modifications of the Singapore protocol �6�, to provide
to a third party who controls the source �Charles� the ability
to deny to Alice and Bob the possibility to build a fresh key
although they already recorded all the results of their mea-
surements. Charles has nevertheless the possibility to choose
a posteriori to provide them the possibility to do so, by com-
municating to them the relevant information on a classical
communication line. Besides, even in the case that he allows
them to establish a fresh key, Charles remains ignorant of the
content of this key.

It is worth noting that, due to the fact that it is impossible
to amplify a quantum cryptographic key by classical ampli-
fiers, which prohibits the use of standard communication
channels, the installation of a communication line for quan-
tum key distribution �QKD� will remain an expensive invest-
ment. It is thus probable that in the case that quantum cryp-
tography gets successfully commercialized, Alice and Bob,
the authorized users of a quantum cryptographic channel,
will not own it personnally but they will rather rent it to its
owner �Charles�. In the case that Alice and Bob rent the line
to Charles in order to exchange a key, the protocol described
in this paper presents obvious advantages regarding the pos-
sible commercialization of quantum key distribution.

Finally, we shall present in Sec. V experimental results
that show that within an error of a few percent, all the theo-
retical concepts developed in this paper are concretely
realizable.
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II. ABOUT TWO-QUBIT TOMOGRAPHY

A. Optimal projection-valued-measure tomography

The estimation of an unknown state is one of the impor-
tant problems in quantum information and quantum compu-
tation �7,8�. Traditionally, the estimation of the d2−1 param-
eters that characterize the density matrix of a single qudit
consists of realizing d+1 independent von Neumann mea-
surements �also called projection-valued-measure measure-
ments or PVM measurements in the literature� on the system.

As it was shown in �9,10�, the PVM approach to tomog-
raphy can be optimized regarding redundancy during the ac-
quisition of the data. Optimality according to this particular
figure of merit is achieved when the d+1 bases in which the
PVM measurements are performed are “maximally indepen-
dent” or “minimally overlapping” so to say when they are
mutually unbiased �two orthonormal bases of a
d-dimensional Hilbert space are said to be mutually unbiased
bases �MUBs� if whenever we choose one state in the first
basis, and a second state in the second basis, the modulus
squared of their in product is equal to 1 /d� �9–11�. It is well
known that, when the dimension of the Hilbert space is a
prime power, there exists a set of d+1 mutually unbiased
bases �9,10,12�. This is the case, for instance, with the bases
that diagonalize the generalized Pauli operators �12,13�.
Those unitary operators form a group which is a discrete
counterpart of the Heisenberg-Weyl group, the group of dis-
placement operators �14�, that present numerous applications
in quantum optics and in signal theory �15�.

For instance, when the system is a spin-1 /2 particle, three
successive Stern-Gerlach measurements performed along or-
thogonal directions make it possible to infer the values of the
three Bloch parameters px, py, and pz defined by

��x� = px = � sin � cos � ,

��y� = py = � sin � sin � ,

��z� = pz = � cos � . �1�

Once we know the value of these parameters, we are able to
determine unambiguously the value of the density matrix,
making use of the identity

���,�,�� =
1

2
�I + px�x + py�y + pz�z� =

1

2
�I + �� · �� � . �2�

When the qubit system is not a spin-1 /2 particle but consists
of the polarization of a photon, a similar result can be
achieved by measuring its degree of polarization in three
independent polarization bases, for instance, with polarizing
beam splitters, which leads to the Stokes representation of
the state of polarization of the �equally prepared� photons.

Tomography through von Neumann measurements pre-
sents an inherent drawback: in order to estimate the d2−1
independent parameters of the density matrix, d+1 measure-
ments must be realized which means that d2+d histograms of
the counting rate are established, one of them being sacri-
ficed after each of the d+1 measurements in order to normal-
ize the corresponding probability distribution. From this
point of view, the number of counting rates is higher than the

number of parameters that characterize the density matrix,
which is a form of redundancy, inherent to the tomography
through von Neumann measurements.

In the case of tomographic protocols for QKD, Alice and
Bob necessarily perform locally and independently a tomog-
raphic process on their respective qubits because they are
separated in space and are not able in principle to carry out
nonlocal measurements �13,16�. Of course by comparing the
data gathered during local measurements they can recon-
struct the full density matrix but this procedure is highly data
consuming in the case of von Neumann �PVM� tomography.
For instance, in the case that the carrier of the key is a qubit
it requires them to estimate 36 joint probabilities. In the
framework of quantum key distribution where the number of
available data is per se limited and where the protocols of
reconciliation and privacy amplification are per se highly
data consuming it is better to find a tomographic procedure
that minimizes the redundancies in the data acquisition. We
shall discuss this procedure in the next section.

B. Optimal qubit POVMs for tomography

It is known that a more general class of measurements
exists that generalizes the von Neumann �PVM� measure-
ments. This class is represented by the POVM measurements
�17�, of which only a reduced subset, the PVM measure-
ments correspond to the von Neumann measurements. The
most general POVM can be achieved by coupling the system
A to an ancilla or assistant B and performing a von Neumann
measurement on the full system. When both the system and
its assistant are qudit systems, the full system belongs to a
d2-dimensional Hilbert space, which makes it possible to
measure d2 probabilities during a von Neumann measure-
ment performed on the full system. As always, one of the
counting rates must be sacrificed in order to normalize the
probability distribution so that we are left with d2−1 param-
eters. When the coupling to the assistant and the von Neu-
mann measurement are well chosen, we are able, in prin-
ciple, to infer the value of the density matrix of the initial
qudit system from the knowledge of those d2−1 parameters,
in which case the POVM is said to be informationally com-
plete �IC�. Obviously, this approach is optimal in the sense
that it minimizes the number of counting rates �thus of inde-
pendent detection processes� that must be realized during the
tomographic process. In practice, the implementation of this
class of optimal POVMs is simple and has advantages of its
own compared to the usual polarization measurements based
on von Neumann projections �18�.

IC POVMs can also be further optimized regarding the
independence of the data collected in different detectors. The
so-called covariant symmetric-informationally-complete
�SIC� POVMs �3� provide an elegant solution to this optimi-
zation constraint. A discrete version of the Heisenberg-Weyl
group �19� also plays an essential role in the derivation of
such POVMs, which are intimately associated to a set of d2

minimally overlapping projectors onto pure qudit states �the
modulus squared of their in product is now equal to
1 /�d+1�.

In the rest of this paper we shall remain exclusively con-
cerned with qubit SIC POVMs. It has been shown in the
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past, on the basis of different theoretical arguments �3–5�,
that the optimal qubit SIC POVM is in one-to-one correspon-
dence with a tetrahedron on the Bloch sphere. Intuitively,
such tetrahedrons homogenize and minimize the informa-
tional overlap or redundancy between the four histograms
collected during the POVM measurement. Some of such tet-
rahedrons can be shown to be invariant under the action of
the Heisenberg-Weyl group which corresponds to so-called
covariant SIC POVMs �3�. Concretely, during the measure-
ment of such a SIC POVM, four probabilities of firing
P00, P01, P10, P11 are measured which are in one-to-one cor-
respondence with the Bloch parameters px, py, and pz as
shown in the identity

P00 =
1

4�1 +
1
�3

�px + py + pz�	 ,

P01 =
1

4�1 +
1
�3

�− px − py + pz�	 ,

P10 =
1

4�1 +
1
�3

�px − py − pz�	 ,

P11 =
1

4�1 +
1
�3

�− px + py − pz�	 . �3�

2P00 is the average value of the operator � 1
2 ���0,0+ � 1

�3
���1,0

+�0,1+�1,1�� �where �i,j =��−1�i·j
k=0
1 �−1�kj�k+ i mod 2��k�;

actually, �0,0= Id, �0,1=�z, �1,0=�x, �1,1=�y�. One can
check that this operator is the projector ������ onto the pure
state ���=��0�+	*�1� with �=�1+ 1

�3
, 	*=ei
/4�1− 1

�3
. Un-

der the action of the Pauli group it transforms into a projector
onto one of the four pure states �i,j���; i , j: 0,1:
�i,j�������i,j = � 1

2 ���1− 1
�3

��0,0+ � 1
�3

��
k,l=0
1 �−1�i·l−j·k�k,l�. The

signs �−1�il−jk reflect the �anti�commutation properties of the
Pauli group. So, the four parameters Pij are the average val-
ues of projectors onto four pure states that are “Pauli dis-
placed” of each other. The in product between them is equal,
in modulus, to 1 /�3=1 /�d+1, with d=2 which is the signa-
ture of a SIC POVM �3�. One can show �3–5� that such
tetrahedrons minimize the informational redundancy be-
tween the four collected histograms due to the fact that their
angular opening is maximal. The number of counting rates
necessary in order to realize a tomographic process by a
factorizable POVM measurement is optimal and equal to 16
in the two-qubit case. Moreover, the double qubit SIC
POVM tomographic scheme is optimal among the factoriz-
able two-qubit schemes if we consider as a figure of merit
�20� the determinant D of the matrix that maps the joint
probabilities of firing that are collected during the experi-
ment onto the coefficients of the density matrix �4�. This
determinant is optimal �minimal� for the SIC POVM �tetra-
hedron process� in the single qubit case and factorizes when
the tomographic process does, so that the determinant of the
double tetrahedron process is extremal among the determi-
nants of all factorisable tomographic processes.

For all these reasons, the SIC POVM approach is at the
core of the so-called Singapore protocol �6� for quantum key

distribution where the signal is encrypted in such a way that
Alice and Bob directly measure the SIC POVM distribution
of their respective bits.

III. QUBIT SIC POVMs AND DISCRETE WIGNER
DISTRIBUTION

A. Single qubit case

The qubit covariant SIC POVM possesses another very
appealing property �21� which is also true in the qutrit case
but not in dimensions strictly higher than 3 �22�: the qubit
covariant SIC POVM is a direct realization �up to an additive
and a global normalisation constants� of the qubit Wigner
distribution of the unknown qubit a. Indeed, this distribution
W is the symplectic Fourier transform of the Weyl distribu-
tion w �23,24� �defined by the relation wi,j = �1 /2�Tr�� .�i,j��
which is, in the qubit case, equivalent �up to a relabeling of
the indices� to its double qubit-Hadamard or double qubit-
Fourier transform as follows:

Wk,l = �1/2� 

i,j=0

1

�− 1�il−jkwi,j

= ��1/�2�

i=0

1

�− 1�il	��1/�2�

j=0

1

�− 1�−jk	wi,j . �4�

One can check that Pk,l= �1 /�3�Wk,l+ �1−1 /�3� /4. The
discrete qubit-Wigner distribution directly generalizes its
continuous counterpart �25� in the sense that it provides in-
formation about the localization of the qubit system in a
discrete 2�2 phase space �23,26�. For instance, the Wigner
distribution of the first state of the computational basis �spin
up along Z� is equal to Wk,l��0��= �1 /2��k,0, which corre-
sponds to a state located in the “position” spin up �along Z�,
and homogeneously spread in “impulsion” �in spin along X�,
in accordance with uncertainty relations �27�. Similarly, the
Wigner distribution of the first state of the complementary
basis �spin up along X� is equal to Wk,l��1 /�2���0�+ �1���
= �1 /2��l,0. For information, the fidelities that were achieved
in recent experimental realizations of one qubit SIC POVM
tomography were shown to be of the order of 92% in a NMR
realization �28� and 99% in a quantum optical realization
�18�.

B. Double qubit case

Certain Wigner distributions factorize in the sense that in
the two-qubit case it is possible to measure a two-qubit or
quartit-Wigner distributions �29,30� by measuring simulta-
neously local qubit SIC POVMs. For instance, a factorizable
Wigner distribution derived in Refs. �29,30� in the case d
=4 is obtained by performing the tetrahedron measurement
on the first qubit and the antitetrahedron measurement on the
second qubit. The tops of the antitetrahedron are obtained
from the tops of the tetrahedron by performing on the Bloch
sphere a central symmetry around the origin �Fig. 1�. This
transformation is not unitary, but one can show �p. 4 of Ref.
�31�� that the antitetrahedron is equivalent to the tetrahedron,
up to a well-chosen unitary transformation, provided we
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modify the order of its branches accordingly. Henceforth we
shall most often in the following refer to the simultaneous
measurement of local SIC POVMs under the label “double
tetrahedron” measurement without noting whether we group
the 16 joint probabilities assigned to the 8 �4+4� detectors
according to the tetrahedron-tetrahedron �TT� or tetrahedron-
antitetrahedron �TA� configuration.

C. Double tetrahedron measurement and tomography

The relation between the statistics of the double tetrahe-
dron measurement and the double Wigner distribution is a
straightforward generalization of the corresponding relation
in the single qubit case. Let us denote Pk,l �where k and l run
from 0 to 3� the joint probability of firing of the kth �lth�
tetrahedron detector on qubit a �tetrahedron detector on qubit
b�, and let us define Pk

a �Pl
b� by Pk

a=
l=0
3 Pk,l

ab �Pl
b=
k=0

3 Pk,l
ab�,

then the double Wigner coefficients Wk,l can be derived from
the statistics of joint detections via the relation

Wk,l
ab = 3Pk,l

ab + �3�1 − �3�/4�Pk
a + Pl

b� + ��1 − �3�/4�2, �5�

where the indices k and l run from 0 to 3.
As the Wigner operators form a basis of the 4�4 linear

operators and are orthogonal relatively to the trace norm, we
can reconstruct the full density matrix once we know its
double Wigner coefficients, and those are in one to one cor-
respondence with the joint probabilities of firing of the de-
tectors associated to branches of the local �a and b� tetrahe-
drons.

In a following section we shall study the properties of
Wigner distributions of Bell states and compare theoretical
predictions with data obtained from direct experimental mea-
surement of the correlations.

IV. OPTIMAL ENTANGLED STATES
AND CRYPTOGRAPHY

A. Optimal entangled states for cryptography

We learned from the entanglement-based protocol pro-
posed by Ekert �32� that it can be useful to exploit nonlocal
correlations between entangled distant quantum systems in

order to build a fresh cryptographic key. At this level we did
not mention yet explicitly in which bipartite �two-qubit� state
the signal was prepared. We shall now show that when the
key is established by the double tetrahedron protocol �as in
Singapore’s protocol �6��, the optimal strategy is to prepare
the pairs of qubits sent to Alice and Bob along Bell states �up
to local unitaries�.

The main argument is a symmetry argument. As we men-
tioned, qubit SIC POVMs are optimal because they are sym-
metric, e.g., such POVMs are defined by four pure states that
form an equiangular set �tetrahedron� and are treated on the
same footing. In order to exploit maximally this symmetry it
is natural to try to find entangled states that exhibit either
symmetric correlations or symmetric anticorrelations be-
tween different branches of the tetrahedrons in the a and b
regions. As the tomographic process is full �the Wigner op-
erators form a complete orthonormal basis�, once we know
the correlation, we also know the state that produces such
correlations. We shall show that all states that exhibit sym-
metric anticorrelations are Bell states up to well-chosen local
unitaries �rotations�, and that no physically realizable state
exhibits symmetric correlations.

In the case that we consider situations during which the
experimental configuration of Alice and Bob’s devices is
fixed there remains a single degree of freedom that consists
of varying the labels of the four detectors at each side.

There are then essentially 4!=24 ways �and not 242 ways
due to the isotropy of correlations� to group the branches of
the tetrahedrons at each side, so that we must now investi-
gate the possibility of perfect correlations �anticorrelations�
in each of those cases. The 24 permutations between the four
tops of the tetrahedron can be realized either by unitary or by
antiunitary transformations so that those permutations can be
partitioned according to their order and their parity �we can
define the parity of a permutation in the function of the de-
terminant of the 3�3 matrix that represents the action at the
level of the Bloch sphere of the orthogonal or “antiorthogo-
nal” transformation that realizes the corresponding per-
mutation at the level of the tetrahedron branches: even
transformations correspond to a value +1 �orthogonal trans-
formations�, odd ones to −1 �antiorthogonal transforma-
tions�� �39�.

The identity is even and of order 1, there are three �4
�3 /2�2� even permutations of order 2 with no fixed top
and 6 �4�3 /2� odd permutations of order 2 with two fixed
tops, eight �4�2� even permutations of order 3 with one
fixed top, and six odd permutations of order 4 with no fixed
top. These 12 �identity+11� even permutations can be real-
ized by unitary transformations: the three even permutations
of order 2 with no fixed top are associated to the Pauli �
operators �rotations of 180° around X, Y, and Z� while the
eight even permutations of order 3 with one fixed top corre-
spond to rotations of + /−120 degrees around the axis of the
fixed top.

The 12 remaining �odd� permutations can be decomposed
into an odd permutation that fixes two tops and permutes the
two remaining ones �described in details in Ref. �31�, foot-
note 38�, and an even permutation that can be realized by
one among the 12 aforementioned unitary transformations.
The reasoning goes as follows: once we impose symmetric

0

1

2

3

0

1

2

3

FIG. 1. �Color online� Relative orientation of the tetrahedron
�left� and antitetrahedron �right� POVMs on the Bloch sphere.
Transforming from the tetrahedron POVM to the antitetrahedron
POVM involves both a rotation and a relabeling of the possible
outcomes.
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correlations �anticorrelations� the Wigner distribution is fully
determined and so is the density matrix of the corresponding
state. In principle, we ought to construct case by case 24
candidate states for the symmetric correlations and 24 other
ones for the symmetric anticorrelations, and check whether
the candidates that we find so are physical states �positive-
definite Hermitian operators of trace 1�. Due to the unitary
equivalence between all even configurations and all odd
ones, it is enough to check two candidates in the case of
perfect correlations and two candidates in the case of perfect
anticorrelations, which we shall do now.

Let us first consider a TT �even� configuration and let us
assume the existence of perfect correlations between equally
labeled detectors at Alice and Bob’s sides so that the joint
probabilities obey Pk,l= �1 /4��k,l; k , l: 0, 1, 2, 3. The expres-
sion �5� considerably simplifies in the case of symmetric
correlations, when all detectors fire with equal probability
one-fourth at each side. Then we have

Wk,l
ab = 3Pk,l

ab − �1/8� . �6�

Making use of this relation we get that Wk,l
= �−1 /8�+ �3 /4��k,l; k , l: 0, 1, 2, 3. Making use of the identity
�=
ka,kb,la,lb=0

1 �1 /4�Wka,la
Wkb,lb

where the local �qubit� Wig-
ner operators were defined in Eq. �4�, we find by a straight-
forward computation that �= �1 /4��Idab+3��X

a�X
b +�Y

a�Y
b

+�Z
a�Z

b�� = �00��00� + �11��11�− �1 /2��01��01�− �1 /2��10��10�
+ �3 /2��01��10�+ �3 /2��10��01�. Such an operator possesses a
negative eigenvalue so that it cannot be realized physically.

If now we impose perfect �and isotropically distributed�
anticorrelations then the joint probabilities must obey Pk,l
= �1 /12�− �1 /12��k,l; k , l: 0, 1, 2, 3.

By a similar treatment, we find that

Wk,l = �1/8� − �1/4��k,l;k,l:0,1,2,3. �7�

and �= �1 /4��Idab−�X
a�X

b −�Y
a�Y

b −�Z
a�Z

b�= �−��−� where
�−�= 1

�2
��1�a�0�b− �0�a�1�b�, which is nothing else than the

projector onto the singlet state. In the previous treatment we
assumed that a TT configuration had been chosen. If instead
we impose perfect correlations �anticorrelations� in a TA con-
figuration, that we choose at this level to be such that we can
replace Wkb,lb

by a similar operator but with opposite signs in
front of the operators �x, �y, and �z �this is a configuration
where instead of orienting their tetrahedrons parallely, Alice
and Bob choose an experimental setup in which they orient
them antiparallely �34��. Imposing now perfect correlations
�anticorrelations� between equally labeled detectors in this
configuration we find by a direct computation that �
= �1 /4��Idab−3��X

a�X
b +�Y

a�Y
b +�Z

a�Z
b�� in the first case, and

�= �1 /4��Idab+�X
a�X

b +�Y
a�Y

b +�Z
a�Z

b� in the second case.
Such operators are easily shown to admit negative eigen-

values so that no physically acceptable state would allow us
to obtain symmetric correlations or anticorrelations in this
particular configuration. Actually this is not so astonishing
for what concerns symmetric anticorrelations because the
partial transposition of a singlet state provides a nonphysical
state as is well known �35�.

As a consequence of the fact that the 12 TT �even� con-
figurations as well as the 12 TA �odd� ones are unitarily
equivalent, we have established the following properties:

�A� In each of the 12 TT configurations there exists ex-
actly one state that exhibits symmetric or isotropic anticorre-
lations, and this state is equivalent to the singlet state up to a
well-defined local unitary transformation.

�B� In each of the 12 TA �odd� configurations, it is impos-
sible to find a state that exhibits perfect anticorrelations be-
tween Alice and Bob’s detectors.

�C� In each of the 12 TA �odd� and 12 TT �even� configu-
rations, it is impossible to find a state that exhibits perfect
correlations between Alice and Bob’s detectors.

B. Optimal entangled states and generalized cryptographic
protocol

It is worth noting that when we locally rotate the singlet
state around the axis of one of the tops of the tetrahedron, or
around its major axes �X, Y, and Z�, we still obtain a state
that is equivalent, up to a local unitary transformation, to a
singlet state and is thus maximally entangled.

In particular, when we locally rotate the singlet state
around one of the major axes �X, Y, and Z� of the tetrahe-
dron, we still obtain a Bell state. Those transformations can
be shown to form a group, the Pauli group or discrete dis-
placement �Heisenberg-Weyl� group �36�.

As the four Bell states can be obtained from the singlet
state by letting act locally one of the Pauli displacement ���
operators onto the singlet state and that these operators map
the tetrahedron onto itself, the four Bell states exhibit sym-
metric and perfect anticorrelations at the level of Alice and
Bob’s detectors.

Besides, one can easily check that different Bell states
anticorrelate one detector at Alice’s side with different detec-
tors at Bob’s side and vice versa. This is the main feature that
we shall exploit in what follows: when Alice and Bob ignore
which Bell state they share, they also ignore which of their
detectors are anticorrelated and are unable to establish a key.

Let us now assume that a third party �Charles� controls
the source, say a singlet state source �actually a source of an
arbitrary Bell state would be equally convenient� and has the
possibility to rotate at will Bob’s qubit of 180° around one of
the three main axes of Bob’s tetrahedron �or to do nothing�.
If Charles decides to carry out one of those four rotations
�Pauli displacements� at random with equal probability
�25%� without communicating his choices to Alice and Bob,
their signal will obviously be totally uncorrelated. If now
Charles decides afterwards to inform them about his respec-
tive choices they will be able to reconstruct a confidential
key �according to the Singapore protocol �6�, for instance�.
Due to the symmetry of the correlations exhibited by the Bell
states, Charles will remain totally ignorant of the data mea-
sured by Alice and Bob, which guarantees the confidentiality
of their key.

We see thus that Charles possesses the capacity to deny at
will to Alice and Bob the authorization to establish a fresh
key, even after they measured all the necessary data. This
possibility could lead to interesting applications in realistic
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quantum cryptographic schemes, for instance in the case that
Alice and Bob would rent the cryptographic quantum trans-
mission line to Charles, its legitimate owner, who would be
supposed to be able to control the source and to produce at
will one among the four Bell states.

Before finishing this section it is worth comparing the
POVM-based QKD protocols of the type considered in the
present paper with PVM-based protocols. One could imag-
ine, for instance, that even in the �Ekert version of the�
Bennett-Brassard 1984 �BB84� protocol, which is a PVM-
based protocol, the owner of the line Charles controls the
source and encodes the signal at random in the Bell states −

and �+. In such a case Alice and Bob’s signal is an incoher-
ent sum with equal weights of perfectly correlated and anti-
correlated signals �in the X and Z bases�. Such a signal is
totally useless for establishing a key before Charles accepts
to reveal to Alice and Bob what his prepared states were. The
feasibility of a modified BB84 protocol based on entangled
photons has been proven experimentally �37�. Besides, an
apparent advantage of the POVM scheme is that it is not
necessary to change constantly and randomly the measure-
ment basis so that we avoid the losses due to basis reconcili-
ation �sifting� but one should note that the effective gain in
bit transfer rate is negligible in comparison to, say, the BB84
protocol because the POVM-based protocol requires a post-
treatment of the correlated data �6� that is equally data con-
suming.

Moreover the number of copies needed for state estima-
tion can be made arbitrarily smaller than the number of cop-
ies needed for the key and it is only when considering finite
number effects in a practical implementation that it is advan-
tageous to use a POVM measurement instead of a conven-
tional, PVM, one.

Considered so, the POVM approach is not superior to the
PVM approach. Nevertheless it is worth noting that beside
advantages regarding tomography, POVM measurements
also present effective advantages regarding calibration and
stability and remain a promising candidate for quantum key
distribution.

In the next section, we represent experimental confirma-
tions of our theoretical predictions concerning anticorrela-
tions exhibited by Bell states.

V. EXPERIMENTAL TOMOGRAPHY OF BELL STATES

The aforementioned Singapore protocol for QKD, in
which Alice and Bob share a single state and establish a
secret key on the basis of the anticorrelations exhibited by
this singlet state when they both realize an optimal SIC
POVM onto their respective qubit has been implemented ex-
perimentally �see Fig. 2�. Among others this implementation
requires a simple polarimetric setup in order to realize the
qubit covariant SIC POVM. This setup was shown in the
past to perform tomographic reconstruction of any arbitrary
qubit state with high fidelity �differing from unity by less
than 1%� �18�.

We used a pair of such setups in order to implement a
double tetrahedron measurement on arbitrary Bell states. To
prepare the Bell states, we used a spontaneous parametric

down-conversion �SPDC� source of entangled photon pairs
�38�. The pairs of photons are identified by coincidence tim-
ing and the probabilities derived from the raw count rates via
normalization to the total number of coincidences �Fig. 3�.

We first prepared the singlet Bell state �−�= 1
�2

��1�a�0�b

− �0�a�1�b�, which we measured in the TT configuration and
also in the TA configuration. The second time, we prepared
the Bell state ��+�= 1

�2
��0�a�0�b+ �1�a�1�b� that we measured in

the TT configuration. In each case we measured the correla-
tion matrices that represent the relative frequency of coinci-
dental signals between the detectors of Alice and Bob.

On the basis of those matrices we obtain, making use of
the relation �5�, their respective Wigner distributions. The
ideal, theoretical counterpart of the Wigner matrice WTT�−�
is expressed by Eq. �7�:

QP �/2 PBS

PBS

QP

PPBS

�/4

D4

D3

D2

D1

FIG. 2. �Color online� Experimental implementation of a single
tetrahedron measurement. The incoming photon is incident upon a
partially polarizing beam splitter �PPBS� and each of the output
arms is modified by the combination of a quartz plate �QP� to
modify the phase between H and V polarizarions, and either a quar-
ter wave plate �� /4� or a half wave plate �� /2� to rotate into the
right measurement basis. The final projection is performed by po-
larizing beam splitters �PBS�. The individual photons are detected
by Si avalanche photodiodes. Changing from a tetrahedron to an
antitetrahedron measurement involves only a change in orientation
of the wave plates and a relabeling of the detector outputs.
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FIG. 3. �Color online� Tetrahedron-based measurements. Each
member of a photon pair is sent to a measurement device imple-
menting either the tetrahedron �T� or antitetrahedron �A� POVM
�see also Fig. 2�. Coincidence timings between a pair of tetrahedron
measurements are translated into probabilities by normalizing each
joint detection between a particular detector pair to the total number
of joint detections.
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WTT�−� = �1/8��
− 1 1 1 1

1 − 1 1 1

1 1 − 1 1

1 1 1 − 1
� . �8�

The counterpart of Wtheor
TA �−� can be shown �39� to be

equal to

Wtheor
TA �−� = �1/4��

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
� . �9�

Similarly, one gets that

WTT��+� = �1/8��
1 1 1 − 1

1 1 − 1 1

1 − 1 1 1

− 1 1 1 1
� . �10�

We controlled that, up to experimental discrepancies and ad
hoc reorderings of the coefficients, the experimental Wigner
distributions corresponded to their theoretical counterpart.
Those results are plotted in Figs. 4–6.

We could estimate by a straightforward computation the
fidelity of the experimental tomographic procedure, making
use of the orthonormalization of the Wigner operators re-
garding the trace norm. The fidelity is equal to four times the
sum of the products of the experimentally obtained Wigner
coefficients with their theoretical counterparts. We obtain so
fidelities equal to 0.960 and 0.956 for the singlet �−� state
in the TT and TA configurations, and a bit less for the �+

state. The fidelities are less high than for the single qubit
tomographic process �18�, which is not astonishing because
in the present case, additive experimental errors are likely to
occur at the level of the source of entangled states, and also
at both sides during the local one-qubit SIC POVM pro-
cesses. Moreover, supplementary errors could also be due to
a misalignment between the local tetrahedrons and to finite-
size statistical effects �the sample sizes were of the order of
4�104�.

This topic is out of the scope of the present paper but we
inform the reader that in the Appendix of Ref. �31� the ques-
tion of the factorizability of two-qubit Wigner distributions
�23,29� is discussed in detail in relation with the two possible
choices of configurations �TT and TA�.

VI. CONCLUSION

Protocols for quantum key distribution that allow Alice
and Bob to perform full tomography of the signal are optimal
for what concerns security against eavesdropping. Due to the
fact that in such protocols the amount of data is per se lim-
ited, full tomographic protocols based on SIC POVM tomog-
raphy are also optimal for what concerns the authentification
protocol. We showed that the natural entangled states that
respect the symmetry of SIC POVMs are the Bell states �up
to local unitaries�. We also showed how their properties
make it possible to conceive a protocol during which a third
party �Charles� controls the source and is free to concede the
authorization to Alice and Bob to establish a key after they
measured all the physical data necessary therefore. This pos-
sibility opens the way to interesting applications in the case
of realistic commercial developments of quantum cryptogra-
phy; for instance it opens the possibility of delayed on-line
payment by the users who rent the cryptographic line.
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FIG. 4. �Color online� Experimental �left� versus theoretical
�right, Eq. �8�� histograms of the Wigner distribution of the singlet
state in the TT configuration.
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FIG. 5. �Color online� Experimental �left� versus theoretical
�right, Eq. �8�� histograms of the Wigner distribution of the state �+

in the TT configuration.
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FIG. 6. �Color online� Experimental �left� versus theoretical
�right, Eq. �9�� histograms of the Wigner distribution of the singlet
state in the TA configuration.
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