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In this paper we address the issue of universal or robust communication over quantum channels. Specifically,
we consider a memoryless communication scenario with channel uncertainty which is an analog of the com-
pound channel in classical information theory. We determine the quantum capacity of finite compound chan-
nels and arbitrary compound channels with an informed decoder. Our approach in the finite case is based on the
observation that perfect channel knowledge at the decoder does not increase the capacity of finite quantum
compound channels. As a consequence, we obtain a coding theorem for finite quantum averaged channels, the
simplest class of channels with long-term memory. The extension of these results to quantum compound
channels with uninformed encoder and decoder and infinitely many constituents remains an open problem.

DOI: 10.1103/PhysRevA.78.042331 PACS number�s�: 03.67.Hk, 03.67.Pp

I. INTRODUCTION

The determination of capacities of quantum channels in
various settings is one of the most fundamental tasks of
quantum-information theory. The classical capacity of
memoryless quantum channels has been identified in seminal
work by Holevo �1� and Schumacher and Westmoreland �2�.
A much sharper version of that coding theorem was obtained
subsequently and independently by Winter �3� who proved
the strong converse and achievability with von Neumann
measurements, and Ogawa and Nagaoka �4� who gave an-
other proof of the strong converse to the coding theorem.
Concerning quantum capacity, Lloyd �5� provided a strong
heuristic evidence that the quantum capacity of quantum
memoryless channels is given by the regularized coherent
information. The follow-up work of Shor �6� and Devetak �7�
gradually removed the residual ambiguity and culminated in
a rigorous proof of the direct part of the coding theorem for
memoryless quantum channels in �7�. The converse coding
theorem was already done by Barnum et al. �8�.

The underlying assumptions on the quantum-
communication model considered in that fundamental work
are �a� that the quantum channel is perfectly known, and �b�
that there are no correlations between successive channel
uses, i.e., the channel is memoryless. The two postulates are
rarely satisfied for real world communication systems. For
example, it is practically impossible to determine all param-
eters the channel depends on with infinite precision. Thus,
we are forced to design protocols that work well for commu-
nication scenarios with channel uncertainty. Similarly, it is
definitely too optimistic to presuppose that the channel under
consideration operates in a memoryless fashion.

In this work we relax the first assumption while sustaining
the memoryless character of the communication. Our model
can be described as follows. We are given an arbitrary set I

of memoryless quantum channels. Both sender and receiver
merely know that the actual channel belongs to this set. Con-
sequently, they are forced to find and use codes that are
reliable for the whole set I of channels. This is exactly the
quantum analog of compound channels from classical infor-
mation theory. Moreover this is a channel version of the
universal quantum data compression introduced by Jozsa et
al. �9�.

The main results of the paper are as follows. �1� The
determination of the quantum capacity of compound chan-
nels in the case �I���. Here we first prove the coding theo-
rem for finite I, assuming that the decoder knows which
channel is in use �informed decoder for short�. Then we
show that each rate achievable in this situation is also
achievable without such prior knowledge. As a consequence
we can determine the quantum capacity of finite averaged
channels. Eventually, we determine the capacity of a quan-
tum compound channel with an informed encoder in the case
�I���. Denoting the quantum capacities of I with an in-
formed encoder by QIE�I�, with informed decoder by QID�I�,
and without any prior information by Q�I�, our results in this
part of the paper can be roughly summarized by

Q�I� = QID�I� � QIE�I� .

It can be shown, by generalizing an example given by Black-
well et al. �10�, that the inequality is strict in general.

�2� We prove the coding theorem for arbitrary I with
informed decoder. Unfortunately, the techniques we employ
do not allow an extension of the result for finite sets of chan-
nels to arbitrary I without channel knowledge at the decoder.

A. Related work

The capacity of compound channels in the classical set-
ting was determined by Blackwell et al. �10� and Wolfowitz
�11,12�. It was Wolfowitz �11,12� who realized the impor-
tance of channel knowledge at the encoder and the decoder
of the compound channel and its theoretical implications. He
showed that the assumption of an informed decoder does not
imply a higher capacity of the compound channel. His ap-
proach was to establish first the direct part for the compound
channel without channel knowledge at the decoder and to
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show that the upper bound of the converse part with in-
formed decoder coincides with the lower bound obtained in
the first step. So our proof strategy described above is ex-
actly the reverse of that of Wolfowitz.

In a beautiful paper �13� Datta and Dorlas determined the
classical capacity of finite averaged quantum channels, a
channel model that is equivalent to finite quantum compound
channels, i.e., �I���. Somewhat later an independent ap-
proach in the finite case was given in �14� by Farkas. Sub-
sequently, two of us �15� were able to identify the classical
capacity of arbitrary quantum compound channels and, as a
consequence thereof, the classical capacity of arbitrary aver-
aged channels. Recently Hayashi �16� obtained a similar re-
sult with a completely different proof technique. He used the
Schur-Weyl duality and the packing lemma from �17�.

B. Outline

The paper is organized as follows. Section II provides the
necessary definitions concerning compound channels and
codes in scenarios with and without informed encoder/
decoder. Section III contains a modified version of Klesse’s
�18� one-shot coding result which applies to finite arithmetic
averages of quantum channels. Since good codes for such
averaged channels are also good for quantum channels that
are averaged over, we obtain the basic building block of the
coding theorem for finite compound channels with informed
decoder which is derived in Sec. IV. Moreover, using the
elegant channel estimation strategy developed by Datta and
Dorlas �13� we are able to convert the codes for finite quan-
tum compound channels with an informed decoder into
codes that do not require such prior information at the de-
coder. Section IV concludes with the coding theorem for
finite quantum compound channels with an informed en-
coder.

Discretization arguments via � nets and some simple ap-
proximation results concerning the coherent information and
entanglement fidelity are presented in Sec. V. They are the
basis for Sec. VI, in which we carry out the extension of the
capacity result with an informed decoder to the case of arbi-
trary set I.

C. Notation and conventions

All Hilbert spaces are assumed to have finite dimension
and are over the field C. S�H� is the set of states, i.e., posi-
tive semidefinite operators with trace 1 acting on the Hilbert
space H. The set of completely positive trace-preserving
�CPTP� maps between the operator spaces B�H� and B�K� is
denoted by C�H ,K�. C↓�H ,K� stands for the set of com-
pletely positive trace-decreasing maps between B�H� and
B�K�. Throughout the paper we use base 2 logarithms which
are denoted by log. The von Neumann entropy of a state �
�S�H� is given by

S��� ª − tr�� log �� .

The coherent information for N�C�H ,K� and ��S�H� is
defined by

Ic��,N� ª S„N���… − S„�idH � N���������… ,

where ��H � H is a purification of the state �.

A useful equivalent definition of Ic�� ,N� is given in terms
of N and the complementary channel E: Due to Steinspring’s
dilation theorem N can be represented as N���=trHe

�v�v*�
for ��S�H� where v :H→K � He is a linear isometry. The
complementary channel E�C�H ,He� to N is given by

E��� ª trH�v�v*� �� � S�H�� .

The coherent information can then be written as

Ic��,N� = S„N���… − S„E���… .

As a last notational issue we recall the definition of entangle-
ment fidelity. For ��S�H� and N�C↓�H ,K�, it is given by

Fe��,N� ª ��,�idH � N����������� ,

with a purification ��H � H of the state �.

II. CODES AND CAPACITY

Let I�C�H ,K�. The memoryless compound channel as-
sociated with I is given by the family �N� l :S�H� l�
→S�K� l�	ł�N,N�I. In the rest of the paper we will write
simply I for that family.

Most of the time we will deal with compound channels
with informed decoder, i.e., we suppose that the receiver
knows which channel is in use. The definition of codes in
this situation is as follows.

An �l ,kl� code for I with informed decoder consists of a
subspace Fl�H� l with kl=dim Fl and a family of CPTP
maps �RN

l :S�K� l�→S�H� l�	N�I. A nonnegative number R
is called an achievable rate for I with informed decoder if
there is a sequence of �l ,kl� codes such that �1�
lim infl→��1 / l�log kl�R and �2� liml→� infN�IFe��Fl

,RN
l

�N� l�=1 hold with �Fl
ªpFl

/ tr�pFl
� where pFl

is the or-
thogonal projection onto Fl.

The capacity QID�I� of the memoryless compound chan-
nel I with informed decoder is given by

QID�I� ª sup�R

� R+:R is achievable for I with informed decoder	 .

The definition of codes in the situation of an informed
encoder is straightforward. We endow the encoder with a set
of subspaces, one for each channel in I. An �l ,kl� code for I

with informed encoder thus consists of subspaces �Fl
N	N�I

with Fl
N�H� l and kl=dim Fl

N for all N�I and a recovery
operation Rl :S�K� l�→S�H� l�. A nonnegative number R is
called an achievable rate for I with informed encoder if there
is a sequence of �l ,kl� codes such that �1�
lim infl→��1 / l�log kl�R and �2� liml→� infN�IFe��F

l
N ,Rl

�N� l�=1 hold with �F
l
NªpF

l
N / tr�pF

l
N� where pF

l
N is the or-

thogonal projection onto Fl
N.

The capacity QIE�I� of the memoryless compound chan-
nel I with informed encoder is given by

QIE�I� ª sup�R

� R+:R is achievable for I with informed encoder	 .

Codes and capacity for the memoryless compound chan-
nel I with uninformed encoder and decoder are defined in a
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similar fashion. The only change is that we do not allow the
recovery operation to depend on N�I. That is, an �l ,kl�
code for I is a pair �Fl ,Rl� where Fl is a subspace of H� l

with kl=dim Fl and Rl�C�K� l ,H� l�. A nonnegative num-
ber R is called an achievable rate for I if there is a sequence
of �l ,kl� codes such that �1� lim infl→��1 / l�log kl�R and �2�
liml→� infN�IFe��Fl

,Rl �N� l�=1.
The capacity Q�I� of the memoryless compound channel

I is given by

Q�I� ª sup�R � R+:R is achievable for I	 .

It is clear from the definitions given above that

Q�I� � min�QIE�I�,QID�I�	 �1�

holds for each I�C�H ,K�.
Throughout the paper we will use the close relationship

between the quantum compound channels with �I��� and
�finite� averaged channels. The latter are described as fol-
lows. Given any finite set I= �N1 , . . . ,NN	�C�H ,K�, real
numbers 	1 , . . . ,	N
0 with 
i=1

N 	i=1, and l�N we set

Nl
ª 


i=1

N

	iNi
� l.

The averaged channel AI,	 associated with I and 	
ª �	1 , . . . ,	N� is then the family �Nl :S�H� l�→S�K� l�	l�N.
The codes and capacities QID�AI,	� and Q�AI,	�, with or
without informed decoder, are defined in a similar fashion as
for compound channels.

Clearly, an �l ,kl� code for I with informed decoder and

Fe��Fl
,Ri

l � Ni
� l� � 1 − � ∀ i � �1, . . . ,N	

implies

Fe��Fl
,


i=1

n

	iRi
l � Ni

� l� � 1 − � . �2�

Conversely, �2� implies

Fe��Fl
,Ri

l � Ni
� l� � 1 −

�

	i
∀ i � �1, . . . ,N	 .

A similar relation holds in the case of an uninformed de-
coder. Thus we are led to the following simple consequence
which will be used freely in the rest of the paper.

Lemma 2.1. Let I= �N1 , . . . ,NN	�C�H ,K� and real num-
bers 	1 , . . . ,	N
0 with 
i=1

N 	i=1 be given. Then

QID�I� = QID�AI,	� and Q�I� = Q�AI,	� .

III. ONE-SHOT CODING RESULT

Our coding result will be based on a one-shot result which
is an extension of that for a single channel obtained in �18�
by Klesse. A similar approach for a single channel is given in
the paper �19� by Hayden et al.

We start with subspaces F�G�H of a given Hilbert
space H and states �Fªp / tr�p� and �Gªq / tr�q� where p
and q are the projections onto F and G, respectively. Recall

the definition of the code entanglement fidelity as

Fc,e��F,N� ª max
R�C�K,H�

Fe��F,R � N� ,

where we admit any completely positive trace-decreasing
map N :B�H�→B�K�. The set of completely positive trace-
decreasing maps is denoted by C↓�H ,K�. Klesse’s main re-
sult in �18� can be stated as follows.

Theorem 3.1. Let the Hilbert space H be given and con-
sider subspaces F�G�H with dim F=k. Then for any N
�C↓�H ,K� allowing a representation with n Kraus operators
we have



U�G�

Fc,e�u�Fu*,N�du � tr�N��G�� − �kn�N��G��2,

where U�G� denotes the group of unitaries acting on G and
du indicates that the integration is with respect to the Haar
measure on U�G�.

Our main goal in this section will be a variant of Theorem
3.1 which applies to finite arithmetic averages of CPTD
maps. Let N1 , . . . ,NN�C↓�H ,K� and set

N ª

1

N


i=1

N

Ni � C↓�H,K� .

As in Theorem 3.1 we consider subspaces F�G�H and
states �F and �G.

Let ��Ha � H, Ha=H, be a purification of �F and con-
sider a Stinespring dilation of the channel N given by

N�·� = trHe
��1H � pe�v�·�v*� , �3�

where He is a suitable finite-dimensional Hilbert space, pe is
a projection onto a subspace of He, and v :H→K � He is an
isometry.

Let us define a pure state on Ha � K � He by the formula

�� ª
1

�tr�N��F��
�1Ha�H � pa��1Ha

� v�� .

We set

�� ª trHa�He
����������, �ae� ª trK���������� ,

and

�a ª trH��������, �e� ª trHa�K���������� .

We borrow the following lemma from �18,19�; it will be the
basis of the result we are going to derive in this section.

Lemma 3.1. For any N�C↓�H ,K� there exists a recovery
operation R�C�K ,H� with

Fe��F,R � N� � w − �w�ae� − w�a � �e��1,

where w=tr�N��F��.
The next, simple lemma is needed in the proof of Theo-

rem 3.2.
Lemma 3.2. Let L and D be N�N matrices with nonne-

gative entries which satisfy
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Ljl � Ljj, Ljl � Lll, �4�

and

Djl � max�Djj,Dll	 �5�

for all j , l� �1, . . . ,N	. Then



j,l=1

N
1

N
�LjlDjl � 2


j=1

N

�LjjDjj .

Proof. Note that �5� implies

Djl � Djj + Dll. �6�

Therewith we obtain



j,l=1

N
1

N
�LjlDjl � 


j,l=1

N
1

N
�Ljl�Djj + Dll� �7�

� 

j,l=1

N
1

N
�LjjDjj + LllDll �8�

� 

j,l=1

N
1

N
��LjjDjj + �LllDll� = 2


j=1

N

�LjjDjj , �9�

where in �7� we have used �6�, in �8� we employed �4�, and
�9� holds because �a+b��a+�b for all nonnegative real
numbers a ,b. �

Our main result in this section can be stated as follows.
Theorem 3.2. Let the Hilbert space H be given and con-

sider subspaces F�G�H with dim F=k. For any choice of
N1 , . . . ,NN�C↓�H ,K� each allowing a representation with
nj Kraus operators, j=1, . . . ,N, we set

N ª

1

N


j=1

N

N j .

Then



U�G�

Fc,e�u�Fu*,N�du � tr�N��G�� − 2

j=1

N

�knj�N j��G��2.

Proof. We can assume without loss of generality that the
numbering of the channels is chosen in such a way that n1
�n2� ¯ �nN holds for the numbers of Kraus operators of
the maps N1 , . . . ,NN. From Lemma 3.1 we know that there
is a recovery operation R such that

Fe��F,R � N� � w − �w�ae� − w�a � �e��1, �10�

where we have used the notation introduced in the paragraph
preceding Lemma 3.1.

For each j� �1, . . . ,N	 let �aj,i	i=1
nj be the set of Kraus

operators of N j. Let �f1 , . . . , fN	 and �e1 , . . . ,enN
	 be arbitrary

orthonormal bases of CN and CnN. Let the projection pe and
the isometry v in �3� be chosen in such a way that for each

�H the relation

�1H � pe�v
 = 

j=1

N



i=1

nj 1
�N

�aj,i
� � ei � f j �11�

holds. For a purification ��Ha � H of the state �F we con-
sider a Schmidt representation

� =
1
�k



m=1

k

hm � gm,

with suitable orthonormal systems �h1 , . . . ,hk	 and
�g1 , . . . ,gk	. A calculation identical to that performed by
Klesse �18� shows that the states on the right-hand side of
�10� can be expressed with the help of representation �11� as

w�ae� =
1

k


j,l=1

N



i,r=1

nj,nl



s,t=1

k tr�aj,i�gs��gt�al,r
* �

N
�xs,i,j��xt,r,l� , �12�

with xs,i,jªhs � ei � f j, and

w�a � �e� = 

j,l=1

N



i,r=1

nj,nl tr�aj,i�Fa
l,r
* �

kN
�a � �yi,j��yr,l� , �13�

where yi,jªei � f j.
If we perform the unitary conjugation induced by the uni-

tary map xs,i,j =hs � ei � f j �xs,i,j� =gs � ei � f j followed by the
complex conjugation of the matrix elements with respect to
the matrix units ��xs,i,j� ��xt,k,l� �	s,i,j,t,k,l we obtain an antilinear
isometry I with respect to the metrics induced by the trace
distances on the operator spaces under consideration. A cal-
culation identical to that in �18� shows that under this isom-
etry the subnormalized states in �12� and �13� transform to

I�w�ae� � =
1

kN


j,l=1

N



i,r=1

nj,nl

pa
j,i
* al,rp � �yi,j��yr,l� �14�

and

I�w�a � �e�� =
1

k


j,l=1

N



i,r=1

nj,nl tr�pa
j,i
* al,rp�

kN
p � �yi,j��yr,l� �15�

with p=k�F and yi,j =ei � f j for j=1, . . . ,N and i=1, . . . ,nj.
In summary, using the isometry I, �14� and �15� the inequal-
ity �10� can be formulated as

Fe��F,R � N� � w − �D�p��1, �16�

with w=tr�N��F�� and

D�p� ª 

j,l=1

N
1

N 

i,r=1

nj,nl

D�ij��rl��p� � �ei��er� � �f j��f l�

where

D�ij��rl��p� ª
1

k
�paj,ial,r

* p −
1

k
tr�pa

j,i
* al,rp�p� .

Let us define

Dj,l�p� ª 

i=1,k=1

nj,nl

D�ij��kl��p� � �ei��ek� � �f j��f l� . �17�

The triangle inequality for the trace norm yields
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�D�p��1 � 

j,l=1

N
1

N
�Dj,l�p��1 � 


j,l=1

N
1

N
�k min�nj,nl	�Dj,l�p��2

= 

j,l=1

N
1

N
�k min�nj,nl	�Dj,l�p��2

2, �18�

where the second line is justified by the standard relation
between the trace and Hilbert-Schmidt norm, �a�1��d�a�2, d
being the number of nonzero singular values of a.

In the next step we will compute �Dj,l�p��2
2. A glance at

�17� shows that

„Dj,l�p�…* = 

i=1,k=1

nj,nl

„D�ij��kl��p�…* � �ek��ei� � �f l��f j� ,

�19�

and consequently we obtain

�Dj,l�p��2
2 = tr�„Dj,l�p�…*Dj,l�p��

= 

i=1,r=1

nj,nl

tr�„D�ij��kl��p�…*D�ij��kl��p��

=
1

k2 

i=1,r=1

nj,nl �tr�p�a
j,i
* al,r�*pa

j,i
* al,r�

−
1

k
�tr�pa

j,i
* al,r��2� . �20�

Let U be a random variable taking values in U�G� according
to the Haar measure of U�G�. Then we can infer from �18�
that

E„�D�UpU*��1… � 

j,l=1

N
1

N
�LjlE„�Dj,l�UpU*��2

2
… , �21�

where we have used the concavity of the function �· and
Jensen’s inequality, and, moreover, we abbreviated
k min�nj ,nl	 by Ljl. Now, starting with �20� and arguing as
Klesse �18� we obtain that

E„�Dj,l�UpU*��2
2
… � tr�N j��G�Nl��G�� = �N j��G�,Nl��G��HS,

�22�

where �· , · �HS denotes the Hilbert-Schmidt inner product.
Similarly

E„tr�N�U�FU*��… = tr�N��G�� . �23�

Now, using �10�, �16�, and �20�–�23�, we arrive at

E„Fc,e�U�FU*,N�… � tr�N��G�� − 

j,l=1

N
1

N
�LjlDjl, �24�

where for j , l� �1, . . . ,N	 we introduced the abbreviations

Ljl = k min�nj,nl	

and

Djl ª �N j��G�,Nl��G��HS.

It is obvious that

Ljl � Ljj and Ljl � Lll

hold. Moreover, the Cauchy-Schwarz inequality for the
Hilbert-Schmidt inner product justifies the following chain of
inequalities:

Djl = �N j��G�,Nl��G��HS��N j��G��2�Nl��G��2

� max��N j��G��2
2,�Nl��G��2

2	 = max�Djj,Dll	 .

Therefore, an application of Lemma 3.2 allows us to con-
clude from �24� that

E„Fc,e�U�FU*,N�… � tr�N��G�� − 2

j=1

N

�knj�N j��G��2,

which is what we aimed to prove. �

IV. DIRECT PART OF THE CODING THEOREM: FINITE
CASE

In this section we will prove the coding theorem for finite
compound channels. This is done in Sec. IV C after recalling
some well-known properties of frequency-typical subspaces
and Kraus operators in Secs. IV A and IV B.

A. Typical projections

In this section we will collect some well-known results on
typical projections. Let ��S�H� be a state and consider any
diagonalization

� = 

i=1

d

	i�ei��ei� ,

where dªdim H. Using this representation the state �� l can
be written as

�� l = 

xl�Al

	xl�exl��exl� ,

with A= �1, . . . ,d	, xl
ª �x1 , . . . ,xl��Al, 	xlª	x1

¯	xl
, and

exlªex1
� ¯ � exl

.
The frequency-typical set of eigenvalues of � is given by

T�,l ª �xl � Al:�pxl − 	�1 � �,pxl � 		 ,

where pxl denotes the empirical probability distribution on A
generated by xl, i.e.,

pxl�x� ª
�ˆj � �1, . . . ,l	:xj = x‰�

l
,

	 is the probability distribution on A defined by the eigen-
values of �, and pxl �	 means that pxl�x�=0 whenever 	x
=0.

The frequency-typical projection q�,l of � given by

q�,l ª 

xl�T�,l

�exl��exl�

has the following well-known properties.
Lemma 4.1. There is a real number c
0 and a function

QUANTUM CAPACITY OF A CLASS OF . . . PHYSICAL REVIEW A 78, 042331 �2008�

042331-5



h :N→R+ with h
0 and liml→� h�l�=0 such that for each
�� �0,1 /2� there exists a number ����
0, with
lim�→0 ����=0, and for any ��S�H� the frequency-typical
projection q�,l�B�H�� l satisfies

�1� tr��� lq�,l��1−2−l�c�2−h�l��,
�2� 2−l�S���+�����q�,l�q�,l�

� lq�,l�2−l�S���−�����q�,l, and
�3� �l���2l�S���−������ tr�q�,l��2l�S���+����� where

�l��� ª 1 − 2−l�c�2−h�l��.

The rightmost inequalities in �2� and �3� imply

�q�,l�
� lq�,l�2

2 � 2−l�S���−3�����.

Moreover, ���� and h are given by

h�l� =
d

l
log�l + 1� ∀ l � N ,

���� = − � log
�

d
.

The proof of the lemma is fairly standard and rests on purely
classical reasoning. It combines the Bernstein-Sanov trick
�cf. �20�, Sec. III.1� and the type counting methods from
�17�.

B. Typical Kraus operators

According to Kraus’s representation theorem we can find
for any N�C�H ,K� a family of operators a1 , . . . ,an

�B�H ,K� with 
i=1
n a

i
*ai=1H and

N��� = 

i=1

n

ai�a
i
*

for all ��S�H�.
We fix the maximally mixed state �G supported by the

subspace G of H. It is easily seen �cf. �21�� that the Kraus
operators a1 , . . . ,an of N can always be chosen such that

tr�ai�Ga
j
*� = �ijtr�ai�Ga

i
*� ,

for all i , j� �1, . . . ,n	. With this choice of Kraus operators
we can define a probability distribution r on the set B
ª �1, . . . ,n	 by

r�i� ª tr�ai�Ga
i
*� �i � B� .

It is shown in �22� that the Shannon entropy of r is nothing
else than the entropy exchange Se��G ,N�, i.e.,

H�r� = Se��G,N� .

In a similar vein as in the previous section we introduce the
notion of frequency-typical subset for r, i.e., we set

K�,l ª �yl � Bl:�pyl − r�1 � �,pyl � r	

with �
0. With this we can introduce the notion of the
reduced operation by setting

N�,l��� ª 

yl�K�,l

ayl�a
yl
* , �25�

where aylªay1
� ¯ � ayl

and ��S�H� l�. Moreover, we set

n�,l ª �K�,l� ,

which is the number of Kraus operators of the reduced op-
eration N�,l. The properties of frequency-typical sets �cf.
�17,20�� lead immediately to the following lemma.

Lemma 4.2. Let �� �0,1 /2�, l�N, and fix the maximally
mixed state �G on the subspace G of H. There is a real
number ����
0 with lim�→0 ����=0 such that for each N
�C�H ,K� the reduced operation N�,l satisfies

�1� tr�N�,l��G
� l��=r� l�K�,l��1−2−l�c��2−h��l��, with a uni-

versal positive constant c�
0,
�2� n�,l�2l�Se��G,N�+�����.
The function h� :N→R+ is given by h��l�= �d2 / l�log�l

+1�.

C. The direct coding theorem for finitely many channels

Let us consider a compound channel given by a finite set
Iª �N1 , . . . ,NN	�C�H ,K� and two subspaces El ,G� l of
H� l with El�G� l�H� l. Let klªdim El and consider the
associated maximally mixed states �El

on El and �G on G.
For j� �1, . . . ,N	 and states N j��G� let qj,�,l�B�K�� l denote
the frequency-typical projection of N j��G� defined in Sec.
IV A for �
0 and l�N. Moreover, let N j,�,l be the reduced
operation associated with N j��G� for j� �1, . . . ,N	, �
0,
and l�N as considered in Sec. IV B.

With every projection q on H� l, associate the operation
Q�C↓�H� l ,H� l� defined by Q�·�ªq�·�q and let q� denote
the orthocomplement of q.

In the following, for the compound channel I and every
l�N, we will consider the average code fidelity

Fc,e,d��El
,I� ª max

RN1
,. . .,RNN

1

N

i=1

N

Fe��El
,RNi

� Ni
� l� ,

where it is understood that RNi
are recovery operations. Note

that for every �� �0,1�, Fc,e,d��El
,I��1−� implies the ex-

istence of an �l ,kl� code with an informed decoder for I that
satisfies Fe��El

,RNi
�Ni��1−N� for every i� �1, . . . ,N	.

For given �
0, j� �1, . . . ,N	 and l�N we define

N̂ j�·� ª Q j,�,l � N j,�,l�·�

and, accordingly,

N̂�·� ª
1

N


j=1

N

N̂ j�·� .

We show that, for every j� �1, . . . ,N	,

Fc,e��El
,N j

� l� � Fc,e��El
,N̂ j� . �26�

Let R�C�K� l ,H� l� be any recovery operation. Then

Fc,e��El
,N j

� l� � Fe„�El
,R � �Q j,�,l + Q j,�,l

� � � N j
� l
…

= Fe��El
,R � Q j,�,l � N j

� l�

+ Fe��El
,R � Q j,�,l

� � N j
� l�

� Fe��El
,R � Q j,�,l � N j

� l�
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� Fe��El
,R � N̂ j� .

The last inequality follows from the fact that N̂ j is a reduc-
tion of Q j,�,l �N j

� l. Taking the maximum over all recovery
operations R proves the claim.

Using �26�, we get the lower bound

Fc,e,d��El
,I� =

1

N


i=1

N

Fc,e��El
,Ni

� l� �
1

N


i=1

N

Fc,e��El
,N̂i�

= Fc,e,d��El
,N̂� � Fc,e��El

,N̂� . �27�

Note that the inequality �27� is still valid if we replace �El
by

u�El
u* for any u�U�G� l�. Consider

F̄e�G,I� ª E„Fc,e,d�U�El
U*,I�…

with a random variable U taking values in U�G� l� and which
is distributed according to the Haar measure. From �27� it
follows that

F̄e�G,I� � E„Fc,e�U�El
U*,N̂�… . �28�

Applying Theorem 3.2 to the right-hand side of �28� we ar-
rive at

F̄e�G,I� � E„Fc,e�U�El
U*,N̂�… � tr�N̂��G

� l��

− 2

j=1

N

�klnj,�,l�N̂ j��G
� l��2, �29�

where nj,�,l stands for the number of Kraus operators of the

reduced operation N̂ j.
Theorem 4.1 (direct part: informed decoder). Let I

= �N1 , . . . ,NN	�C�H ,K� be a compound channel and �G
the maximally mixed state associated with a subspace G�H.
Then

QID�I� � min
Ni�I

Ic��G,Ni� .

Remark. Arguing as Klesse �18�, an immediate conse-
quence of this theorem is the inequality

QID�I� � lim
l→�

1

l
max

��S�H� l�
min
Ni�I

Ic��,Ni
� l� .

See also the argument in Sec. VI. Using the quantum Fano
inequality and following the lines of �8�, it is easy to estab-
lish the converse

QID�I� � lim
l→�

1

l
max

��S�H� l�
min
Ni�I

Ic��,Ni
� l� . �30�

Proof. We show that for every �
0 the number
minNi�I Ic��G ,N�−� is an achievable rate for I.

�1� If minNi�I Ic��G ,Ni�−��0, there is nothing to prove.
�2� Let minNi�I Ic��G ,Ni�−�
0. Choose �� �0,1 /2�

satisfying ����+3������ with functions � ,� from Lemmas
4.1 and 4.2. Pick a sequence of subspaces ��El

�l�N with
�El

��G
� l for all l�N that are of dimension kl

= �2l�minNi�I Ic��G,Ni�−���. By S��G�� Ic��G ,N j� �see �8��, this is
always possible. Obviously, �1 / l�log kl�minNi�I Ic��G ,Ni�
−�.

We consider the terms in �28� separately:

tr�N̂��G
� l�� =

1

N


j=1

N

�tr�Q j,�,l � N j
� l��G

� l��

+ tr�Q j,�,l � �N j,�,l − N j
� l���G

� l��	

�
1

N


j=1

N

�tr�Q j,�,l � N j
� l��G

� l��

+ tr��N j,�,l − N j
� l���G

� l��	

=
1

N


j=1

N

�tr�qj,�,lN j
� l��G

� l��

− tr� 

yl�Kj,�,l

aj,yl�G
� la

j,yl
* ��

� 1 − 2−l�c�2−h�l�� − 2−l�c��2−h��l��. �31�

We used the fact that N j,�,l is a reduction of N j
� l and Lem-

mas 4.1 and 4.2.
Further, using the inequality �A+B�2

2� �A�2
2+ �B�2

2 valid
for nonnegative operators A ,B�B�K� l� �see �18��, we get
the inequality

�N̂ j��G
� l��2

2 � �qj,�,lN j,�,l��G
� l��2

2 + �qj,�,l�N j
� l − N j,�,l���G

� l��2
2

� �qj,�,l�N j,�,l + �N j
� l − N j,�,l����G

� l��2
2

= �qj,�,lN j
� l��G

� l��2
2

= tr�qj,�,lN j
� l��G

� l�qj,�,l
2 N j

� l��G
� l�qj,�,l�

� tr�qj,�,l�2−2l�S�Nj��G��−����� � 2−l�S�Nj��G��−3�����.

�32�

The last two inequalities follow from Lemma 4.1. Combin-
ing the inequalities �28�, �31�, and �32� with Lemma 4.2, we
finally see that

F̄e�G,I� � 1 − 2−l�c�2−h�l�� − 2−l�c��2−h��l��

− 2

j=1

N

�2l��1/l�log kl+����+3����−Ic��G,Nj�� � 1

− 2−l�c�2−h�l�� − 2−l�c��2−h��l�� − 2N�2−l��−����−3�����.

This shows the existence of at least one sequence of �l ,kl�
codes for I with informed decoder and

lim
l→�

1

l
log kl = min

Ni�I

Ic��G,Ni� − �

as well as, for every l�N,

min
N�I

Fe��Fl
,RN � N� l� � 1 − N�l

with
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�l = 2−l�c�2−h�l�� + 2−l�c��2−h��l�� + 2N�2−l��−����−3�����.

�
Our next goal is to convert the codes for the given, finite

set I�C�H ,K� with the informed decoder into truly com-
pound codes. To this end, we need the channel estimation
technique of Datta and Dorlas �13� which we recall now.

Theorem 4.2. Let I= �N1 , . . . ,NN	�C�H ,K� with N�N.
Set L= � N

2 �. There is f = f�I�� �0,1� such that for each m
�N we can find mutually orthogonal projections
p1,mL , . . . , pN,mL�B�K�mL� with 
i=1

N pi,mL=1H
�mL and a pure

state ��mL��S�H�mL� such that

tr�pi,mLNi
�mL���mL��� � �1 − Nfm�N−1

holds for all i� �1, . . . ,N	.
With the help of Theorem 4.2 we will show that knowl-

edge of the channel in the finite compound scenario does not
increase the capacity.

Lemma 4.3. For any finite set I

= �N1 , . . . ,NN	�C�H ,K� we have

QID�I� = Q�I� .

Proof. The inequality QID�I��Q�I� is obvious from the
definitions of these capacities. The proof will be complete if
we show that each rate R achievable within the scenario of
an informed decoder is also achievable without knowledge
of the channel. Let �Ft , �Ri

t	i=1
N � be a �t ,kt� code for I

= �N1 , . . . ,NN	 with informed decoder and

Fe��Ft
,Ri

t � Ni
� t� � 1 − � �33�

for some �� �0,1� and all i� �1, . . . ,N	.
Let the pure state ��mL� and projections pi,mL , . . . , pN,mL be

as described in Theorem 4.2. Take xmL�H�mL such that
��mL�= �xmL��xmL� and define a set of measurement operations

R̂i
mL�C↓�K�mL ,H�mL� by R̂i

mL�·�ª��mL�tr�pi,mLpi,mL�. Set

RmL+t
ª 


i=1

N

R̂i
mL

� Ri
t,

FmL+t� ª �CxmL	 � Ft

and consider the averaged channel

NmL+t =
1

N


i=1

N

Ni
��mL+t�.

With the abbreviation

Fe ª Fe��FmL+t� ,RmL+t � NmL+t�

we arrive at

Fe =
1

N


i=1

N

Fe��FmL+t� ,RmL+t � Ni
��mL+t��

=
1

N


i,j=1

N

Fe„�
�mL�

� �Ft
,�R̂i

mL
� R j

t� � Ni
��mL+t�

…

�
1

N


i=1

N

Fe���mL�,R̂i
mL � Ni

�mL�Fe��Ft
,Ri

t � Ni
� t�

�
1

N


i=1

N

�xmL,��mL�tr�pi,mLNi���mL���xmL��1 − ��

� �1 − Nfm�N−1�1 − �� , �34�

by Theorem 4. and �33�. We see from �34� that for each i
� �1, . . . ,N	

Fe��FmL+t� ,RmL+t � Ni
��mL+t�� � 1 − N„1 − ��N,m,�, f�…

�35�

with ��N ,m ,� , f�= �1−Nfm�N−1�1−��. Replacing, for suffi-
ciently large l�N, m by ��l�, t by l−L��l�, and � by a se-
quence ��t�t�N with limt→� �t=0, we obtain a sequence of
�l ,kl� codes �Fl� ,Rl� for I with

lim
l→�

min
i��1,. . .,N	

Fe��Fl�
,Rl � Ni

� l� = 1

and

lim inf
l→�

1

l
log dim Fl� = lim inf

t→�

1

t
log kt,

which concludes the proof. �
Theorem 4.1, and the accompanying remark imply the

following coding theorem.
Theorem 4.3 (coding theorem: �I����. For any finite set

I= �N1 , . . . ,NN	�C�H ,K� we have

Q�I� = lim
l→�

1

l
max

��S�H� l�
min

i��1,. . .,N	
Ic��,Ni

� l� .

Utilizing Lemma 2.1 we obtain immediately the following
capacity result for finite averaged quantum channels.

Corollary 4.1 (capacity of averaged channels). For any
finite set I= �N1 , . . . ,NN	�C�H ,K� and any 	
= �	1 , . . . ,	N��RN with 	1 , . . . ,	N
0, 
i=1

N 	i=1, we have

Q�AI,	� = lim
l→�

1

l
max

��S�H� l�
min

i��1,. . .,N	
Ic��,Ni

� l� ,

where AI,	 denotes the averaged channel defined by I and 	.
We shall now briefly discuss the case of an informed en-

coder for finite compound channels.
Lemma 4.4. Let �C be the maximally mixed state on a

subspace C�H� l of dimension D and E :B�H� l�→B�H� l�
such that

Fe��C,E� � 1 − � .

To every K�D there exists a subcode C��C of dimension
dim C�=K such that
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Fe��C�,E� � 1 −
D

�D/K�K� .

Proof. Let P be the orthogonal projection onto C, that is,
�C= �1 / tr�P��P. Set Lª �D /K�. Take a decomposition

C = �
i=1

L

Ci � CL+1

of C into pairwise orthogonal subspaces Ci�C that satisfies
dim Ci=K, i� �1, . . . ,L	 and dim CL+1=D−KL.

To every Ci, let the maximally mixed state on Ci be de-
noted by �Ci

. Clearly,

�C = 

i=1

L
K

D
�Ci

+
D − KL

D
�CL+1

.

By assumption and use of convexity of entanglement fidelity
in the input distribution, this implies

1 − � � Fe��C,E� � 

i=1

L
K

D
Fe��Ci

,E� +
D − KL

D
Fe��CL+1

,E�

� L
K

D
max

1�i�L·K
Fe��Ci

,E� + 1 − L
K

D
. �36�

Clearly, �36� implies that there exists j� �1, . . . ,LK /D	 such
that

1 −
D

LK
� � Fe��Cj

,E� .

Set C�=Cj. �
Lemma 4.5. Let n�N, A, B�R, and A
B
0. Then

�2nA�
�2nB� · ��2nA�/�2nB�� � 1 − 3 � 2−nB.

Proof. Let, for the moment, n be fixed. There are
�A ,�B ,�AB� �0,1� such that �2nA�=2nA+�A, �2nB�=2nB+�B,
and ��2nA� / �2nB��= �2nA+�A� / �2nB+�B�+�AB. We will now de-
rive a lower bound on the denominator.

�2nB + �B��2nA + �A

2nB + �B
+ �AB� � 2nB 2nA

2nB + �B

= 2n�A+B� 1

2nB + �B

� 2n�A+B� 1

2nB + 1
. �37�

With the help of �37� we get

�2nA�
�2nB���2nA�/�2nB�� =

2nA + �A

�2nB + �B���2nA + �A�/�2nB + �B� + �AB�

� �2nA + �A�2−n�A+B��2nB + 1� � �2nA

+ 1�2−n�A+B��2nB + 1� = �2−nB + 2−n�A+B��

��2nB + 1� = 1 + 2−nB + 2−nA + 2−n�A+B�

� 1 + 3 � 2−nB.

�
Theorem 4.4 (converse: informed encoder). Let I

= �N1 , . . . ,NN	�C�H ,K� be a finite compound channel. The
quantum capacity with informed encoder of I is bounded
from above by

QIE�I� � min
Nj�I

Q�N j� .

This is easily seen using standard techniques from �8�.
We will now show that our upper bound is indeed achiev-

able. To this end, we will now convert codes for single chan-
nels into codes for I with informed encoder. Again, we need
the channel estimation technique of Datta and Dorlas �13�
which has already been stated in Theorem 4.2.

Theorem 4.5 (direct part: informed encoder). For any fi-
nite set I= �N1 , . . . ,NN	�C�H ,K� we have

QIE�I� � min
Ni�I

Q�Ni� .

Proof. Throughout the proof, we will write “for all i”
meaning “for all i� �1, . . . ,N	.”

Let �
0 be arbitrary and ��G1
, . . . ,�GN

	 be maximally
mixed states on corresponding subspaces Gi�H. By the
noisy channel coding theorem �18�, for every i there are se-
quences �Fl

i ,Ri
l�l�N, ��l

�i��l�N with �l
�i�↘0 such that

Fe��Fl
i,Ri

l � Ni
� l� � 1 − �l,

dim Fl
i = �2l�Ic��Gi

,Ni�−��� ,
where �lªmax1�i�N�l

�i� and, clearly, �l↘0.
We set Eª �i � Ic��Gi

,Ni�=min1�j�NIc��Gj
,N j�	 and de-

note the complement of E within �1, . . . ,N	 by EC. We take
kªmin�i � i�E	.

By definition, for every j�EC we have Ic��Gk
,Nk�−�

� Ic��Gj
,N j�−�. By Lemmas 4.4 and 4.5, for j�EC there

exist subspaces F̂l
j with dim F̂l

j = �2Ic��Gk
,Nk�−�� such that

Fe��F̂l
j,Rl

j � N j
� l� � 1 − �l�1 + 3 � 2−l�Ic��Gk

,Nk�−��� .

Setting, for every i�E, F̂l
i
ªFl

i and using the abbreviation
�lª�l�1+3�2−l�Ic��G,Nk�−���—observe that �l↘0—we get

Fe��Fl
i,Ri

l � Ni
� l� � 1 − �l,

lim
l→�

1

l
log dim Fl

i = Ic��Gk
,Nk� . �38�

Let m , t�N be arbitrary and let the pure state ��mL� and
projections pi,mL , . . . , pN,mL be as described in Theorem 4.2.
Take xmL�H�mL such that ��mL�= �xmL��xmL� and define a set

of measurement operations R̂i
mL�C↓�K�mL ,H�mL� by

R̂i
mL�·�ª��mL� tr�pi,mLpi,mL�. Set

RmL+t
ª 


i=1

N

R̂i
mL

� Ri
t,

FmL+t�i
ª �CxmL	 � F̂t

i.

With the abbreviation
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Fe
i
ª Fe��FmL+t�i ,RmL+t � N��mL+t�� ,

we arrive at

Fe
i = 


j=1

N

Fe���mL�,R̂j
mL � Ni

�mL�Fe��F̂t
i,R j

t � Ni
� t�

� Fe���mL�,R̂i
mL � Ni

�mL�Fe��F̂t
i,Ri

t � Ni
� t�

� �xmL,��mL�tr�pi,mLNi���mL���xmL��1 − �t� � �1

− Nfm�N−1�1 − �t� . �39�

Replacing, for sufficiently large l�N, m by ��l� and t by l
−L��l�, we obtain a sequence of �l ,kl� codes for I with in-
formed encoder that achieves

min
1�j�N

Ic��Gj
,N j� − � .

Since this holds true for every �
0 we know that for every
set ��G1

, . . . ,�GN
	 the number min1�j�NIc��Gj

,N j� is an
achievable rate.

Let ��i
�m�	1�i�N be such that Ic��i

�m� ,Ni
�m�

=max��m�Ic���m� ,Ni
�m� for all i and let ��n,�,i

�m� �n�N be the se-
quence of frequency typical states associated with
��i

�m��n�n�N. We get the following chain of inequalities.

QIE�I� =
�1� 1

m
lim
n→�

1

n
QIE�I�nm�

�
�2� 1

m
lim
�→0

lim
n→�

1

n
min

1�j�N
Ic„�n,�,j

�m� ,�N j
�m��n

…

=
�3�

min
1�j�N

1

m
lim
�→0

lim
n→�

1

n
Ic„�n,�,j

�m� ,�N j
�m��n

…

=
�4�

min
1�j�N

1

m
Ic�� j

�m�,N j
�m� =

�5�

min
Nj�I

1

m
max
��m�

Ic���m�,N j
�m� .

Here, step 1 is easily seen using using the fact that pure
states can be transmitted with entanglement fidelity one over
any channel by using a constant recovery operation. Step 2
has just been proven, while step 3 is just continuity of the
function min. In step 4, we use the variant of the Bennett-
Shor-Smolin-Thapliyal �BSST� Lemma 6.1 for a single chan-
nel. The last line 5 follows by choice of �i

�m�. Taking the limit
m→� proves the claim. �

V. NETS AND DISCRETE APPROXIMATION IN THE SET
OF QUANTUM CHANNELS

The purpose of this section is to collect and provide nec-
essary building blocks for discretization arguments to follow
in Sec. VI. We start with the existence of good discrete ap-
proximation in the set C�H ,K� with respect to the diamond
norm � · �� in Sec. V A. The reasons for using this norm are
that �a� it is multiplicative with respect to tensor products of
channels, and �b� it is easy to relate to the entanglement
fidelity and coherent information. These relations are made
precise in Sec. V B.

A. Existence of good nets

Let C�H ,K� denote the set of CPTP maps with domain
B�H� and range B�K�. Without loss of generality we assume
that H=Cd and K=Cd�. The constructions to follow will be
based on the diamond norm on the set of channels. It is
defined by the prescription

�N��: = sup
n�N

max
a�B�Cn

�H�,�a�1=1

��idn � N��a��1, �40�

where � · �1 stands for the trace norm, idn :B�Cn�→B�Cn� is
the identity channel, and N :B�H�→B�K� is any linear map,
not necessarily completely positive. � · �� is the dual norm to
� · �cb, the norm of complete boundedness. We refer to �23,24�
for additional information on these norms. It is an important
fact that we need not maximize over all nonnegative integers
in �40�; the norm stabilizes at the value n=d=dim H, i.e.,

�N�� = max
a�B�Cd

�H�,�a�1=1

��idd � N��a��1. �41�

Two different proofs of this fact can be found in �23,24�.
It is well known, and not difficult to show, that for N

�C�H ,K� the relation

�N�� = 1

holds. Consequently, C�H ,K�� �� :B�H�
→B�K� :� is linear and ����=1	¬S�. Moreover, it is
clear that C�H ,K� is a compact convex set.

A � net, �
0, in C�H ,K� is a set �Ni	i=1
N �C�H ,K� such

that for each N�C�H ,K� there is at least one i
� �1, . . . ,N	 with �N−Ni����. The following basic lemma
shows the existence of � nets in C�H ,K�, the cardinality of
which grows polynomially in 1 /�.

Lemma 5.1. For any �� �0,1� there is a � net �Ni	i=1
N in

C�H ,K� with N� �3 /��2�dd��2
, where d=dim H and d�

=dim K.
Proof. The lemma is proved by simply imitating the proof

of Lemma 2.6 in �25�, where the corresponding result is
shown for spheres in arbitrary finite-dimensional normed
spaces. We give the full argument for convenience.

Let �Mi	i=1
M be an arbitrary subset of C�H ,K� with the

property that

�Mi − M j�� � � ,

for all i� j, i , j� �1, . . . ,M	. We will establish an upper
bound on the integer M now. The open balls B��Mi ,� /2�,
i=1, . . . ,M, with centers at Mi and radii � /2 are mutually
disjoint and are contained in the ball B��0,1+� /2� since
C�H ,K��S�. So,

�
i=1

M

B��Mi,
�

2
� � B��0,1 +

�

2
� . �42�

Let � be the Borel-Lebesgue measure �or equivalently the
Haar measure� on �B(B�H� ,B�K�) ,�Borel� where
B(B�H� ,B�K�) denotes the set of linear maps from B�H� to
B�K� and �Borel is the � algebra of Borel sets. Computing the
volume of the sets in �42�, we obtain
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M� �

2
�2�dd��2

�„B��0,1�… � �1 +
�

2
�2�dd��2

�„B��0,1�… ,

where B��0,1� is the open unit ball with respect to the �
norm and 2�dd��2 is the dimension of B(B�H� ,B�K�) as a
vector space over the field R. This last inequality is equiva-
lent to

M � �1 +
2

�
�2�dd��2

. �43�

Now, let �Ni	i=1
N be a maximal set in C�H ,K� with the prop-

erty that �Ni−N j���� for all i� j. Then, clearly, �Ni	i=1
N is a

� net and �43� holds. Due to our assumption that �� �0,1�
we obtain

N � �1 +
2

�
�2�dd��2

� �3

�
�2�dd��2

and we are done. �

B. Discrete approximation of compound quantum
channels

Let I�C�H ,K� be an arbitrary set. Starting from a � /2
net Nª �Ni	i=1

N with N� �6 /��2�dd��2
as in Lemma 5.1 we can

build a � /2 net I�� that is adapted to the set I given by

I�� ª �Ni � N: ∃ N � I with�N − Ni�� � �/2	 . �44�

Let U�C�H ,K� be the useless channel given by U���
ª �1 /d��1K, ��S�H�, and consider

I� ª ��1 −
�

2
�N +

�

2
U:N � I��� , �45�

where I�� is defined in �44�. For I�C�H ,K� we introduce
the abbreviation

Ic��,I� ª inf
N�I

Ic��,N� ,

for ��S�H�. We list a few more or less obvious results in
the following lemma that will be needed in the following.

Lemma 5.2. Let I�C�H ,K�. For each positive ��1 /e let
I� be the finite set of channels defined in �45�.

�1� �I��� �6 /��2�dd��2
.

�2� For N�I there is Ni�I� with

�N� l − Ni
� l�� � l� . �46�

Consequently, for N, Ni, and any CPTP map R :B�K�� l

→B�F� the relation

�Fe��,R � N� l� − Fe��,R � Ni
� l�� � l� �47�

holds for all ��S�H� l� and l�N.
�3� For all ��S�H� we have

�Ic��,I� − Ic��,I��� � � + 2� log
d

�
. �48�

Proof. �1�. This is clear from the definition of I�.
�2�. It is clear from the construction of I� that there is at

least one Ni�I� with

�N − Ni�� � � .

We know from �23,24� that �R1 � R2��= �R1���R2��

holds, i.e., � norm is multiplicative. The inequality �46� is
easily seen using repeatedly the tensor identity

a1 � b1 − a2 � b2 = a1 � �b1 − b2� + �a1 − a2� � b2,

the multiplicativity of the � norm, and the fact that �R��

=1 for all CPTP maps.
Let ��H� l � H� l be a purification of ��S�H� l�. Let us

denote the left-hand side of �47� by �Fe. By the definition of
the entanglement fidelity we have

�Fe = �Š�, idd
� l

� �R � �N� l − Ni
� l�����������‹� .

An application of the Cauchy-Schwarz inequality shows that

�Fe � �idd
� l

� �R � �N� l − Ni
� l������������ � �idd

� l
� �R

� �N� l − Ni
� l������������ � �idd

� l
� �R � �N� l − Ni

� l��

����������1 = ���idd
� l

� R� � �idd � �N� l − Ni
� l��	����

������1 � �R���N� l − Ni
� l����������1 � l� ,

where we have used �R��=1, ��������1=1, and �46�.
�3�. The proof of �48� is based on Fannes’ inequality �26�

and uses merely standard conclusions. So we will confine
ourselves to a brief outline of the argument. Fannes’ inequal-
ity states that �S��1�−S��2���� log d−� log � for all density
operators with ��1−�2�1���1 /e. To the given � we can
always find an N��I with

Ic��,N�� � Ic��,I� + � . �49�

On the other hand there is Ni�I� with �N�−Ni����. This
implies immediately

�N���� − Ni����1 � �

and

�idd � N��������� − idd � Ni���������1 � �

by the definition of the � norm where ��H � H is a puri-
fication of ��S�H�. Since

Ic��,N�� = S„N����… − S„idd � N���������… ,

with a similar relation for Ni, an application of Fannes’ in-
equality leads to

Ic��,Ni� � Ic��,N�� + 2�� log d − � log �� .

This and �49� show that

Ic��,I�� � Ic��,I� + � + 2�� log d − � log �� .

The inequality

Ic��,I� � Ic��,I�� + 2�� log d − � log ��

is shown in a similar vein. �

VI. DIRECT PART OF THE CODING THEOREM:
GENERAL CASE WITH INFORMED DECODER

In this final section we will utilize our coding results for
finite I and the discretization techniques from the previous
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section to establish the coding theorem for arbitrary I with
informed decoder.

Theorem 6.1. Let I�C�H ,K� be an arbitrary compound
channel and let �G be the maximally mixed state associated
with a subspace G�H. Then

QID�I� � inf
N�I

Ic��G,N� .

Proof. We consider two subspaces Fl ,G� l of H� l with
Fl�G� l�H� l. Let klªdim Fl and we denote as before the
associated maximally mixed states on Fl and G by �Fl

and
�G.

If infN�IIc��G ,N��0 there is nothing to prove. There-
fore we suppose that

inf
N�I

Ic��G,N� 
 0

holds. We will show that for each �� (0, infN�IIc��G ,N�)
the number

inf
N�I

Ic��G,N� − �

is an achievable rate.
Let �
0 with ��1 /e, which will be specified later. We

consider the finite set of channels I�ª �N1 , . . . ,NN�
	 associ-

ated with I given in �45� with the properties listed in Lemma
5.2. We can conclude from the proof of theorem 4.1 that for
each l�N there is a subspace Fl�G� l of dimension

kl = �2l�mini��1,. . .,N�	Ic��G,Ni�−�/2�� �50�

and for each Ni�I� a recovery operation Ri such that

Fe��Fl
,Ri � Ni

� l� � 1 − N��2−l�c�2−h�l�� + 2−l�c��2−h��l��

+ 2N�
�2−l��/2−����−3������ , �51�

where we have chosen �
0 and �
0 small enough to en-
sure that

min
i��1,. . .,N�	

Ic��G,Ni� −
�

2

 0,

and

�

2
− ���� − 3���� 
 0.

By our construction of I� we can find for each N�I at least
one Ni�I� with

�Fe��Fl
,Ri � Ni

� l� − Fe��Fl
,Ri � N� l�� � l� , �52�

according to Lemma 5.2. Note that by the last claim of
Lemma 5.2 we also have the following estimate on the di-
mension kl of the subspace Fl:

kl � �2l�infN�I Ic��G,N�−�/2−�−2��log d/���� . �53�

The relations �52�, �51�, and �53� lead to the following con-
clusion. For each l�N we can find a subspace
Fl�G� l�H� l of dimension

kl � �2l�infN�I Ic��G,N�−�/2−�−2��log d/���� �54�

such that for each N�I there is a recovery operation RN
with

Fe��Fl
,RN � N� l� � 1 − N��2N�

�2−l��/2−����−3�����

+ 2−l�c�2−h�l�� + 2−l�c��2−h��l��� − l� . �55�

Finally, if we choose our approximation parameter � in de-
pendence of l�N we can ensure that the entanglement fidel-
ity of our code approaches 1, Taking, e.g., any sequence
��l�l�N with �l↘0 as l tends to �, and liml→�l�l=0, we see
immediately that the right-hand side �RHS� of �55� tends to
1, and that the RHS of �54� can be lower-bounded by

�2l�infN�I Ic��G,N�−���
for all sufficiently large l�N. �

The following lemma is the compound analog of a result
discovered by Bennett et al. in �27� �BSST Lemma�. We will
use the following abbreviations. For any I�C�H ,K� and l
�N we set

I� l
ª �N� l:N � I	 .

Recall also our earlier shortcut notation

Ic��,I� = inf
N�I

Ic��,N�

for ��S�H�.
Lemma 6.1. (compound BSST Lemma). Let I�C�H ,K�

be an arbitrary set of channels. For any ��S�H� let q�,l
�B�H� l� be the frequency-typical projection of � and set

��,l ª
q�,l

tr�q�,l�
� S�H� l� .

Then there is a positive sequence ��l�l�N satisfying
liml→��l=0 with

lim
l→�

1

l
inf

N�I

Ic���l,l
,N� l� = inf

N�I

Ic��,N� .

Proof. The proof is via reduction to Holevo’s proof �28�
of the BSST Lemma for a single channel supplemented by a
discretization argument. As in the proof of Theorem 6.1, we
choose a decreasing sequence ��l�l�N, with �l
0, liml→�l�l
=0, and consider the finite set of channels I�l
= �N1 , . . . ,NN�l

	 defined in �45� associated with I.

By our construction of the set I�l
we know that

Ni��� �
�l

d�2
1K �56�

holds for all i� �1, . . . ,N�l
	, which implies

log Ni��� � log� �l

d�2
�1K �57�

uniformly in i� �1, . . . ,N�l
	. On the other hand, let I�l,e

= �E1 , . . . ,EN�l
	�C�H ,He� denote the complementary set of

channels associated with I�l
. We alter I�l,e

by mixing a part
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of the useless channel Ue�C�H ,He� with each Ei�I�l,e
, i.e.,

we set

I�l,e
� ª �1 −

�l

2
�I�l,e

+
�l

2
Ue.

Note that then for each Ei��I�l,e
�

Ei���� �
�l

2 dim�He�
1He

,

and consequently

log Ei���� � log� �l

2 dim�He�
�1He

. �58�

Applying Holevo’s argument from �28� to each channel from
I�l

and I�l,e
� with our notation from Lemma 4.1 and uniform

bounds �57� and �58� we obtain for each i� �1, . . . ,N�l
	

�1

l
S„Ti

� l���,l�… − S„Ti���…� � −
1

l
log �l��� + 2����

− d� log� �l

2D
�¬ �l��,D� ,

�59�

where �Ti ,D�� ��Ni ,d�� , �Ei� ,dim He�	.
Since for each i� �1, . . . ,N�l

	

�Ei − Ei��� � �l,

we obtain

�Ei
� l − Ei�

� l�� � l�l.

Hence by choosing l sufficiently large we can ensure that
l�l�1 /e and an application of Fannes’ inequality shows that

�S„Ei����… − S„Ei���…� � �l log
dim He

�l
�60�

and

�1

l
S„Ei�

� l���,l�… −
1

l
S„Ei

� l���,l�…� � l�l log
dim He

l�l
.

�61�

Inequalities �59�–�61� show that

�1

l
Ic���,l,Ni

� l� − Ic��,Ni�� � �l��,d�� + �l��,dim He�

+ �l log
dim He

�l

+ l�l log
dim He

l�l

¬ �l��,d�,dim He� �62�

for each i� �1, . . . ,N�l
	. It is then easily seen utilizing �62�

that

�1

l
Ic���,l,I�l

� l� − Ic��,I�l
�� � �l��,d�,dim He� . �63�

Applying �48� to �, I and ��,l, I� l, we obtain

�Ic��,I�l
� − Ic��,I�� � �l + 2�l log

d

�l
�64�

and

�1

l
Ic���,l,I�l

� l� −
1

l
Ic���,l,I

� l�� � �l + 2l�l log
d

l�l
.

�65�

Using the triangle inequality, �63�–�65� we see that

�1

l
Ic���,l,I

� l� − Ic��,I�� � �l��,d�,dim He� + �l

+ 2l�l log
d

l�l
+ �l + 2�l log

d

�l
.

�66�

We are done now, since for any positive sequence ��l�l�N
with liml→��l=0, liml→��l��l�=1, and liml→��l log �l=0 we
can conclude from �66� that

lim
l→�

1

l
inf

N�I

Ic���l,l
,N� l� = inf

N�I

Ic��,N�

holds. �
It is easy now to prove the direct part of the coding theo-

rem. First observe that for each k�N

QID�I�k� = kQID�I� �67�

holds. For any fixed ��S�H�m� let q�,l�B�H�ml� be the
frequency-typical projection of � and set ��,l=q�,l / tr�q�,l�.
Then according to Theorem 6.1 for each �� �0,1 /2� we
have

QID�I�ml� � Ic���,l,I
�ml� . �68�

From �67� and �68�, and Lemma 6.1 we obtain

QID�I� =
1

m
lim
l→�

1

l
QID�I�ml�

�
1

m
lim
l→�

1

l
inf

N�I

Ic„��l,l
,�N�m�� l

… =
1

m
Ic��,I�m� .

�69�

Obviously, �69� implies the following theorem.
Theorem 6.2 (direct part: informed decoder). Let

I�C�H ,K�. Then the capacity of the compound quantum
channel built up from I in the scenario with informed de-
coder satisfies

QID�I� � lim
l→�

1

l
max

��S�H� l�
inf

N�I

Ic��,N� l� .

Since the converse to the coding theorem 6.2 follows easily
from the converse part to the coding theorem for a single
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memoryless channel �8� we can state our capacity result as
follows.

Theorem 6.3 (capacity with informed decoder). The ca-
pacity of the compound channel built up from a set
I�C�H ,K� with informed decoder is given by

QID�I� = lim
l→�

1

l
max

��S�H� l�
inf

N�I

Ic��,N� l� .
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