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We consider the coherent stimulated Raman process developing in an optically dense disordered atomic
medium, which can also incoherently scatter the light over all outward directions. The Raman process is
discussed in the context of a quantum memory scheme and we point out the difference in its physical nature
from a similar but not identical protocol based on the effect of electromagnetically induced transparency �EIT�.
We show that the Raman and EIT memory schemes do not compete but complement one another and each of
them has certain advantages in the area of its applicability. We include in our consideration an analysis of the
transient processes associated with switching the control pulse off or on and follow how they modify the probe
pulse dynamics on the retrieval stage of the memory protocol.
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I. INTRODUCTION

Quantum memories for light pose an extremely important
problem for various protocols of quantum computing and
secure communication �1–3�, which might be solvable with
currently existing technology. At present there have been
several experimental demonstrations of storage and retrieval
of nonclassical states of light from macroscopic atomic sys-
tems �4–13�. In many theoretical discussions the problem
was tested in context of achievable fidelity for storage and
retrieval of the original state of light, normally assumed ei-
ther coherent, squeezed, or single photon �1–3,14–17�.

In the recently reported series of papers �18� thorough
analysis was applied to determine the efficiency of storage
and retrieval of a single-mode quantum state of light via its
�-type conversion into an atomic spin coherence. Such a
conversion is normally associated with either electromag-
netically induced transparency �EIT� two-photon resonance,
with Raman process, or with photon echo effect. Optimiza-
tion procedures and practical recommendations are often
based on the unique properties of the � transition and pre-
sumes the quantum information encoded in collective vari-
ables of the light. For the weak coherent light �with small
degeneracy parameter� this scheme describes, for example,
the storage of a single photon quantum bit and relates the
efficiency of the total pulse retrieval to the fidelity of the
single photon quantum state retrieval. Such analysis is rel-
evant for one mode memory channel and it leaves open im-
portant issues concerning storage and retrieval of a multi-
mode quantum state. The quantum memory for the
multimode configuration in the Raman process has been the
subject of recent reports �16,17�, which indicated the diffi-
culties and necessity of additional studies.

In the present paper we shall discuss the stimulated Ra-
man process in a scattering medium with a �-type excitation,
which is initiated by a control pulse of limited duration. We
shall split this mechanism from the similar but not identical

EIT two-photon resonance and discuss the difference be-
tween these processes. The Raman scattering in the Heisen-
berg formalism, introduced in Ref. �19�, and later applied to
the quantum memory problem in Refs. �14,16,17�, is usually
discussed for far frequency offsets of the probe and coupling
modes from an atomic resonance and it is considered in ap-
proximation based on adiabatic elimination of the upper
states. This approximation makes it possible to build the rel-
evant effective Hamiltonian and include the losses in the
dissipation terms and the Langevin forces. In the present
paper we show how the Raman process can be described for
arbitrary frequency detunings and without such a simplifying
approximation. We show how the Raman process can be dis-
criminated from the EIT two-photon resonance for any fre-
quency detunings via considering the spectral behavior of the
sample susceptibility dressed by the coupling field.

Our analysis aims to clarify the physical requirements, for
dependable manipulation with the light pulse and atomic co-
herence at each step of the complete memory protocol. The
important physical processes such as atomic motion and
transient effects associated with switching the control pulse
off or on will be described. In the last part of the paper we
briefly comment on how our approach can be generalized to
a multilevel configuration while paying attention to the hy-
perfine structure of alkali-metal atoms, which was earlier
considered in a lossless configuration in Ref. �17�. As an
important consequence of our analysis we shall point out that
the EIT resonance and the Raman process are not competi-
tive protocols but actually complement one another. The pro-
tocol based on the EIT effect works better for pulses longer
than the natural atomic lifetime �−1, but the Raman protocol
is, in principle, applicable for pulses with a duration of
around �−1. Thus the Raman scheme can potentially work for
pulses of around 20 ns and hence extend the range of pulses,
which could be stored in the atomic spin subsystem. That
would lead us to wider demonstrations of atomic memory for
unknown states of light arriving from radiation sources of a
different physical nature.

The paper is organized as follows. In Sec. II we describe
our approach to the stimulated Raman process, which is
based on the Green’s function formalism. We indicate some
technical advantages in applying diagram analysis particu-
larly to the atomic memory problem. In Sec. III we make a
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diagram derivation of the master equation describing the dy-
namics of the probe pulse and atomic coherence on the
write-in and retrieval steps of the memory protocol. Our gen-
eral discussion is further illustrated by numerical simulations
for the Raman process given in Sec. IV. Some details con-
cerning the Green’s function formalism are presented in the
Appendix .

II. BASIC ASSUMPTIONS AND CALCULATION
APPROACH

Transport of a light pulse in a medium under conditions
where the coherent forward propagation is damped by losses
due to incoherent scattering over all outward directions, is
quite a delicate problem to describe theoretically at the quan-
tum level. The problem becomes even more subtle for a
practically important situation when the energy of the trans-
mitted pulse is comparable with the scattered light energy. If
the losses are significant and the light and atomic subsystems
are initially prepared in arbitrary quantum states it would be
difficult to follow the dynamics of the entire atoms-field sub-
system completely in a three-dimensional configuration �see
�20��. An essential simplification can be achieved if the light
and atomic subsystems are initially in a coherent state and
the interaction process does not modify this type of state
�21�. In this section, we shall discuss such a dynamical pro-
cess, which reproduces most of the principle features of the
quantum memory protocol.

A. Description of the light subsystem

For a coherent state any quantum characteristics of light
can be defined in terms of the complex amplitude of the
electric field given by the expectation value of its Heisenberg
operator considered at the certain spatial point r, time t, and
averaged over the asymptotic state of the system in the infi-
nite past,

E�
�+��r,t� = �E�

�+��r,t�� = �S†TE0�
�+��r,t�S� . �2.1�

Here E�
�+� �r , t� and E0�

�+� �r , t� are the positive frequency parts
of the �th polarization component of the electric field opera-
tors in the Heisenberg and interaction representations, re-
spectively, which are related by the following unitary trans-
form:

E�
�+��r,t� = S†�t,− ��E0�

�+��r,t�S�t,− �� ,

S�t,t�� = T exp�−
i

�
�

t�

t

V0�t��dt�	 , �2.2�

where V0�t� is the interaction Hamiltonian in interaction rep-
resentation �see Eq. �2.6� below�, T is the time-ordering op-
erator, and the S matrix in expression �2.1� is given by the
principle limit of the evolutionary operator S=S�� ,−��.

If the light pulse crosses the medium in a single pass, its
forward propagation obeys the mesoscopically averaged
Maxwell equation, which can be constituted and solved un-
der rather general assumptions. The field emerging from the
sample via incoherent scattering can be visualized as second-

ary waves created by a disordered system of atomic sources.
For the weak field, scattered by the sample, its intensity, and
angular and spectral distribution can be found by analysis of
the multiple scattering process. To entirely simulate this pro-
cess the Monte Carlo scheme can be applied.

Let us make these general statements more concrete in the
context of the �-configured transition, shown in Figs. 1 and
2. The depicted scheme is routinely discussed as the theoret-
ical background for a description of the stimulated Raman
process or EIT two-photon resonance. A strong coupling
field with right-hand circular polarization is quasiresonantly
applied between a Zeeman hyperfine sublevel of the ground
state 
m�� and a hyperfine component of the excited level
near the upper Zeeman state 
n�. A weak probe beam is also
quasiresonant with the 
m�→ 
n� Zeeman hyperfine transi-
tion. All nonlinear optical effects associated with the probe
light are assumed to be negligible. In our discussion this field
will be taken into account only in the first nonvanishing or-
der. The atomic medium consists of the atoms initially �in the
infinite past� populating state 
m�, such that the presence of
the weak probe initiates only a weak transfer of atoms from
state 
m� to 
m��. The sample is optically dense for the probe
field and fully transparent for the coupling field.

Both the coupling and the probe fields are in a coherent
state and completely characterized by the complex amplitude
�2.1� projected onto the relevant polarization and/or spectral
states that make these modes distinguishable. The properties
of the coupling field are not modified at all because the
sample is transparent and the number of photons coherently
scattered into the coupling mode is negligible in comparison
with the quantum uncertainty of the number of photons con-
tributing to this mode. Thus the evaluation of the expectation
value �2.1� based on a relevant diagram expansion needs to
be performed only for the probe field. This calculation will

FIG. 1. �Color online� Geometry of the quantum memory
scheme based on the stimulated Raman process. The left-handed
polarized probe pulse with carrier frequency �̄ is coherently scat-
tered into the right-handed polarized strong coupling mode �. The
action of the coupling field is limited in time as is indicated by the
shadowed area in the temporal dependence of the process for input
or output probe light intensity I�t�. Thus the part of the probe light
will not emerge from the sample and will be transformed into the
long-lived spin coherence in the atomic subsystem.

MISHINA et al. PHYSICAL REVIEW A 78, 042313 �2008�

042313-2



automatically include all the dressing effects associated with
the coupling field and describe in one formalism two differ-
ent physical phenomena: stimulated coherent Raman process
and EIT two-photon resonance. The difference between these
phenomena will be further clarified by considering different
physical limits and spectral relations attaining the delay ef-
fect and minimizing the incoherent losses.

The global advantage of the coherent state in comparison
with other more sophisticated quantum states, such as
squeezed, entangled, etc., is a relatively simple diagram
analysis for the expectation value of the field amplitude
�2.1�. Its expansion in the series of perturbation theory under
application of Wick’s theorem transforms any outcoming
product of the field operators to N-ordered form, and gener-
ates only the simplest diagram objects such as the nonper-
turbed coherent amplitudes of the incoming field and the
vacuum-type Green’s functions. This makes it technically
possible to further describe the probe field dynamics in terms
of mesoscopically averaged Maxwell equations and multiple
scattering light diffusion.

B. Atomic subsystem and interaction process

We consider the macroscopic atomic system in the second
quantized formalism. In this section we shall show that for
an atomic ensemble that underwent the coherent-type inter-

action process shown in Figs. 1 and 2, the quantum dynamics
can be properly described by the following four Green’s
functions of the Perel-Keldysh diagram technique �22–24�:

iGm�m
������r�,t�;r,t� = �T����m��r�,t���m

† �r,t�� . �2.3�

These Green’s functions with �, ��=	 give the expectation
values of the different products of creation and annihilation
� operators ordered by chronological operators T���. The
permutation operators realize the following action: T−−=T
arranges the � operators as ordered in time, its counterpart

T++= T̃ arranges them as antiordered in time, and operators
T+− and T−+ are, respectively, identity and transposition op-
erators.

The � operators responsible for annihilation or creation
of an atom at spatial point r and in internal state 
m� can be
expanded in the basis set of plane waves as follows:

�m�r,t� = �
p

1

�V
e�i/��p·rbpm�t� ,

�m
† �r,t� = �

p

1

�V
e−�i/��p·rbpm

† �t� , �2.4�

where V is the quantization volume, and bpm�t� and bpm
† �t�

are, respectively, the operators of annihilation or creation of
an atom with momentum p in internal state 
m� in the
Heisenberg picture.

If the atomic motion has a semiclassical description, then
the Green’s function Gm�m

�−+��r� , t� ;r , t� before interaction can
be conveniently expressed by the single particle density ma-
trix in the Wigner representation

iGm�m
�−+��r�,t�;r,t�

= 
� d3p

�2���3 exp
 i

�
p · �r� − r��

� exp
−
i

�

p2

2m0
�t� − t� −

i

�

Em� + Em

2
�t� − t��

� 
m�m�p,
r� + r

2
,
t� + t

2
	 , �2.5�

where the external sign � or � corresponds to bosonic or
fermionic statistics of atoms. In this integral relation the ex-
ponential factors are responsible for free dynamics of the
atomic state and show fast oscillation in space and time. The
Wigner density matrix 
m�m�p ,r , t� is also oscillating in time
with the frequency �m�m= �Em�−Em� /� such that the inte-
grand itself has free precession as a function of times t and t�
with internal energies Em and Em�, respectively. The validity
of expression �2.5� is constrained by the requirement that the
atomic de Broglie wavelength �a�� /�m0T, where m0 is
atomic mass and T is ensemble temperature, should be much
less than the scale of spatial inhomogeneity. Then the ap-
proximation of the true Green’s function Gm�m

�−+��r� , t� ;r , t� by
expression �2.5� is applicable if variations of the increments
r�−r and t�− t are small in comparison with the spatial and
time scales where the Wigner function is significantly

FIG. 2. �Color online� Energy diagram illustrating an example
of a �-configured transition and how the dressing effects modify
the probe pulse propagation under the stimulated Raman process,
shown in Fig. 1. The probe pulse with a carrier frequency �̄ is
scattered into the strong mode of frequency � and creates coherence
between the lower Zeeman states 
m� and 
m��. In the next step the
Zeeman coherence initiates the delayed retrieval of the probe pulse.
If the coupling mode is “cw” with infinite pulse duration then the
propagation of the probe pulse under the Raman process is damped
by the spontaneous scattering on the components of the Autler-
Townes doublet shown by the red-dashed line.
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changed. For free dynamics and without a spin relaxation
process the density matrix of the ground state can only be
modified because of atomic motion in free space or in a trap.

It is important to recognize that without interaction with
the light subsystem the Wigner density matrix 
m�m�p ,r , t�
gives a complete description of the macroscopic atomic sub-
system. Indeed, as one can verify each of the remaining
Green’s functions �2.3� can be expressed by integral relations
similar to expression �2.5� �see �23,24� for details�. The ad-
ditional terms, which distinguish the four Green’s functions,
given by Eq. �2.3�, are expressed by the commutator �for
fermion case by the anticommutator� of the free Heisenberg
� operators. These terms contribute to G�+−� with additional
multiplication by ��t�− t� to G�−−� �retarded type� and by
��t− t�� to G�++� �advanced type�. In turn each commutator
�or anticommutator� can be expressed by a similar expansion
in the momentum representation and described by similar
exponential functions of r�−r and t�− t as in Eq. �2.5� if the
atomic motion is free. For a coherent initial state of the
atomic system, when all the atoms occupy only one Zeeman
state, any correlation function of higher order can be ex-
pressed as a product of the lower order Green’s functions
defined by Eq. �2.3�.

The coherent type interaction process shown in Fig. 2 is
driven by the following interaction Hamiltonian:

V0�t� = − �
n,m

� d3r�d��nmE0�
�+��r,t��0n

† �r,t��0m�r,t� + H.c.,

E0�
�+��r,t� = i

�0

c
A0�

�+��r,t� , �2.6�

where all the time dependent operators are written in the
interaction representation as indicated by the zero subscript
and �d��nm denotes the matrix element of the �th component
of an atomic dipole. The second line constitutes the rotating
wave approximation �RWA� and converts to algebraic form
the normal differential relation between the transverse vector
potential operator A0�

�+� �r , t� and the electric field operator
E0�

�+� �r , t�. This presumes that both the frequencies of the
coupling field � and the probe field �̄ are indistinguishable
from an average frequency �0 for the atomic optical transi-
tions shown in Fig. 2.

As one can verify via perturbation theory to lowest order
in the probe field, the interaction process shown in Fig. 2 will
not break the Gaussian factorization for any higher order
correlation functions. This means that the interaction process
leaves the atomic system in the state described by a single
particle density matrix. Any atomic correlation function is
described by the retarded or advanced type Green’s functions
dressed by interaction with the strong field. As we shall fur-
ther show, the main optical characteristics of the sample are
expressed by such a dressed retarded Green’s function of the
excited state. This Green’s function can be found in analyti-
cal form for a control pulse of arbitrary duration and in quite
general assumptions �see the Appendix�. The propagation of
the probe pulse through the medium can be visualized as a
polaritonic wave, both for the stimulated Raman and the EIT
processes.

III. DYNAMICS OF THE PROBE FIELD AND ATOMS
FOR �-TYPE EXCITATION IN THE OPTICALLY

THICK SAMPLE

A. Write-in stage of the memory protocol

The dynamics of the entire system consisting of the probe
field and atoms can be described via diagram analysis of the
atomic and field Green’s functions introduced in the previous
section. After a certain regrouping of partial contributions
generated by the expansion of perturbation theory for the
evolutionary operator one obtains the following Dyson equa-
tion for the probe field amplitude:

�3.1�

Here the double wavy single ended lines describe the probe
field amplitude dressed by the coherent interaction shown in
Fig. 2. The single double ended wavy line is the causal �re-
tarded in the RWA approach� Green’s function for light
propagating freely in vacuum. The loop consists of the
atomic Green’s functions and the vertices describe the polar-
ization operator or susceptibility of the sample in response to
the probe field. Equation �3.1� graphically represents the
macroscopic Maxwell equation. At more detailed analytical
description of the atomic Green’s functions is specified in the
Appendix .

The dynamics of the atomic coherence can be identified if
the solution of Eq. �3.1� is known. This requires an evalua-
tion of the following diagram for the Green’s function
Gm�m

�−+��. . .� defined by Eq. �2.3� and created by the interaction
process:

�3.2�

Here the internal double line represents the retarded type
Green’s function of an excited atomic state dressed by the
interaction with the vacuum and coupling modes �see the
Appendix . The outward directed dashed arrow represents
the field amplitude of the coupling mode. The thin lines are
related to the nonperturbed dynamics of free atoms in the
ground state and are given by the semiclassical approxima-
tion �2.5�.

The strategic idea of the write-in step of the memory pro-
tocol is that Eq. �3.1� should generate the probe pulse de-
layed so much, it practically does not emerge from the
sample during the action of the control pulse. At the same
time the probe light should not be incoherently scattered by
the sample and after the interaction the information, origi-
nally encoded in the probe pulse, will be concentrated in the
spin subsystem. The dynamics of the probe field in this pro-
cess is driven by Eq. �3.1�, which has the following analyti-
cal form:
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1

c

�

�t
+

�

�z
���r�,z;t� = 2�i

�̄

c
�

−�

t

dt��̃�r�,z;t,t����r�,z;t�� ,

�3.3�

where ��r� ,z ; t� is the slow-varying amplitude of the probe
mode, which is given by a factorization of the probe field
component defined by Eq. �2.1�,

ELeft
�+� �r,t� = ��r�,z;t�e−i�̄t+ik̄z. �3.4�

The Maxwell equation �3.3� indicates that in a dilute sample
the coherent part of the probe pulse propagates only forward
and the profile of the outgoing pulse strongly depends on
properties of the sample susceptibility �̃�r� ,z ; t , t��, which
controls the efficiency of the memory protocol. The diffrac-
tion divergence was completely ignored in the derivation of
Eq. �3.3� and r� was treated only as a parameter.

Since the coherent process shown in Fig. 2 does not dis-
turb the original equilibrium distribution of atoms, the
ground state density matrix can be factorized as


m�m�p,r,t� = �m�m�r�,z,t�f0�p� , �3.5�

where f0�p� is the equilibrium Maxwell distribution of the
atomic momenta. In the case of an isolated single �-type
excitation the diagram expression �3.2� leads to the following
kinetic equation for the off-diagonal ground state matrix el-
ements of the atomic density matrix:

�

�t
�m�m�r�,z,t� + i�m�m�m�m�r�,z,t�

= �m�m
n e−i��̄−��t+i�k̄−k�z�

−�

t

dt��̃�r�,z;t,t����r�,z;t�� ,

�3.6�

where the scaling factor

�m�m
n =

V
nm�
*

��d · e−�
nm
*

�3.7�

is responsible for the difference in the interaction vertices
contributing to the polarization and self-energy operators of
diagrams �3.1� and �3.2�, respectively. Here Vnm�
= �de+�nm�E is the transition matrix element for interaction
with the strong coupling field, and 
m��, 
m� are the Zeeman
states coupled by the interaction process. Vectors e+ and e−
are, respectively, unit polarization vectors for right-handed
and left-handed polarizations. The strong mode is assumed to
be described by the following positive frequency component:

ERight
�+� �r,t� = Ee−i�t+ikzS�t − z/c� , �3.8�

i.e., to be nearly monochromatic during the action of the
control pulse with the envelope profile S���.

Both Eqs. �3.3� and �3.6� are described by the same
sample susceptibility. The hardest obstacle for further appli-
cation of Eq. �3.3� is that the susceptibility is not known
analytically in the general case, when atoms have a multi-
level energy structure and the control pulse have an arbitrary
envelope profile. It can be described analytically only after a

round of approximations with respect to the dressing effects
associated with the coupling field and the internal atomic
interaction. In the Appendix we calculate it for the case of
rectangular profile, when the control pulse has duration T,

S��� = ���� − ��� − T� , �3.9�

where ���� is the step function. For this particular case the
Maxwell equation �3.3� can be solved numerically. Then the
distribution of the spin coherence in space and in time can be
found via straightforward integration of Eq. �3.6�.

Together, Eqs. �3.3� and �3.6� describe transport of a spin
polariton mode through the atomic sample, whose dynamics
can be approximated by either EIT type �25� or Raman type
�19�. As was mentioned above, the strategic line of the
write-in step of the memory protocol is to stop the control
pulse at a time when the probe mode has not emerged from
the sample and the polariton is localized at least on the scale
of the sample. Then after a round of transient processes the
state of the light will be mapped onto a spatially extended
state of the atomic spins in the sample. Without any external
disturbances this state will be preserved and will store the
mapped quantum state of the probe light.

In an ideal situation this process does not add extra noise
to the state. The crucial requirement to make the memory
protocol feasible, as was discussed in Refs. �16,18,26�, is
that the sample should have an extremely high optical thick-
ness, such that n0�2L�1, where n0 is a density of atoms, � is
a wavelength divided by 2� for either probe or coupling
mode, and L is the sample length. If this requirement is ful-
filled, which is principally important for both the Raman and
EIT memory schemes, the delay time for the transport of the
probe pulse through the sample can be made longer than the
input pulse duration and the spin polariton can be localized
in the sample.

B. Retrieval stage of the memory protocol

If the coupling light is switched off and after a control-
lable delay switched on again, the probe pulse can be stored
and retrieved. The delay time is mainly limited by relaxation
processes for the spin coherence. In the case of cold atoms
the spin relaxation can be minimized but atoms can leave the
interaction area because of free motion while the confining
trap fields are switched off during the entire protocol time.
However, for delay up to a few milliseconds the atoms can
be considered as nondrifting and the retrieval stage can be
initiated by recovering the polariton dynamics with the sec-
ond coherent pulse.

The probe field dynamics is now described by the follow-
ing Dyson equation:

�3.10�
The first term on the right-hand side displays the source for
the optical coherence initiated by the second control pulse.
The black wavy line performs here the electric field of the
incoming probe pulse, i.e., the solution of Eq. �3.1�. Since
the probe pulse has arrived with the write-in control pulse
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the right vertex of this term relates to times associated with
the write-in stage of the protocol, but the left vertex relates to
times belonging to the readout control pulse.

The broken double line denotes the retarded Green’s func-
tion of the excited atomic state dressed by both the write-in
and readout control pulses and has the following diagram
definition:

�3.11�

The incoming double line is the excited state Green’s func-
tion dressed by the write-in control pulse. The outgoing
double line is the excited state Green’s function dressed by
the readout control pulse. These two lines are converted into
the ground state vacuum line at the vertex points associated
with the coupling fields for write-in �W� or readout �R� con-
trol pulses. Just because the vacuum dynamics, described by
the thin solid line, preserves the atomic state for an infinitely
long time this diagram being inserted into Eq. �3.10� can be
visualized as the spin coherence, which was originally cre-
ated by the process �3.2�, and which now regenerates the
weak probe field via a stimulated Raman process when the
readout control pulse is applied.

The second term in Eq. �3.10� is similar to the second
term in Eq. �3.1� and is responsible for the Maxwell dynam-
ics of the recovered probe field. The dashed wavy line repro-
duces the recovered probe field for which this equation ac-
tually should be solved. In analytical form the diagram
equation �3.10� can be written as follows:


1

c

�

�t
+

�

�z
��out�r�,z;t�

= 2�i
�̄

c
�

−�

t

dt��̃��r�,z;t,t����r�,z;t��

+ 2�i
�̄

c
�

−�

t

dt��̃�r�,z;t,t���out�r�,z;t�� ,

�3.12�

where ��r� ,z ; t�� is the solution of Eq. �3.3� and
�out�r� ,z ; t�� is the field amplitude of the recovered pulse, for
which Eq. �3.12� should be solved. It is assumed that at the
beginning of the readout control pulse the incoming probe
pulse is over. Despite the fact that the lower limits of the
integrals in the right-hand side are in infinite past, in reality
the integrands are nonvanishing only if t� belongs to the
writing control pulse in the first integral and the readout
pulse in the second. The susceptibilities �̃��. . .� and �̃�. . .� are
given in the Appendix in an example of an isolated �-type
transition.

The dynamics of atomic coherence is now described by
the following diagram equation:

�3.13�

which in turn leads to the following kinetic equation for the
density matrix �3.5�:

�

�t
�m�m�r�,z,t� + i�m�m�m�m�r�,z,t�

= �m�m
n e−i��̄−��t+i�k̄−k�z
�

−�

t

dt��̃��r�,z;t,t����r�,z;t��

+ �
−�

t

dt��̃�r�,z;t,t���out�r�,z;t��� . �3.14�

Similar comments to those given for Eq. �3.12� above apply
to this equation, which is responsible for atomic dynamics
at the retrieval stage. In application it is only necessary to
solve Eqs. �3.3� and �3.12�, and then �m�m�r� ,z , t� can be
found by straightforward integration of Eq. �3.14�. In prac-
tice it is not even so important to know the solution for the
remaining atomic coherence because all the retrieved infor-
mation goes out with the recovered probe pulse and
Eq. �3.14� should lead to a trivial result in the infinite future
�m�m�r� ,z , t→��→0. However, we introduce this equation
for completeness of the description of the memory protocol.

IV. RESULTS AND DISCUSSION

A. EIT effect and Raman process

Let us briefly discuss the difference between these two
physical mechanisms when the propagation of the probe field
is controlled by a stationary coupling field. Referring to the
definitions of Fig. 2 one can define the following frequency
detunings for the coupling mode �=�−�nm� and for the

probe mode �̄= �̄−�nm from the atomic transition frequen-
cies �nm� and �nm, respectively. Then one can select two
important resonance relations between the carrier frequency
of the probe mode �̄ and the energy spectrum of the

“dressed” atom. The resonance point �= �̄ defines the two-
photon resonance, which is associated with EIT. Indeed, the
propagation function of the atomic excited state �A3� as well
as the sample susceptibility �A13� vanish at this point for a
pure monochromatic �-type interaction of the modes � and
�̄. The sample becomes transparent and any spectrally nar-
row probe pulse distributed in the vicinity of this point will
cross the sample with extremely low group velocity. The
light delay, associated with the EIT effect, does not princi-
pally depend on frequency offset � and, in particular, the
group velocity near the EIT point depends only on the rela-
tion between the Rabi frequency of the coupling mode,
atomic density, and � and not on � �see Ref. �26��. For a
sample with high optical depth, such that n0�2L�1, and for
any � the probe pulse characteristics can always be adjusted
to realize its slow transport or storage in the sample.

Another resonance situation takes place if the carrier fre-
quency of the probe pulse is scanned near the frequency
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shifted quasienergy component of the Autler-Townes doublet
as shown in Fig. 2. This resonance point manifests itself as a
narrow high amplitude spectral feature in the behavior of the
dispersion and absorption components of the sample suscep-
tibility �see Ref. �26��. In the Maxwell equation �3.3� the
spectral overlap of the probe pulse with the dispersion part of
the Autler-Townes resonance is responsible for lossless co-
herent forward propagation, which is normally associated
with the stimulated Raman process. The overlap with the
absorption part generates the incoherent losses caused by
quantum radiation coupling of such an exciton-type atomic
state with the continuum of vacuum modes.

As can be verified in the limit when the Rabi frequency
�c=2
Vnm�
 /� is much less than detuning �, Eqs. �3.3� and
�3.6� can be transformed to the system of equations intro-
duced in Ref. �19� and discussed later in the context of quan-
tum memory in Refs. �14,16,17�. This transformation is
equivalent to the standard procedure of adiabatic elimination
of the optical atomic coherence, which was a basic assump-
tion of the above papers, but we can point out that such an
approximation is only valid if in the integrand in Eq. �3.3�
the carrier frequency of the probe mode is located near the
Autler-Townes resonance peak, which always requires for
large � some overlap of the pulse spectrum with this reso-
nance. The importance of this overlap for the problem of
optimization of the probe pulse storage was earlier com-
mented on in Ref. �18� and, in particular, we address the
reader to the second paper of that series. It is also important
that in the coherent stimulated Raman process the photons of
the probe mode transform to the coupling mode as a result of
interaction with all atoms of the ensemble. After a certain
delay the photons of the probe mode are recovered via re-
versing interaction of atomic coherence with the coupling
field. The Raman mechanism would exist even if the strong
coupling field were exactly on resonance with the atomic
transition, i.e., for �=0 when the problem becomes symmet-
ric with respect to both components of the Autler-Townes
doublet. We demonstrate this possibility by the results of our
numerical simulations given below.

Applying the Raman process at any � the spontaneous
losses can always be minimized by appropriate adjustment of
the external parameters and by optimization of the pulse
shapes �see Refs. �16,18��. This normally assumes either op-
timization of the probe pulse parameters with respect to a
given shape and the frequency detuning of the control pulse
or alternatively, the optimization of the control pulse with
respect to a given probe pulse. In an idealized lossless situ-
ation the stimulated Raman process could be considered as
evolving purely dynamically, but because of the losses, the
efficiency of the coherent forward scattering is not responsi-
bly high. In contrast to the EIT transparency point, for the
Raman situation the forward coherent scattering is more sen-
sitive to the frequency offset � because the spectral behavior
of the sample susceptibility near the Autler-Townes reso-
nances is essentially modified with varying �. Still, at a
given detuning and high optical depth the parameters of the
probe pulse can be adjusted for its optimal storage.

Both the Raman and EIT mechanisms for delay of the
probe pulse are generally applicable for any detuning of the
coupling mode from the atomic resonance. As mentioned

above, in a stationary situation, both are described by the
spectral behavior of the same sample susceptibility but are
considered in different spectral domains. For general relation
among external parameters these spectral domains can only
be conventionally discriminated. However, in many practical
realizations the EIT zone and the Raman zone can be clearly
separated. It is important to recognize that for both the pro-
cesses the crucial feature is the spectral behavior of the dis-
persion part of the sample susceptibility. It can be steep ei-
ther near the transparency point �EIT� or near the absorption
point of the Autler-Townes resonance �Raman�.

The delay effect is attained by the spectral overlap of the
pulse spectrum with the sample susceptibility near any of
these points. For the EIT scheme it is preferable to keep the
pulse spectrum closer to the transparency window and the
protocol would work better for longer pulses �in a scale of
natural lifetime� and for smaller Rabi frequencies of the cou-
pling field. For the Raman scheme the pulse spectrum should
be concentrated close but outward from the absorption peak.
Thus the Raman protocol can be designed for large Rabi
frequencies and for shorter pulses, for which duration can be
comparable with atomic natural lifetime. Rigorously speak-
ing the EIT scheme can also be applied for storing of the
short pulses if the Rabi frequency is large such that �c��,
but in this case the slope of the dispersion curve at the EIT
point is always less steep than in the vicinity of the Autler-
Townes resonance. Thus the delay effect would manifest it-
self more effectively for the pulse whose spectrum is located
closer to the Autler-Townes resonance point.

B. Dynamics of the probe pulse under the Raman process

The general formalism developed in the previous section
can be illustrated by the propagation of a probe pulse with a
Gaussian intensity profile


�in�t�
2 � Iin�t� � 
��t�
2 =
����

�2��1/2 exp
−
1

2
��2�t −

T

2
	2� ,

�4.1�

where for the sake of convenience we rescaled the field am-
plitude to unit “pulse energy.” The input field amplitude ��t�
has the following Fourier component:

�� =
�2��1/4

���/2�1/2 exp
i
�T

2
−

�2

��2� . �4.2�

The time shift T /2 can either be associated with the central
point of the control pulse or, in a general situation, just de-
fines the time of the probe pulse arrival. The time or spectral
extension of the pulse profile is described by its spectral
variance ��� /2�2.

As an illustrative example of the �-configured transition
we consider the Zeeman states in the hyperfine manifold of
cesium atoms. As an initial coherent state, which can be pre-
pared by optical pumping repopulation processes, we con-
sider the central Zeeman state of the lower �ground� hyper-
fine sublevel 
m�= 
F0=3 ,M0=0�, which is a typical situation
for experiments with cesium atomic clocks. The upper state

n� �see Fig. 2�, we will associate with the relevant Zeeman
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state of the lower hyperfine sublevel in the excited state of
the D1 line, such that 
n�= 
F=3,M =−1�. The state 
m��, co-
herently coupled to 
m�, is the relevant Zeeman state of the
upper �ground� hyperfine sublevel, such that for cesium

m��= 
F0=4 ,M0=−2�. This convention in the selection of
atomic transitions lets us define the scaling factor �3.7�, but
all the qualitative results, discussed below, will be generally
valid for any � scheme. We can also point out that the con-
sidered configuration of atomic transitions is well approxi-
mated by the � scheme up to detunings � more than a hun-
dred MHz, since the nearest hyperfine sublevel in the upper
state is separated by 1168 MHz.

In Fig. 3 we show how the spectral profile �� overlaps
with the real and imaginary parts of the susceptibility spec-
tral component �̃���= �̃����+ i�̃���� when the atoms are
dressed by a stationary monochromatic coupling field. The
overlap of the pulse spectrum with the sample susceptibility
can be controlled by mismatching the carrier frequencies or

detunings of the coupling and probe modes ��= �̄−� �see
Fig. 2�. The origin of the plot in Fig. 3 indicates the location
of the EIT point and for the given spectra the probe pulses do
not overlap at this point.

Variation of the spectral location of the probe pulse near
the Autler-Townes resonance leads to different overlaps with
the real and imaginary parts of the sample susceptibility. As
a consequence, the influence of absorption �incoherent scat-
tering� and delay effects on the pulse propagation will also
be different with the variation of ��. The negative role of
absorption essentially falls off with the deviation of �� from
the exact resonance point �red curve in Fig. 3�, but the posi-
tive tendency associated with pulse delay can survive. This is
illustrated in Fig. 4 by tracking the time dependence of the

outgoing pulses, which had the same initial spectral charac-
teristics as in Fig. 3 and passed through the optically thick
sample with n0�2L=25. As follows from the plotted depen-
dencies, when absorption is more or less negligible and the
transmittance efficiency is around 70%, the pulse delay is
still a perceptible effect. Let us point out that this predicted
transmittance efficiency for delayed pulse is a certain indica-
tor that the Raman protocol in the discussed conditions, co-
ordinated with the currently existing experimental capabili-
ties, can be applied, for example, for quantum storage of a
single photon state with unknown polarization �12�. In this
situation it overcomes the best classical estimate “2 /3” �see
Ref. �27� for details�. It is also noteworthy that in the perfect
resonance situation the outgoing pulse splits into a double-
bell spectral profile, which in turn leads to oscillating time
dependence of intensity �see Fig. 4�.

C. Pulse storage and retrieval

In Fig. 5 we demonstrate the complete memory protocol,
when the coupling light is switched off and switched on
again after a controllable delay. The input pulse characteris-
tics and the sample depth are given by the same values as in
Figs. 3 and 4. From the plotted graphs it is evident that after
a round of fast transient processes �poorly resolved in the
time scale of these graphs� the retrieved parts of the pulses
perfectly reproduce the delayed parts of the original pulses.
This can be seen by direct comparison with Fig. 4. The tran-
sient oscillations have a frequency around 
�
�50� and a
relaxation rate around �, such that they extend on very short
time compared with the pulse duration. For storing such a
long pulse, in the considered configuration, the efficiency
around 15% is achievable for effective overlap with the dis-
persion part of the sample susceptibility �see Fig. 3�.

FIG. 3. �Color online� Spectral overlap of the probe pulse am-
plitude �� with the sample susceptibility �̃���= �̃����+ i�̃����
near the frequency shifted quasienergy component of the Autler-
Townes doublet �see Fig. 2�. The overlap is controlled by mis-
matching the carrier frequencies of the probe and coupling modes

��= �̄−�. The graphs are plotted for the following parameters: �
=−50�, T=50�−1, ��=2� /T, �c=15�. The spectra are shifted
such that the origin of the plot indicates the reference point of the
EIT two-photon resonance.

FIG. 4. �Color online� Time dependence of the output pulses
with the same initial spectral characteristics as in Fig. 3, which have
passed the optically thick sample with n0�2L=25. The numbers in
the brackets indicate the transmittance efficiency. The red curve
corresponds to the coincidence of the pulse carrier frequency with
the Autler-Townes resonance and its oscillations indicate the spec-
tral splitting of the pulse by this resonance.
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Let us consider now how the Raman protocol can be de-
signed for storing shorter pulses with duration comparable to
the atomic natural lifetime. In Fig. 6 we show the time de-
pendence for a set of output probe pulses, when the coupling
field is applied exactly at resonance to the atomic transition,

such that �=0. In this case the spectral widths of both com-
ponents of the Autler-Townes doublet are around the natural
decay rate and the Raman scheme can be applicable for a
delay of short probe pulses. For the graphs plotted in Fig. 6
the arrival time is given by T /2=�−1 and for ��=2� /T the
duration of the pulse, described by the time profile �4.1�, is
approximately the same as the atomic natural lifetime. Other
relations and parameters are specified the same as for the
graphs of Figs. 3 and 4. As a consequence the time depen-
dence for the transmitted pulses, shown in Fig. 6, for varied
mismatching of their carrier frequencies from the reference
frequency of the coupling mode, look qualitatively similar to
the relevant time dependence shown in Fig. 4. However, the
quantitative difference is great since the pulse duration and
delay time are much shorter in the case of Fig. 6. The quali-
tative similarity in propagation of long and short pulses un-
der stimulated Raman protocol is explained by the similarity
of the absorption or dispersion spectral profile of the Autler-
Townes resonance for 
�
��c�� �Fig. 4� and for �=0,
�c�� �Fig. 6�.

The situation changes dramatically if we look at the com-
plete memory protocol applied to short pulses �see Fig. 7�.
As seen from this graph the role of transient processes be-
comes much more important in this case. There are evident
manifestations of strong Rabi oscillations after switching off
the control pulse as well as after switching it on again. These
Rabi oscillations are damped on a time scale associated with
the atomic natural lifetime. This time scale coincides with
the pulse duration itself, such that the Rabi oscillations al-
ways accompany the retrieval step of the memory protocol
under the described conditions. Let us point out that the cal-
culations presented in Fig. 7 were done for a realistic value
of the atomic optical depth and are feasible for experimental
verification.

-

-

-

-

-

FIG. 5. �Color online� Time dependence of the probe pulse
propagating through the sample when the coupling light is switched
off and switched on again after a controllable delay. The input pulse
characteristics and the sample depth are the same as in Figs. 3 and
4. The numbers in brackets indicate the transmittance or retrieval
efficiency with respect to the input pulse.

FIG. 6. �Color online� Time dependence of the output pulses,
when the coupling field is on resonance with the atomic transition,
�=0. The arrival time of the probe pulse is given by T /2=�−1 and
other parameters are the same as in Figs. 3 and 4: ��=2� /T, �c

=15�, n0�2L=25. The spectral overlap of the probe pulse with the
lower frequency component of the Autler-Townes doublet is con-
trolled by mismatching the carrier frequencies of the probe and

coupling modes ��= �̄. The numbers in brackets indicate the trans-
mittance efficiency. The red curve corresponds to coincidence of the
pulse carrier frequency with the Autler-Townes resonance and its
oscillations indicate the spectral splitting of the pulse by this
resonance.

FIG. 7. �Color online� Time dependence of the probe pulse
propagating through the sample when the coupling light was
switched off and switched on again after controllable delay. The
input pulse characteristics and the sample depth are the same as in
Fig. 6. The numbers in the brackets indicate the transmittance or
retrieval efficiency with respect to the input pulse. The retrieved
parts of the probe pulses have evident manifestation of the Rabi-
type oscillations associated with the coupling field.
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V. CONCLUSION

The presented results and our discussion did not pursue
the precise optimization of the pulse characteristics for effi-
cient retrieval, but we can make some general observations,
concerning the applicability of the quantum memory proto-
col. Depending on the type of the memory protocol it may be
or may not be sensitive to the frequency detuning of the
coupling mode from the unperturbed atomic resonance tran-
sition. For the EIT regime and in pure � configuration the
probe light group velocity is not sensitive to the location of
the transparency point. If the on-resonance optical depth of
the sample is large enough the same integral efficiency for
the probe pulse storage and retrieval can probably be
achieved at any detuning by proper adjustment of the origi-
nal pulse parameters. In free space configuration the probe
pulse stored under EIT protocol should preferably have a
duration much longer than the atomic natural lifetime.

In contrast, in the case of Raman protocol the pulse dy-
namics is described differently under resonance and nonreso-
nance conditions. An important consequence of our analysis
is that the Raman protocol can be applicable for storing the
pulses with a duration comparable to the atomic natural life-
time. The main experimental difficulty in achieving the natu-
ral lifetime limit is the large magnitude of the Rabi frequency
of the coupling field, which in such a case would be hard to
stabilize. As we have pointed out and supported by our nu-
merical simulations presented in Sec. IV, the EIT and Raman
protocols do not compete but actually complement one an-
other. Each protocol has certain advantages in the area of its
applicability. From the practical point of view for both the
protocols the retrieval efficiency is expected to be high
enough for a sample with an on-resonance optical depth in
the hundreds and at such depths would be quite tolerant to
the variation of the probe pulse shape.

We have also considered the manifestation of transient
processes associated with switching the control pulse off or
on. As shown by our numerical simulations the storage of
short coherent pulses via the Raman protocol is accompanied
by Rabi-type modulations of the retrieved pulse. The decay
time of the Rabi-type oscillations and the pulse duration have
approximately the same order of magnitude in this case. In
the context of the memory protocol this is not a noteworthy
effect when the coherent probe pulse approaches the single
photon state and the encoded quantum information is associ-
ated with the polarization degrees of freedom of the probe
light �see Ref. �12��, but the effect becomes very important
for continuous variable schemes because it essentially modi-
fies the spectral properties of the probe light as a carrier of
quantum information. In this sense we point out that unde-
sirable manifestation of the transient processes is usually less
important for pulses, with a duration much longer than the
atomic natural lifetime. If storage and retrieval of such long
pulses is controlled by the coupling field applied in the wing
of the atomic resonance line, then the modulation frequency
of the Rabi-type oscillations is increased and the degradation
of the transient processes has a much shorter time extension
than the pulse duration itself.

The above recommendations are quite general and are not
constrained by unique properties of the � scheme. Let us

briefly comment how the developed approach can be further
generalized to the situation of a real alkali-metal atom with
attention paid to the hyperfine structure in the upper state. It
is important to take into consideration the hyperfine effects
when probing the system in the wings of either the D1 or D2
lines. For the coupling field tuned exactly in atomic reso-
nance or detuned from it by a distance of a few � the �-type
approximation seems quite realistic and our results are appli-
cable. For the practically important situation when the Rabi
frequency is expected to be much less than the hyperfine
splitting ��c��Ehpf� and in the case of far detuning it is
natural to expect a generalization of the Heisenberg approach
introduced in Ref. �17� by adding in the scattering terms and
the respective Langevin forces. The important point for in-
cluding the losses is that the incoherent scattering should be
considered not only from the atom-associated components of
the Autler-Townes structure �which in the limit �c, �� 
�

reproduce the atomic resonances� but also from the field-
associated component �which in the same limit is located
near the field mode� �see Fig. 2�. It is expected that the field-
associated component will be significantly modified due to
effects of hyperfine interaction.
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APPENDIX: THE ATOMIC GREEN’S FUNCTIONS
AND SAMPLE SUSCEPTIBILITY

1. Monochromatic coupling field

The retarded-type Green’s function of the excited atomic
state dressed by an interaction with the vacuum modes is
expressed by the standard Dyson equation

�A1�
and then an interaction with the coupling field modifies it to
the following form:

�A2�
The thin solid and wavy lines are, respectively, nonperturbed
vacuum Green’s functions of the atom and field. Other nota-
tion is explained in the main text of the paper.

For excitation of the atom by a monochromatic coupling
mode these equations can be solved by Fourier transforma-
tion. In the reciprocal space one has
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Gnn
�−−��p,E� = �

E − Em��p,��

�E − En+�p,����E − En−�p,���
,

Em��p,�� = Em� +
p2

2m0
+ ��� −

k · p

m0
	 . �A3�

Here k and �=�k are, respectively, the wave vector and the
frequency of the coupling mode, and the denominator is ex-
pressed by the two resonance components of the Autler-
Townes doublet

En
�p,�� = Em� +
p2

2m0
+

�

2

� −

k · p

m0
+ �nm� − i

�

2
�


 

Vnm�

2 +

�2

4
��nm� − � +

k · p

m0
− i

�

2
	2�1/2

,

�A4�

where �nm�= �En−Em�� /� is the transition frequency and � is
the rate of natural decay of the upper state. Applying the
reverse Fourier transform over the “energy” argument E one
arrives at the following Green’s function, defined in the
mixed time and momentum representation

Gnn
�−−��p;t,t�� = − i��t − t��

� 
En+�p,�� − Em��p,��

En+�p,�� − En−�p,��
e−�i/��En+�p,���t−t��

+
En−�p,�� − Em��p,��

En−�p,�� − En+�p,��
e−�i/��En−�p,���t−t��� .

�A5�

The reverse Fourier transform from momentum to spatial
coordinates

Gnn
�−−��r,t;r�,t�� =� d3p

�2���3e�i/��p�r−r��Gnn
�−−��p;t,t��

�A6�

cannot be evaluated analytically in the general case. How-
ever, when considering ultracold atoms with temperature sig-
nificantly lower than the Doppler limit the effect of atomic
motion is rather weak and can be taken into account as a
small correction to the approximation of stationary atoms.
For the Raman process, when the frequency detuning be-
tween the coupling mode and the atomic frequency is large
enough, the effect of atomic motion becomes even less im-
portant in the calculation of the sample susceptibility, but it
gives the principle limitation for the storage time of the
memory protocol as discussed in Sec. III B and commented
on below in Appendix 4.

2. Coupling with a rectangular time envelope profile

If the action of the coupling mode is limited in time and
described by a rectangular envelope profile �3.9� inside the
interval 0� t�T, then the Green’s function Gnn

�−−��p ; t , t�� de-
fined in the mixed representation for different relations be-
tween times t and t� is given by

�1� t��0 and t�0.

Gnn
�−−��p;t,t�� = − i��t − t��e−�i/��En�p��t−t��−��/2��t−t��,

En�p� = En +
p2

2m0
. �A7�

�2� t��0 and 0� t�T.

Gnn
�−−��p;t,t�� = − i
En+�p,�� − Em��p,��

En+�p,�� − En−�p,��
e−�i/��En+�p,��t

+
En−�p,�� − Em��p,��

En−�p,�� − En+�p,��
e−�i/��En−�p,��t�

� e+�i/��En�p�t�+��/2�t�. �A8�

�3� t��0 and T� t.

Gnn
�−−��p;t,t�� = − ie−�i/��En�p��t−T�−��/2��t−T�

�
En+�p,�� − Em��p,��

En+�p,�� − En−�p,��
e−�i/��En+�p,��T

+
En−�p,�� − Em��p,��

En−�p,�� − En+�p,��
e−�i/��En−�p,��T�

� e+�i/��En�p�t�+��/2�t�. �A9�

�4� 0� t��T and 0� t�T.

Gnn
�−−��p;t,t�� = − i��t − t��

� 
En+�p,�� − Em��p,��

En+�p,�� − En−�p,��
e−�i/��En+�p,���t−t��

+
En−�p,�� − Em��p,��

En−�p,�� − En+�p,��
e−�i/��En−�p,���t−t��� .

�A10�

�5� 0� t��T and T� t.

Gnn
�−−��p;t,t�� = − ie−�i/��En�p��t−T�−��/2��t−T�

�
En+�p,�� − Em��p,��

En+�p,�� − En−�p,��
e−�i/��En+�p,���T−t��

+
En−�p,�� − Em��p,��

En−�p,�� − En+�p,��
e−�i/��En−�p,���T−t��� .

�A11�

�6� T� t� and T� t.

Gnn
�−−��p;t,t�� = − i��t − t��e−�i/��En�p��t−t��−��/2��t−t��.

�A12�

These expressions for the Green’s function in different time
domains can be built up by clipping the partial solutions for
different excitation regimes. These include the atomic dy-
namics driven by either interaction only with the vacuum
modes �A7� and �A12� or jointly with the vacuum and cou-
pling modes �A5�. The required boundary conditions are dic-
tated by continuity at the points t=0,T.
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3. Susceptibility of the sample in response to the probe field

The susceptibility of the atomic sample in response to the
probe field is given by the polarization operator contributing
to the Dyson equation �3.1�,

��r�,z;t,t�� = −
1

�

�de−�nm
2

�� d3p

�2���3n0�r�,z�f0�p�,pz − �k̄�

� e−�i/��Em�p�,pz−�k̄��t�−t�Gnn
�−−��p;t,t�� ,

�A13�

where n0�r� ,z� is the spatial distribution of atomic density.
The total energy of the atom in the ground state

Em�p�,pz − �k̄� = Em +
p�

2

2m0
+

�pz − �k̄�2

2m0
�A14�

is described by the kinetic part, written as a function of
atomic momentum p= �p� , pz� of the excited state and
shifted by the momentum of the photon from the probe mode

�k̄. Such a momentum conservation in the coherent process
�3.1� is also taken into account in the argument of the Max-

well distribution f0�p� , pz−�k̄�.
It is convenient to define the slow-varying component of

the susceptibility

�̃�r�,z;t,t�� = ei�̄�t−t����r�,z;t,t�� , �A15�

which describes the dynamics of the slow-varying amplitude
of the probe field �see Eqs. �3.3�, �3.6�, �3.12�, and �3.14��.

4. Green’s function and sample susceptibility modified
by interruption of the control pulse

In the general case the retarded-type Green’s function re-
sponsible for atomic dynamics, dressed by two pulses of the
coupling field �see diagram �3.11��, has a rather cumbersome
analytical structure. The result can be simplified for the most

important situation when time t� belongs to the first control
pulse and time t belongs to the second pulse. Let us denote
the delay between the two pulses by TD and superscribe all
parameters associated with the second pulse, such as dura-
tion, Rabi frequency, transition matrix elements, etc., by a
prime. Then for 0� t��T and T+TD� t�T+TD+T� the
Green’s function, expressed by diagram �3.11�, is given by

Gn�n
�−−��p;t,t�� = − i

Vnm�
� V

nm�
*

�En+� − En−� ��En+ − En−�

� �e−�i/��En+� �t−T−TD�

− e−�i/��En−� �t−T−TD��e−�i/��Em��p,��TD

� �e−�i/��En+�T−t�� − e−�i/��En−�T−t��� ,

�A16�

where the matrtix element Vnm�
� is related to the retrieval

coupling field. The susceptibility component responsible for
the recovering process, described by the first diagram on the
right-hand side of Eq. �3.10�, is given by

���r�,z;t,t�� = −
1

�

�de−�nm
2

�� d3p

�2���3n0�r�,z�f0�p�,pz − �k̄�

� e−�i/��Em�p�,pz−�k̄��t�−t�Gn�n
�−−��p;t,t��

�A17�

and its slow-varying component �̃��r� ,z ; t , t��, contributing
to Eq. �3.12�, is defined by the transformation �A15�.

It is important to recognize that the validity of expression
�A17� is restricted by the global effect of atomic motion for
the entire memory protocol, which includes both the storage
and retrieval stages. In our derivation of the susceptibility
�A17�, driven by two control pulses, we have assumed that
during the delay time TD atoms do not noticeably change
their location on the scale of the spatial inhomogeneity asso-
ciated with their original density distribution n0�r� ,z�.
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