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For itinerant fermionic and bosonic systems, we study “particle entanglement,” defined as the entanglement
between two subsets of particles making up the system. We formulate the general structure of particle en-
tanglement in many-fermion ground states, analogous to the “area law” for the more usually studied entangle-
ment between spatial regions. Basic properties of particle entanglement are uncovered by considering relatively
simple itinerant models.
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I. INTRODUCTION

In recent years, concepts from quantum information have
proved useful for condensed-matter systems. One prominent
example is the study of the entanglement between a part �A�
and the rest �B� of the many-particle system, measured by
the entanglement entropy SA. The entanglement entropy, SA
=−tr��A ln �A�, is defined in terms of the reduced density
matrix �A=trB� obtained by tracing out B degrees of
freedom.

To define a bipartite entanglement, one has to first specify
the partitioning of the system into A and B. The most com-
monly used scheme is to partition space, e.g., partition the
lattice sites into A sites and B sites. However, for itinerant
particles, with the wave function expressed in first-quantized
form, one can meaningfully partition particles rather than
space, and calculate entanglements between subsets of par-
ticles. Since each particle has a label in first-quantized wave
functions, indistinguishability does not preclude well-defined
subsets of particles. Note that, with such partitioning, A or B
do not correspond to connected regions of space.

Particle partitioning entanglement in a many-particle sys-
tem is generally quite different from the entanglement be-
tween spatial partitions of the same system. The investiga-
tion of particle partitioning entanglement has started
relatively recently �1–3�. In work reported since then, par-
ticle entanglement has been shown to be a promising novel
measure of correlations �2–6�. In fractional quantum Hall
states and in the ground state of the Calogero-Sutherland
model, this type of entanglement reveals the exclusion sta-
tistics inherent in excitations over such states �2,4,5�. For
one-dimensional anyon states, particle entanglement is found
to be sensitive to the anyon statistics parameter �6,7�.

Clearly, entanglement between particles in itinerant sys-
tems is a promising concept, potentially useful for describing
subtle correlations and the interplay between statistics and
interaction effects. A broad study of the concept and its util-
ity is obviously necessary. Unfortunately, particle entangle-
ment has been studied up to now mostly in relatively exotic
models, so that the literature lacks simple intuition about
these quantities. This paper fills that gap. We provide results
for the simplest nontrivial itinerant fermionic and bosonic
models, and present generic behaviors by generalizing avail-
able results.

We first present upper and lower bounds for the entropy
of entanglement Sn between a subset of n particles and the
remaining N−n particles. We formulate a “canonical”
asymptotic form for fermionic and some bosonic systems.
We next present results for a two-site Bose-Hubbard model.
Through this toy model, we identify two general mechanisms
of obtaining nonzero particle entanglement in many-particle
models. One mechanism is simply that of �anti�symmetriza-
tion of wave functions, while the other is due to the forma-
tion of “Schrödinger-cat”-like states. The second mechanism
is shown to be fragile, in the same sense that cat states are
fragile in macroscopic settings. We next switch to true lattice
models, focusing on spinless fermions on a one-dimensional
�1D� lattice with nearest-neighbor repulsion, sometimes
known as the t-V model. We find similar mechanisms at
work, in a nontrivial setting. In addition, our study of the t-V
model enables us to present generic intuition about particle
entanglement in many-particle systems, expressed in our ca-
nonical asymptotic language.

II. GENERIC CONSIDERATIONS

Before analyzing specific systems, we start with some re-
sults that we expect to be universal for itinerant quantum
many-particle states.

Bounds. A generic itinerant lattice system has N particles
in L sites; we consider bosons or spinless fermions so that
N�L. In every case, a natural upper bound for Sn is provided
by the �logarithm of the� size of the reduced density matrix
�A=�n, i.e., the dimensions of the reduced Hilbert space of
the A partition. This size is � L

n �=C�L ,n� for fermions and
C�L−1+n ,n� for bosons. The actual rank of �n can be much
smaller due to physical reasons, so that the entanglement
entropies are usually significantly smaller than the upper
bounds, as we shall see in the examples we treat.

In a bosonic system, Sn can vanish, since a Bose conden-
sate wave function is simply a product state of individual
boson wave functions, each identical. For fermions, however,
antisymmetrization requires the superposition of product
states; for free fermions, this causes �n to have C�N ,n� equal
eigenvalues. This provides a nonzero lower bound for Sn in a
fermionic system.

0 � Sn � ln C�L − 1 + n,n� for bosons, �1�
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ln C�N,n� � Sn � ln C�L,n� for fermions. �2�

Canonical form. For large fermion number, N�1, we
propose the following canonical form for the entanglement
of n�N fermions with the rest:

Sn�N� = ln C�N,n� + �n + O�1/N�� = n ln N + �n� + O�1/N�� ,

�3�

with ��0. This form is suggested by results reported in
Refs. �2,4–6�, and in this paper. For example, �n=n ln m for
the Laughlin state at filling 	=1 /m �2�. The same canonical
behavior seems to hold for bosonic systems that lack macro-
scopic condensation into a single mode, e.g., bosonic Laugh-
lin states �4�, or hard-core repulsive bosons in one dimension
�8�.

Subtle correlation and statistics effects can be contained
in the behavior of the O�1� term �n, and sometimes also the
O�1 /N�� term. Our calculations provide important intuition
about how such effects show up in �n, as we summarize at
the end of this paper.

Note that, for lattice sizes larger than N, the generic be-
havior �3� indicates that the entanglement entropy does not
saturate the upper bound �1� or �2� obtained from the size of
the reduced Hilbert space.

III. TWO-SITE BOSE-HUBBARD MODEL

We start with a toy lattice model, with only two sites. We
will consider N bosons on this “lattice,” subject to a Bose-
Hubbard model Hamiltonian, to elucidate the basic mecha-
nisms by which an itinerant quantum system can possess
particle entanglement. The Hamiltonian is

Ĥ = − �b̂1
†b̂2 + b̂2

†b̂1� +
1

2
U�b̂1

†b̂1
†b̂1b̂1 + b̂2

†b̂2
†b̂2b̂2� . �4�

For U=0, the system is a noninteracting Bose condensate,
with each boson packed into the state 1

�2
��1�+ �2��. In the U

→ +
 case, the system is a Mott insulator, with half the
particles in site 1 and the other half in site 2. Such a state is
simple in the “site” basis �second-quantized wave function�,
but involves symmetrization in the “particle” basis �first-
quantized wave function�, leading to nonzero particle en-
tanglement entropy. Finally, the U→−
 limit involves all
particles in either site 1 or site 2. The ground state is a linear
combination of these two possibilities, which for large N is a
macroscopic “Schrödinger cat” state. Such a state is some-
what artificial, because an infinitesimal energy imbalance be-
tween the two states will “collapse” this state. For example,

a “symmetry-breaking” term of the form �b̂1
†b̂1, added to the

Hamiltonian �4�, would favor site 2 and destroy the cat state.
The resulting state is a product state with zero particle
entanglement.

Incidentally, a two-site model with off-site interaction V
�instead of on-site U� has similar physics, with negative
�positive� V playing the role of positive �negative� U.

Two bosons in two sites. There is only one way of parti-
tioning two particles �n=1�, so the only Sn is S1. We expect
S1=0 at U=0, and maximal entanglement S1=ln 2 for both

the “Mott” state at U= +
 and the “Schrödinger cat” state at
U=−
. The Hilbert space is small; one can diagonalize the
problem and calculate S1 analytically as a function of U. We
find S1�U�=S1�−U� interpolating smoothly between zero and
ln 2�0.6931 in both positive and negative directions �Fig.
1�.

We also demonstrate the fragility of the cat state by show-

ing the effect of an �b̂1
†b̂1 term. There is no appreciable effect

for U�0, but for U�0 the cat state is destroyed and we get
S1→
 for U→−
.

Many bosons in two sites. For N bosons, it is meaningful
to study Sn with n�1. Labeling the basis states by site oc-
cupancies, i.e., as �N1 ,N2�, the Mott and cat ground states
are, respectively, �N /2,N /2� and ��0,N�+ �N ,0�� /�2. The
n-particle reduced Hilbert space has dimension n+1; the
reduced-space basis states can be labeled by the number of A
bosons in site 1. In the Mott state �N /2,N /2�, only the diag-
onal elements of �n are nonzero and they are all equal; hence
Sn�U→
�=ln�n+1�. In the cat state, only two elements are
nonzero, both on the diagonal; hence Sn�U→−
�=ln 2, in-
dependent of n. Figure 2 demonstrates, via calculation from
wave functions obtained by numerical diagonalization, that
Sn increases to ln�n+1� and ln 2 in the U→ 
 limits.

Both �n�U� and Sn�U� can be understood in greater detail
using available approximations �9�. For U�0, the coeffi-
cients �N1

of the ground state �GS�=	N1
�N1

�N1 ,N−N1� can
be approximated by a Gaussian �N1

�exp��N1− 1
2N�2 /�2�,

with N�−2= �1+UN�1/2. The reduced density matrix then has
off-diagonal elements of the form exp�−c /�2�, which vanish
as U→
. For U�0 and �U�N�2, the function �N1

can be
approximated by two Gaussians centered at separate points
around N1=N /2. As the two peaks sharpen, we converge to
the two-eigenvalue case described for U→−
. Figure 2

-40 -20 0 20 40
On-site interaction, U

0

0.4

0.8

S
1

FIG. 1. �Color online� Entanglement between two bosons, in the
ground state of a two-site lattice model with on-site repulsion. The
solid curve is for the basic Bose-Hubbard model. Dashed ��=0.1�
and dash-dotted ��=0.1U� curves illustrate the fragility of the “cat”

state via an �b̂1
†b̂1 term.

-8 -4 0
U N

0

0.5

1
S

2

0 2 4
U / N

0

0.5

1�����������
�����������
�����������
�����������N= 10

N=1000

-8 -4 0

0

0.4

0.8

S
1

0 2 4

0

0.4

0.8

X

FIG. 2. �Color online� One- and two-particle entanglement en-
tropies for N bosons in two sites.
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shows that Sn changes rather sharply around U
−2 /N for
large N.

Incidentally, the particle entanglements of this toy model
are equivalent to the entanglements between spins in the
Lipkin-Meshkov-Glick �LMG� model; our UN=−2 features
appear at a field-driven phase transition in the LMG case
�10�. For lattice models, however, particle entanglements
generally have no simple spin analogies.

To summarize our findings from the bosonic model, we
note that the Mott state for U�0 and the Schrödinger cat
state for U�0 both possess particle entanglement. We have
thus identified two generic mechanisms for generating par-
ticle entanglement in itinerant systems.

IV. SPINLESS FERMIONS IN ONE DIMENSION

We will now consider the 1D t-V model: N spinless fer-
mions on L sites with periodic boundary conditions,

H = − t	
�ij�

�ci
†ci+1 + ci+1

† ci� + Vnini+1.

We will use t=1 units. For repulsive interactions at half-
filling �N= 1

2L�, this model has a quantum phase transition at
V=2, from a Luttinger-liquid phase at small V to a charge
density wave �CDW� phase at large V. This model is solv-
able by the Bethe ansatz; however, calculating particle en-
tanglement entropies Sn using the Bethe ansatz is a highly
nontrivial problem.

Limits. For V=0 �free fermions �FF��, the ground state is
simple in terms of momentum-space modes: a Slater deter-
minant of the N fermions occupying the N lowest-energy
modes. The n-particle reduced density matrix has C�N ,n�
equal eigenvalues, so that Sn=ln�C�N ,n��, independent of
the lattice size L.

In the infinite-V limit, the ground state and hence particle
entanglement can be simply understood for the case of half-
filling, N= 1

2L. The ground state is an equal superposition of
two “crystal” states, and each of them gives a separate con-
tribution to the reduced density matrix. The reduced density
matrix has rank 2C�N ,n� and equal eigenvalues: Sn
=ln�2C�N ,n��. In the notation of Eq. �3�, the subleading term
�n intrapolates between �n=0 at V=0 and �n→ ln 2 for V
→
 for half-filling. The interpolation details depend on n
and N.

Numerical results. For half-filling �N= 1
2L�, Fig. 3 presents

Sn�V�, calculated from wave functions obtained by direct nu-
merical diagonalization. The Sn�V� function evolves from
SFF=ln�C�N ,n�� to ln�2C�N ,n���SFF+0.6931. For n�1,
we see nonmonotonic behavior in some cases. At present, we
have no detailed understanding of the states or Sn at finite
nonzero V.

As in our bosonic model, we see Schrödinger cat physics
in the t-V model also: the V= +
 ground state is a superpo-
sition of two CDW states of the form �101010…10� and
�010101…01�. The fragility of this cat state can be seen by
adding a single-site potential, �c1

†c1, or a staggered potential,
��	ic2i

† c2i. The ground state then collapses to a single-crystal
wave function, and Sn drops to ln�C�N ,n�� �Fig. 3, top
panel�.

Phase transition. The small-n particle entanglement en-
tropies show no strong signature of the phase transition at
V=2, even after extrapolating to the N→
 limit. �The ex-
trapolated curves are very close to the largest-N curves dis-
played in Fig. 3 and so are not shown.� This is not too sur-
prising because the notion or space enters rather weakly in
the definition of particle entanglement; thus Sn is not too
sensitive to diverging correlation length or large-scale fluc-
tuations. It remains unclear whether sharper signatures ap-
pear for finite n /N �as opposed to our n�N�.

Away from half-filling. For N�L /2, the behavior is quali-
tatively similar to the half-filled case, �n increasing from
zero to an O�1� value as V increases from zero to infinity
�Fig. 4�. However, there is no simple picture for the V→

limit. Also, �n�V� appears to be monotonic, perhaps because
�n�V→
� is not constrained as in the half-filled �CDW�
case.

Note that, except for Sn=1 in the half-filled case, the par-
ticle entanglement never saturates the upper bound,
ln�C�L ,n��, dictated by Hilbert space size.

Negative V. An attractive interaction causes the fermions
to cluster. In the V→−
 limit, the ground state is a superpo-
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FIG. 3. �Color online� n=1, 2, and 3 entanglement entropy in
the half-filled t-V model �N=L /2�. The free-fermion contribution
ln�C�N ,n�� has been subtracted off. The n=1 plot also displays the
effect of a symmetry-breaking �c1

†c1 term, with �=0.1. Inset: posi-
tion of the maximum as a function of �.
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tracted off in each case.
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sition �cat state� of L terms, each a cluster of the N fermions.
The cat state can be destroyed as in the positive-V case. For
half-filling with even N, the V→−
 wave function yields
S1=ln N+ln 2. There are O�N−1� corrections for odd N
=L /2.

Eigenvalue spectrum (majorization). The full eigenvalue
spectrum of the reduced density matrices ��n� of course con-
tains more information than the Sn alone. For n=1, where
S1�V�0� is monotonic, we numerically observe “majoriza-
tion” �e.g., Ref. �11�� of spectra. Obviously, there are many
other aspects of the full spectra that remain unexplored.

Hardcore bosons. An important issue concerns bosonic
systems that have partial condensation into a single mode, so
that the leading asymptotic term is not ln N. We have treated
one example, closely related to the fermionic t-V model:
hard-core bosons on a 1D lattice �forbidden multiple occu-
pancy, U=
� with nearest-neighbor interaction V. The point
V=−2 has a “simple” ground state �12�, which we exploited
to find

Sn = 	n ln N + O�N0� ,

where 	=N /L is the filling fraction. A natural interpretation
is that the prefactor represents the uncondensed fraction.
Whether this is generic for bosonic systems with partial con-
densation remains an open question.

V. MANY-PARTICLE CORRELATIONS

Correlations in subleading term. The canonical relation
Sn�N�=ln�C�N ,n��+�n allows us to formulate correlation ef-
fects in terms of the function �n. For free fermions, for CDW
states of the t-V model, and for Laughlin states �2,4�, we
have

�n�FF� = 0, �n�CDW� = ln 2, �n�FQH� = n ln m ,

where FQH denotes fractional quantum Hall. We note that
states that are intuitively “more nontrivially correlated” have
a stronger n dependence in �n. This strongly suggests that
the �n function is a measure of correlations in itinerant fer-
mionic states. It is natural to conjecture that the linear behav-
ior of �n is symptomatic of intricately correlated states like
quantum Hall states, and that in generic itinerant states �n
will have sublinear dependencies on n.

Equal partitions. In addition to the n�N behavior we
have focused on here, another promising quantity is Sn=N/2.
In Ref. �4�, we presented close bounds for this quantity,
showing that for fractional quantum Hall states of given fill-
ing, Sn=N/2 tends to be higher for more correlated states. For
example, Sn=N/2 for a Moore-Read state is higher than that for
a Laughlin state.

VI. CONCLUSIONS

Particle entanglement is an emerging important measure
of correlations in itinerant many-particle quantum systems.
In this work, we have set the framework for future studies of
the asymptotic behavior of particle entanglement. We have
also explored these quantities in relatively simple itinerant
models. We have pointed out several different mechanisms
for particle entanglement in itinerant quantum states, such as
localization, Schrödinger cat states, and of course antisym-
metrization of fermionic systems. Since particle entangle-
ment is a relatively new quantity on which little intuition is
available, these results will form a much-needed basis for
future studies.

Our work opens up a number of questions. Our consider-
ations have led to an intriguing speculation for bosonic sys-
tems, relating the leading term in the asymptotic �N→
�
expression for Sn�N� to the extent of Bose condensation. A
thorough study, addressing several bosonic systems, is
clearly necessary. In the same asymptotic form, one would
also like to have a detailed characterization of how the sub-
leading term �n describes correlations. More concretely, one
could ask “how correlated” a state needs to be in order to
have a linear �n function.

We have demonstrated that particle-partitioning entangle-
ment tends not to saturate the upper bound provided by the
size of the reduced Hilbert space. This is reminiscent of the
“area law” for spatial entanglement, where the entropy of
entanglement between a spatial block and the rest of the
system is much smaller than the upper bound arising from
the volume of the block.

Generally speaking, the information contained in particle-
partitioning entanglement is very different from that con-
tained in spatial entanglement. At this stage, we are not
aware of applications of particle partitioning to specific
condensed-matter issues or to the simulation of many-
particle quantum states. However, given the conceptual rich-
ness of the findings on this quantity to date, particle-
partitioning entanglement is likely to establish itself as an
important tool in the description of quantum many-particle
states.

Finally, we note that we have focused on n�N; Sn for
finite n /N remain relatively unexplored. For example, one
unanswered question is whether such Sn show clearer signa-
tures of phase transitions compared to Sn�N.
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