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I. INTRODUCTION

Secret sharing is one of the most important information-
theoretically secure cryptographic protocols and is germane
to online auctions, electronic voting, shared electronic bank-
ing, and cooperative activation of bombs. Although first for-
mulated and solved in classical information terms �1�, two
directions have been followed in the quantum case: classical
secret sharing with quantum enhancement of channels to
protect against eavesdropping �2� �and experimentally real-
ized �3�� and protecting quantum information as an applica-
tion of quantum error correction �4� �and experimentally re-
alized in the “continuous variable” Gaussian state case �5��.

In secret sharing, a dealer wishes to transmit a secret,
which can be a bit string or a qubit string and deals an en-
coded version of this secret to n players such that some sub-
sets of players can collaborate to reconstruct the secret and
all other subsets are denied any information whatsoever
about the secret. The access structure is the set of all subsets
of players that can obtain the secret, and the adversary struc-
ture is the set of all subsets of players that are completely
denied the secret.

In threshold secret sharing, each player receives precisely
one equal share of the encoded secret, and a threshold num-
ber of any players k can collaborate to reconstruct the secret
whereas every subset of fewer than k players is denied any
information at all: this scheme is referred to as �k ,n� thresh-
old secret sharing and is a primitive protocol by which any
information-theoretic secret sharing protocol can be
achieved.

In each case the channel can be classical or quantum de-
pending on context. A private channel is an authenticated
channel that is impervious to eavesdropping. A public chan-
nel is an authenticated channel that is open to eavesdropping.
Mathematically channels are described by completely posi-
tive trace-preserving mappings, even for classical channels
as classical information processing can be embedded into a
quantum framework.

Our goals here are as follows.

�i� To formulate a secret sharing problem that allows both
classical and quantum channels, which can be private or pub-
lic.

�ii� To introduce three subproblems that show how the
original classical secret sharing and the two versions of
quantum secret sharing fit into the general problem and high-
light the differences between these subproblems.

�iii� Develop a graph state formalism �6� that unites these
subproblems into one elegant framework.

�iv� Extend one class of subproblems concerning classical
secret sharing in insecure public channels beyond the exist-
ing security proofs that require 100% collaboration by the
players.

�v� Introduce embedded secret sharing protocols for graph
states within one-way quantum computing, which could
serve as a first step towards implementing integrated secret
sharing protocols within quantum computing, e.g., distrib-
uted measurement-based quantum computation �MBQC� �7�.

II. SECRET SHARING PROBLEM AND SUBPROBLEMS

To begin we formulate the general problem. The basic
unit of classical information is the bit, corresponding to
�0,1�, and the basic unit of quantum information is the qubit,
corresponding to H2=span��0� , �1��. Any message can be en-
coded in a finite string of bits if the information is classical
or in a finite string of qubits �perhaps entangled and could be
pure or mixed� if the “information” is quantum.

Secret Sharing Problem. A dealer holds a secret S, which
is either a bit or a qubit, and must send this secret to n
players such that any k or more players can reconstruct the
secret, and all sets of fewer than k players as well as eaves-
droppers are denied any access whatsoever to the secret.

Remark. A secret that is longer than one bit or one qubit
can be shared by a distributed protocol that shares the string
one bit or qubit at a time.

Our general formulation of the secret sharing problem is
meant to be helpful in that it incorporates various scenarios
of secret sharing with quantum or classical channels that can
be public or private, and the three major secret sharing areas
of study �1,2,4� are subproblems of this overarching prob-
lem.*djhm@pps.jussieu.fr
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CC: Classical secret sharing with private channels be-
tween the dealer and each player and private Classical chan-
nels shared between each pair of players;

CQ: Classical secret sharing with public channels be-
tween the dealer and each player and either Quantum or clas-
sical channels shared between each pair of players;

QQ: Quantum secret sharing wherein the dealer shares
quantum channels with each player, and these channels can
be private or public, and the players share either Quantum or
classical private channels between each other.

As secret sharing is information-theoretically secure, the
distribution of a classical secret message is completely se-
cure without the need for quantum information, in contrast to
quantum key distribution �8�, which catapults key distribu-
tion over public channels to information-theoretic security
from the classical limited computational-security guarantee.
Thus case CC �1� is resolved fully by classical information
processing, but we embed CC into a graph state description.

Case CQ considers quantum-enhanced protection from
eavesdropping over public channels and was first studied for
�2,2� threshold secret sharing �2,9,10� and extended to �n ,n�
threshold secret sharing �11�. The quantum enhancement is
achieved by random key distribution enabled via quantum
purification.

The third case QQ deals with the sharing of quantum
information �4�, as opposed to classical information in the
first two subproblems identified above. To distinguish this
case from the first two cases, the term “quantum state shar-
ing” is sometimes used �5�. In contrast to CQ, which is only
solved for the �n ,n� threshold secret sharing case, this
quantum-information version in private channels is fully
general in the sense that the general �k ,n� case has been
solved as an application of quantum error correction.

In summary our graph state formalism unifies known re-
sults concerning �n ,n� CQ plus QQ for higher-dimensional
stabilizer states, and adds new results, including �3,5� CQ.
We expect that our approach to all forms of quantum secret
sharing in the literature will enable further advances because
of the elegance and unifying properties of this formalism.

III. GRAPH STATES

Graph states provide a superb resource for secret sharing,
as we show. The advantages of using graph states in this
work are threefold. First, they are the most readily available
multipartite resource states in the laboratory at present, with
graph states of up to six qubits already built and used for
information processing experimentally �12,13�, and many
proposals for their implementation in various systems. Sec-
ond, they are natural candidates for integration of different
tasks, since they are the main state resource in almost all
multipartite quantum-information processing tasks, including
measurement based quantum computation and error correc-
tion �hence the large effort to make them�. Third, they allow
for an elegant graphical representation which offers an intui-
tive picture of information flow, and also allow the possible
use of graph theoretic results to aid proofs and understand-
ing.

In this work we employ graph states in the standard form
�6� plus two extensions. These extensions are actually quite

simple �modification via local unitaries� and are intended to
allow intuitive graphical understanding of how information
is encoded and spread over the graphs. The idea is that the
secret will be encoded onto classical labels placed on verti-
ces of the graph representing local operations. The inherent
entanglement of the graph states allows these labels to be
shifted around, allowing us to see graphically which sets of
players can access the secrets and which cannot �explicitly
written as properties P1–P4, see, e.g., Fig. 2�. We will give
several examples along the way to make it clear.

We will begin by defining these extended “labeled” graph
states in Sec. III A, followed by describing the graphical
rules of how they are used to spread information and how it
can be accessed in Sec. III B, finishing with how they change
under measurements in Sec. III C.

A. Labeled graph states

A pure graph state is a state in the Hilbert space H2
�n, i.e.,

a string of n qubits. For �� �= ��0�� �1�� /	2 and an undi-
rected graph G= �V ,E� comprising n vertices, with

V = �vi�, E = �eij = �vi,v j�� �3.1�

the set of n vertices and the set of edges, respectively.
Definition 1. Two players i and j are “neighbors” iff there

exists an edge eij that connects their respective vertices vi
and v j. The set of i’s neighbors is denoted Ni.

A graph state is created from an initial state

� + ��n = H�n�0��n, H = � + �
0� + �− �
1� , �3.2�

with H the Hadamard transformation, by applying the two-
qubit controlled-phase gate �controlled-Z �CZ��

CZ����� = �− 1���������,�,�� � �0,1�, ����� � H2
�2

�3.3�

to all pairs of qubits whose corresponding vertices on the
graph are joined by an edge and not to any pair not con-
nected by an edge. The commutativity of all CZ operations
implies that the order of applying CZ gates is unimportant:

�G� = �
e�E

CZe� + ��n. �3.4�

We now modify the graph labeling. The usual graph state
has each node labeled by its vertex index; in other words the
label of vertex vi is the index i, which has a bit string length
of O�log n�. We append to this label three more bits so the
label of vertex vi is �i ,�i1 ,�i2 ,�i3� for each �ij � �0,1�.

The first two labels are used to describe classical informa-
tion spread over the state. Over all vertices, we define

the vectors �� i�= ��i1 ,�i2� for the ith vertex, ���j
= ��1j ,�2j , . . . ,�nj� for the jth bit over all n vertices, and

�� = ���1�,��2�, . . . ,��n�� . �3.5�

Graphically these labels will be attached to their vertices and
used to represent the spreading of classical information. If a

vertex vi has no label, this is equivalent to setting �� i�
= �0,0�.
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The third additional bit �i3 occurs in the security of pro-
tocols, and is not relevant to the classical information trans-
mitted. For the ease of graphical manipulation of the en-
coded information, we absorb this bit into the graph itself.
Graphically the third bit �i3 is depicted as the vertex vi being
either a � �the set of which is denoted V��, for �i3=0, or a �
�the set of which is denoted V��, for �i3=1. The vertex set is
thus a union of two types of vertices,

V = V� � V�. �3.6�

We thus have the extended graphs G= �V� ,V� ,E�.
These extra labels imply the action of local unitary opera-

tions �hence maintaining entanglement properties� via the
following definition.

Definition 2. The “labeled graph state” is obtained from
the graph state �G� by

�G��� = �
i

�Xi
�i1Zi

�i2��G� ,

�G� = �
j�vj�V�

Sj�G� , �3.7�

for

X = �0�
1� + �1�
0� ,

Z = �0�
0� − �1�
1� ,

S = �0�
0� − i�1�
1� . �3.8�

Remark. The partial phase shift gate S is used to perform
an X↔Y basis transformation for protection against eaves-
dropping, analogous to the Bennett-Brassard 1984 �BB84�
strategy �8�.

For encoding purposes, only local Z gates are required, so
we introduce another kind of graph state.

Definition 3. The “encoded graph state” is

�G���2
� = �

i
Zi

�i2�G� . �3.9�

Thus the encoded graph state is also a labeled graph state
with �1i=0 for all i, �G���2

�= �G��=�0,�12,0,�22,. . .,0,�n2��. Encoded
graph states exhibit the orthonormality property


G���2
�G��

�2�
� = ����2��

�2�
. �3.10�

Encoded graph states �G���2
� can be elegantly expressed in

the stabilizer formalism. For Y = iXZ and stabilizer operators
for any ith vertex denoted by

Ki
� = Xi�ei,j�EZj, Ki

� = Yi�ei,j�EZj �3.11�

�for circular and square vertices, respectively� the encoded
state �G���2

� is completely specified by eigenequations

Ki
�,��G���2

� = �− 1��i2�G���2
� ∀ i � V . �3.12�

The following two examples, for three and for four qubits,
respectively, explain how the stabilizers define the encoded
graph states.

Example 1. The three-qubit labeled graph state presented
in Fig. 1 is the encoded graph state

�G���2
� = Z1

�12 � Z2
�22 � Z3

�32� �0 + + � + i�1 − − �
	2


 ,

�3.13�

and is the unique common eigenstate of

K1
� = Y1 � Z2 � Z3,

K2
� = Z1 � X2 � 13,

K3
� = Z1 � 12 � X3, �3.14�

with eigenvalues ���2= �l12, l22, l32�.
A four-qubit encoded graph state is given in the following

example. First we define the n-qubit Greenberger-Horne-
Zeilinger-Mermin �nGHZM� graph and corresponding
nGHZM graph state.

Definition 4. The nGHZM graph for vertex vi is the de-
gree n graph

GnGHZM = �V = �v j�,E = ��v1,v j�i��� , �3.15�

and the nGHZM graph state is the state corresponding to
�GnGHZM�.

Example 2. The 4GHZM graph is depicted in Fig. 2�a�,
and the corresponding encoded 4GHZM graph state is

�G���2
� = Z�12 � Z�22 � Z�32 � Z�42�G� ,

�G� =
1
	2

��0 + + + � + �1 − − − �� , �3.16�

and is fully defined by the four stabilizers

K1
� = X � Z � Z � Z, K2

� = Z � X � 1 � 1 ,

K3
� = Z � 1 � X � 1, K4

� = Z � 1 � 1 � X , �3.17�

with eigenvalues ���2= �l12, l22, l32, l42�.

FIG. 1. �Color online� Labeled graph with vertex v1, depicted as
1 inside a �, which indicates that S has been applied to this vertex,
and vertices v2 and v3, depicted as the numerals 2 and 3 inside �.

The labels �� i�= ��i1 ,�i2� indicate that operation X�i1Z�i2 has been

applied to each qubit j, respectively. For �� i���0,�i2�∀ i, this la-
beled graph state corresponds to the encoded state �G���2

�=Z1
�12

� Z2
�22 � Z3

�32��0+ + �+ i�1−−�� /	2 �Eq. �3.13��.
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B. Dependence and access

We first consider sharing a classical secret; sharing quan-
tum secrets follows from this as we will see later. Each qubit
represented by a vertex in the graph is held by one player,

and the classical secret is encoded into the label ���2. A subset
of players is represented by a vertex subset V��V.

For general labeled graph states, all accessible informa-
tion for V� resides in the reduced state obtained from the
labeled graph state �3.7�:

�V��� = TrV/V��G���
G��� . �3.18�

In the context of secret sharing, it is important to know

what information about �� is contained in �V���. The informa-

tion shared between �V��� and �� exhibits two important prop-
erties:

A1 Bit dependence: �V��� is dependent on bit k if �V��� is
not invariant under a flip of the kth bit.

A2 Bit access: Bit k is accessible if there exists a mea-
surement protocol such that one copy of �V��� reveals the
value of bit k with certainty.

A2⇒A1, but A1⇒” A2. Given dependency on a bit, it is
especially useful to know what information can be obtained
by V� via local operations and classical communication
�LOCC� or via quantum channels.

Graphically we ascertain the dependancy of a set of play-
ers V� on the information by shuffling bits between neigh-
bors: that is, exploiting equivalences between labeled graph

states with different labels �� . If a label does not occur on one
of the vertices in the set V�, that set has no dependency on it.
This is obvious because the label would then represent a
local unitary operation outside the set V�, which cannot af-

fect the reduced density matrix �V���. We thus look for
equivalences between labeled graph states where labels can
be shuffled outside V� as much as possible. Of course differ-

ent ���2-labeled graph states, equivalently encoded graph
states, must be inequivalent because of the orthonormality

relation �3.10�; indeed this is why we need the ���1 labels.
Then the next step is to ascertain if the desired informa-

tion can be accessed by V�, which is effected by a measure-
ment protocol corresponding to appropriate combinations of
Ki �Eq. �3.11��, then exploiting the eigenequation relations
�3.12�. Fortunately the graph readily reveals the appropriate
way to do this. Before giving the general rules, we begin
with a four-qubit example.

Example 3. A dealer distributes the encoded graph state
�3.16� to all four players V= �v1 ,v2 ,v3 ,v4� depicted in Fig.
2�a�. In this example we show that, if the three players in
V�= �v1 ,v2 ,v3� collaborate, they learn two bits ��22,�32� of
the four-bit encoding and are entirely denied knowledge of
two other bits ��12,�42�, whether they use shared quantum
channels or only LOCC. We also see that just two players
V�= �v2 ,v3� can �and can only� acquire �22 � �32 via LOCC,
where � is summation mod 2.

Acting upon the encoded graph state �3.16� by the fourth
stabilizer of Eq. �3.17� yields

K4
��12�G��2

� � = 11 � Z2
�22 � Z3

�32 � X4
�12Z4

�42�G�

= �G��=�0,0,0,�22,0,�32,�12,�42��

= �− 1��12�42�G��2
� � . �3.19�

The player subset V�= �v1 ,v2 ,v3� is thus independent of �12
because local unitary dependence on �12 has been shuffled to

player v4’s two-bit label ��4�. In Fig. 2�b�, this �12 bit shuffle
is depicted as a green arrow from vertex v1 to vertex v4.
Vertex v1 is unlabeled because its bit value is now zero, and

vertex v4 now has a two-bit label ��4�= ��12,�42�. The graph
states in Figs. 2�a� and 2�b� are thus equivalent up to �an
irrelevant� global phase.

Players in V� share a reduced state that is dependent on
bits �22,�32. In fact they can perform measurements corre-
sponding to K2

� and K3
� to learn these two bits according to

Eq. �3.12�. With shared quantum channels, there is no prob-
lem in performing such a joint measurement as K2

� and K3
�

commute and have support only on operations by players in
V�. However, quantum channels are not required: the players
can learn ��22,�32� by LOCC because the stabilizers com-
mute locally. In contradistinction a failure of local commu-
tation would imply that these bits could not be learned by
LOCC.

In fact a smaller set of players can access information.
Consider the set of players V�= �v2 ,v3�. Applying eigenop-
erator K1

��22 yields

K1
�22�G���2

� = X�22Z�12 � 1 � Z�22+�32 � Z�22+�42�G�

= �G��=��22,�12,0,0,0,�22��32,0,�22��42��

= �− 1��12�22�G���2
� . �3.20�

This implies that the reduced density matrix only depends on

FIG. 2. �Color online� Equivalence of labeled graph states de-
picting bit dependence for four players. �a� The initial four party

encoded graph state corresponds to �� i�= �0, li2�. �b� Equivalent state

with ��1�= �0,0�, ��2�= �0, l22�, ��3�= �0, l32�, and ��4�= �l12, l42� �see
Eq. �3.19��: bit �12 has been shuffled from vertex 1 to vertex 4,
which is indicated by the arrow in the figure. �c� Equivalent state

with bit �22 shuffled to the other parties: ��1�= ��22, l12�, ��2�= �0,0�,
��3�= �0,�22 � l32�, and ��4�= �0, l22 � l42� as indicated by arrows and
labels �see Eq. �3.20��. Note: vertex vi without label is equivalent to

setting �� i�= �0,0�.
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�22 � �32. This information can be accessed by measuring

K2
�K3

� = 1 � X � X � 1 . �3.21�

This can be done by LOCC. This shuffling is illustrated in
Fig. 2�c�; hence all graph states in Figs. 2�a�–2�c� are equiva-
lent.

Remark. Stabilizer operators Ki
� �and products thereof�

are not directly measured by the players under LOCC; rather
players locally measure in the Xi, Yi= iXiZi, or Zi bases to
obtain one-bit outcomes si

X, si
Y, and si

Z, respectively, where si
�

is assigned the value 0 if the measurement outcome is 1, and
1 if the measurement outcome is −1.

Then the bit value outcome for the measurement of K2
�

and K3
� in Example 3 is

�22 = s1
Z

� s2
X, �32 = s1

Z
� s3

X, �3.22�

respectively. Henceforth when we say players can locally
measure an operator, we mean measurement in the sense that
local Pauli measurements can be performed and resultant bit
outcomes combined to learn the same as if nonlocal stabi-
lizer measurements were performed.

For Example 3, each player’s qubit corresponded to a �
vertex. Extending to � vertices is straightforward by using
the Ki

� stabilizers �3.11�. Specifically if a vertex is modified
by changing its graph representation from � a to a �, in the
stabilizers an X is changed to a Y and we have a correspond-
ing change to the bit transfer.

Example 4. For examples 2 and 3 let the representation of
vertex v1 be changed to a � in Fig. 2�a�. Thus, in Fig. 2�c�,
the resultant bit pair on vertex v1 is ��1�= ��22,�12 � �22� in-

stead of ��1�= ��22,�12� because modifying X�Y = iXZ in the
revised stabilizer K1

��K1
� yields an extra Z operation lead-

ing to �1 on the second bit �via the appropriate change to

Eq, �3.20��. The others remain the same ��3�= �0,�2 � �3�,
��4�= �0,�2 � �4�.

These examples for four qubits are generalizable to n qu-
bits with � or � vertices. Here are the general principles for
accessibility and dependence of information in an encoded
graph state.

Proposition 1. The following principles hold for encoded
graphs states �G���2

�.
P1: The encoded graph state �G���2

� with one-bit label li2

on vertex vi is equivalent to the labeled graph state �G���
where vertex vi is relabeled 0 and a neighboring vertex v j is

relabeled either �� j�= ��i2 ,� j2� or �� j�= ��i2 ,� j2 � �i2�, depend-
ing on whether vertex vi is of the type � or �, respectively.
The remaining neighbors of v j, vk�Ni are relabeled �0,�k2
� �i2�. In this way any neighbor of vi can shuffle the depen-
dency of �i2 to itself and to its remaining neighbors. Bit
shuffling is depicted as green arrows and shows how depen-
dence of the reduced state on bit labels can be transferred
from one player to another.

P2: The bit value �i2 is accessible by players in set V� if
and only if vi and all its neighbors Ni are in the set V�.

P3: If the set V� comprises an even number of players,
and all their external neighbors �outside the set V�� are
neighbors of each and every player in V�, then the sum �mod

2� of all their one-bit labels ��i2� is accessible, i.e., they can
collaborate to find

�i2 � � j2 ¯ � �m2, vi,v j, . . . ,vm � V�.

P4: If P2 holds, and players in the set share quantum
channels, all information encoded in one-bit labels is acces-
sible. If the set shares only classical channels, and P2 holds,
then information accessibility is limited because neighbors vi
and v j in the set can only learn either �i2 or � j2 but not both,
but vi and v j in the set can learn both �i2 and � j2 if they are
not immediate neighbors.

Note: The bit shuffling in P1 is not active; rather it rec-
ognizes equivalence between labeled graph states.

Proof. All proofs are simply derived from eigenequations
�3.11� and �3.12�, which shuffle bits between players, thereby
revealing actual dependence of reduced states on given bit
labels ��i2�.

For P1, suppose vertex vi has a neighboring vertex v j
which is either a � or a �. Then

�G���2
� = �− 1��i2�j2Kj

��i2�G���2
�

= �− 1��i2�j21i � Zj
�j2Xj

�i2� �vk,vj��EZk
��k2+�j2�

�m�i,j;�vm,vj��EZm
lm2�G� ,

�G���2
� = �− 1��i2�j2Kj

��i2�G���2
�

= �− 1��i2�j2i1i � Zj
li2��j2Xj

�i2� �vk,vj��EZk
��k2+�j2�

�m�i,j;�vm,vj��EZm
�m2�G� , �3.23�

respectively. Evidently dependency on �i2 is shuffled from
neighbor vi to v j, and v j’s other neighbors are as described in
P1.

For P2, players obtain �i2 by measuring Ki
�,� of Eqs.

�3.11� and �3.12�. Because Ki
�,� is nontrivial on i and also on

Ni, by Eq. �3.11�, player i and all of Ni must collaborate to
measure �i2, and this collaboration is sufficient.

For P3 we start by looking at the case V� which contains
only two players. By Eq. �3.11� if all neighbors of pair vi,
v j �V� are either in the set, or shared outside the set,
Ki

�,�Kj
�,� is nontrivial only inside the set, and thus can be

measured by the members of the set. This is true since all the
Z from the Ki

�,� cancel with the Z from Kj
�,� on their com-

mon neighbors. Applying Ki
�,�Kj

�,� to Eq. �3.12�, we see
that this yields �i2 � � j2. Similarly this holds for any even
number of players.

For the comparison of LOCC to the fully quantum case of
P4, by the above logic if properties P2 and P3 hold, then the
dependency on the associated observables are nontrivial only
within the set. As all operators Ki

�,� commute, all observ-
ables commute in the nontrivial set, and hence can be mea-
sured by global operations.

For LOCC, it is clear from Eq. �3.11� that, if vertices vi

and v j are neighbors, then Ki
�,� and Kj

�,� share different
local Pauli operators on i and j and hence cannot be simul-
taneously measured locally; therefore, even if P2 holds, one
must choose one measurement or the other. If vertices vi and
v j are not neighbors, they are indeed amenable to simulta-
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neous local measurements. Similar statements can be made
when P3 holds, but are more complicated graphically and
must be taken case by case. �

C. Local Z and Y measurements on encoded graph states

In our protocols encoded graph states with both � and �
vertices arise as a result of performing either Y or Z mea-
surements on qubits identified by vertices of the labeled
graph with only circular vertices. Local Pauli measurements
on graph states are described by a simple set of rules, which
readily yield the resultant states �6�. These rules were origi-
nally stated in terms of graph states up to local unitary op-
erations. For our purposes we would like to incorporate also
these local unitary operations into the labeled graph states.
We now represent these rules exactly graphically for the Z
and Y measurements, using the labeled graphs above, with
no local unitary ambiguity.

If a Z measurement is made on vertex vi of an encoded
graph state with circular vertices, the resultant state corre-
sponds to a labeled graph state of the original graph but with
vertex vi and its edges deleted. For outcome si

Z, the labels of

all vertices in Ni change to �� j � � �0,� j2 � si
Z�. We denote the

resultant graph by g.
If a Y measurement is made on vertex vi of an encoded

graph state with circular vertices, the resultant state is a la-
beled graph state obtained by applying the following four
steps to the original graph; the new graph is denoted g�.

S1: Perform local complementation on vi: all existing
edges between elements in Ni are removed, and where they
did not exist, they are added.

S2: Each � vertex in Ni is changed to �.
S3: For outcome si

Y, the labels on the neighbors of i
change to � j�= �0,� j2�→ �0,� j2 � �i2 � si

Y�.
S4: Remove vertex i and all its edges.
Example 5. A Z and a Y measurement on vertex v1 of a

square graph state with circular vertices changes the graphs
as depicted in Fig. 3.

These rules can easily be understood by the fact that any
encoded graph state with labels �i2=0 ∀ i can be written in
the form

�G�0��� =
1
�2

��0�1�g�0¯0��2,. . .,n + �1�1�g�1 ¯ 1

�N1

0¯0��2,. . .,n�

=
ei�/4

�2
��0��1��g�0¯0�� ��2,. . .,n − i�1��1�g�1 ¯ 1

�N1

0¯0�� �2,. . .,n� ,

�3.24�

with ��0�,�1�� and

��0�� = 1/	2��0� − i�1��, �1�� = 1/	2��0� + i�1���

the eigenstates of the Z and Y Pauli operators, and the cor-
responding eigenvalues are +1 and −1, respectively. Adding

labels ���2 indicates the application of local Z’s. This com-
mutes with measuring Pauli Z, so the labels carry forward
only with the addition of the correction from the measure-
ment itself, e.g., Figs. 3�a� and 3�a��. However, local Z does
not commute with a Y measurement, hence the bit �12 carries
on to the measured graph �S3�, e.g., Figs. 3�b� and 3�b��.

The following definition follows naturally.
Definition 5. Given a graph G with only circular vertices,

and associated encoded graph state �G���2
�, the graph of the

state given by measuring Pauli Y on vertex i� �1, . . . ,n� is
called the conjugate graph denoted g�, with conjugate graph
state denoted �g��1,. . .,n/i and can be found explicitly by fol-
lowing the rules

R1: Perform local complementation on vi.
R2: Replace all neighbors of i with � vertices.
R3: Remove vi and all its edges.
It can easily be shown that encoded conjugate graph states

can be written as

�g�0¯0�� � =
e−i�/4

�2
��g�0¯0�� + �g�1 ¯ 1

�N1

0¯0��� ,

�g�1 ¯ 1
�N1

0¯0�� � =
e−i�/4

�2
��g�0¯0�� − i�g�1 ¯ 1

�N1

0¯0���
�3.25�

so are effectively conjugate to the encoded graph states

��g�0¯0��, �g�1 ¯ 1
�N1

0¯0��� .

The following definitions are useful for Sec. V.
Definition 6. The n GHZM graph GnGHZMi

is embedded in
G if GnGHZMi

�G and Ni�G \GnGHZMi
=0” .

Definition 7. The nGHZM graph state is embedded into
state �G� if GnGHZMi

is embedded in G.
We now have the necessary formalism to develop the

various secret sharing protocols.

IV. SECRET SHARING PROTOCOLS

In this section we introduce our three secret sharing pro-
tocols beginning with CC for sharing classical secrets in Sec.

FIG. 3. �Color online� When Pauli Z and Y measurements are
made on vertex v1, graphs �a� and �b� metamorphose into �a�� and
�b��, respectively. Outcomes Si

�=0,1 correspond to measurement
eigenvalues −1, +1, respectively, and are incorporated into the la-
bels in �a�� and �b��.
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IV A. Using our graph state approach, we construct solutions
for each of �n ,n�, �3,4�, and �3,5� threshold secret sharing.
These results provide a foundation for our subsequent proto-
cols: CQ in Sec. IV B and QQ in Sec. IV C.

A. CC

In the CC protocol, classical information is directly en-
coded into the bit string ���2, i.e., onto the encoded graph
state ��G���2

�� in a manner that enables certain sets of collabo-
rating players to access concealed information according to
the principles of the secret sharing protocol.

Mathematically our protocol is similar to Gottesman’s
�14� wherein stabilizers are used to share classical secrets in
quantum states. A difference between our scheme and Got-
tesman’s is that he uses mixed high-dimensional states
whereas our graph state approach enables use of pure states
on qubits. Another difference with Gottesman’s approach is
that our method is not as general: our scheme works for a
limited number of �k ,n� scenarios whereas Gottesman’s
method works for any �k ,n�. Although our scheme is more
restrictive, it is applicable to a restricted set of cases and
importantly provides a foundation for the protocols discussed
in subsequent sections.

The CC protocol steps are as follows.
CC1: The dealer encodes the secret bit string S into the

classical information ���2 and encodes this onto the n-qubit
state ��G���2

��.
CC2: The dealer sends each player one qubit.
CC3: An authorized set of players accesses the secret bit

by measuring appropriate stabilizer operators �prescribed ex-
plicitly in each case�.

Here we analyze the ability of sets of players to access
this information for two cases: using LOCC and using full
quantum communication �FQC�. We will see that each graph
represents a different sharing structure, and that the rules of
access are simple in graph terms, and show that some graphs
can be used as secret sharing schemes as set out in the In-
troduction. In particular we present schemes for �n ,n�, �3,4�,
and �3,5�.

We now proceed to give explicit examples of how the
dependence and access properties in Sec. III B can be ap-
plied to give secret sharing via the above protocol. We begin
by looking at the case of nGHZMi states. Using property P1,
we can see in Fig. 4�a� that the player set �v1 , . . . ,vm� de-
pends only on bits �22, . . . ,�m2; i.e., the dependency on �12
has been removed. From P2 it is possible for the same player
set to recover all �22, . . . ,�m2, and, by P4, this can be done by
LOCC.

Explicitly this would be done by player 1 measuring Z1
and the remaining players �v2 , . . . ,vm� measuring Xi and
comparing results to measure K2

� , . . . ,Km
�, yielding

�22, . . . ,�m2 via eigenequations �3.12�. Hence, in this case,
LOCC is sufficient for all possible information access.

Similarly Fig. 4�b� shows how P1 implies that the player
subset �v2 , . . . ,vm� depends on bits

l22 � �32,�22 � �42, . . . ,�22 � �m2

only and, by P3 and P4, they can be accessed simultaneously
by LOCC alone. Explicitly this would be done by all players

measuring Xi. The players in this set then compare results to
measure

K2
�K3

�,K2
�K4

�, . . . K2
�Km

�. �4.1�

Only in the case that all players collaborate would there be a
difference between the LOCC and FQ cases; in this case P4
implies that, by LOCC, the players can either access
�22, . . . ,�n2 or �12. Obviously, for FQC, all information is
simultaneously accessible.

We see above that bit �12 is only accessible when all
players act together. By choosing the secret bit S as S=�12
and fixing all other �i2 arbitrarily, we obtain the following
proposition.

Proposition 2. An encoded n GHZM state with �12=S and
all other �i2 set to zero enables a �n ,n� direct secret sharing
scheme that can be accessed via LOCC.

This case is depicted in Fig. 4.
Now we see that �3,4� threshold secret sharing is attain-

able with encoded graph states.
Proposition 3. The four-qubit ring encoded graph state

with �12=�22=�32=�42=S enables a �3,4� direct secret shar-
ing scheme, and LOCC between players suffices for decod-
ing.

Proof. The four-qubit ring state is depicted in Fig. 5. We
see in Fig. 5�a� that P1 shows that pairs �v1 ,v2�, �v2 ,v3�,
�v3 ,v4�, and �v1 ,v4� are denied any information whatsoever.

Figure 5�b� shows that the player pair �v1 ,v3� can obtain,
and moreover can only obtain, �12 � �32. Similarly �v2 ,v4�
obtain, and only obtain, �22 � �42. Figure 5�c� reveals that
players �v1 ,v2 ,v3� obtain, and only obtain, �22 and/or �by
using FQC or LOCC� �12 � �32.

Similarly, players �v2 ,v3 ,v4� obtain, and only obtain, �32
and/or �via FQC or LOCC� �22 � �42. The remaining triplets

FIG. 4. �Color online� Distribution and access of information
�l12, . . . , ln2� for the nGHZM state. The green arrows represent uses
of dependency property P1. In �a� the dependency on l12 is taken
out of the set, and in �b� the dependency on l22 is shared across the
whole set. This encoded graph state gives an �n ,n� secret sharing
scheme by setting l12=S and the other bits can be set arbitrarily.

FIG. 5. �Color online� Application of P1 to the square encoded
graph state. This graph gives a �3,4� secret sharing scheme setting
�1=�2=�3=�4=S �see proposition 3�.
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obtain, and only obtain, �12 and/or �via FQC or LOCC� �22
� �42 in the case of �v1 ,v2 ,v4�, and �42 and/or �FQC or
LOCC� �12 � �32 in the case of �v1 ,v3 ,v4�.

We see that this graph gives a �3,4� threshold scheme by
setting

�12 = �22 = �32 = �42 = S . �4.2�

�
Our final result in this section concerns the �3,5� threshold

scheme, given by a five-qubit ring depicted in Fig. 6.
Proposition 4. The five-qubit encoded RING graph state

enables �3,5� threshold secret sharing for the CC protocol
provided that �12=�22=�32=�42=�52=S, with LOCC be-
tween players being sufficient for decoding.

Proof. Figure 6�a� shows how P1 implies that players 1
and 2 cannot access any information because the dependency
can be taken away from them. Similarly it is easy to see that
no pair of players can access any information by application
of P1. On the other hand if three cyclic neighbors �vi ,v j ,vk�
form a set, P1 implies the set only depends on � j2; this is
clear from the case for the player set �v1 ,v2 ,v3� in Fig. 6�b�.
P2 implies the bit can be accessed, and P4 says this access
can be achieved via LOCC. Accessing would be accom-
plished by measuring Kj

�, which is done by locally measur-
ing Zi, Xj, Zk.

The remaining possible sets of three players are all similar
to the T shape in Fig. 6�c�; in this case the set �vi ,v j ,vk�
depends only on �i2 � � j2 � �k2 by property P1. This is seen
for the example �v1 ,v2 ,v4� in Fig. 6�c�. By properties P2 and
P4 the players can access the secret by LOCC. Their proce-
dure is effected by measuring Ki

�Kj
�Kk

�, which is accom-
plished locally by measuring Yi, Y j, Xk.

Any set of more than three players contains at least one of
these possibilities, and the players can therefore access the
same information. By choosing to encode the bit secret S as

�12 = �22 = �32 = �24 = �52 = S , �4.3�

the proposition is proved. �
Here we established three examples that use graph states

for secret sharing. These three examples demonstrate the
simple properties of our approach, and more examples of
graph states for secret sharing could be found. In the next
two sections, we extend these results and techniques to secret
key distillation and to sharing a quantum secret.

B. CQ

In this section we address case CQ, which corresponds to
the protocol expounded by Hillery, Bužek, and Berthiaume

�HBB� for sending a classical secret with insecure quantum
channels between the dealer and players �2�. Actually this
problem can instead be solved by combining the classical
secret sharing protocol of Shamir �1� via standard quantum
key distribution �QKD� �8� to assure secure classical chan-
nels between the dealer and each of the players. In the QKD
approach, the dealer would first establish a random key with
each of the players individually by using QKD. This would
enable perfectly secure classical communication between the
dealer and each player �as a one-time pad�, which can then
be used to perform the Shamir protocol safely. However,
QKD may not afford the most efficient approach hence the
interest in alternative schemes.

HBB �2� combine secret sharing protocols with QKD: the
dealer distributes multipartite states to share a secret key,
which can only be distilled by or shared with authorized sets
of players. This key can then be used to send any classical
message the dealer would wish to send to the authorized
players, without any unauthorized parties having access to it.
The HBB approach can be more efficient in the number of
uses of quantum channels between dealer and players, which
is comparable to the greater efficiency achieved by direct
distillation of multipartite entanglement rather than distilla-
tion of pairs of maximally entangled states and complicated
sequences of teleportations �15��.

Another benefit is that the HBB approach can be extended
to sharing quantum secrets �QQ� as we see in the next sec-
tion. HBB �2� created a classical threshold scheme for �2,2�
and �3,3� cases, and this has been extended to the �n ,n� case
in �11�.

We note that, as an extension of HBB, our protocol shares
the same drawbacks. The HBB protocol, hence ours, protects
against intercept-resend attacks but is not guaranteed to be
secure against other attacks �9�. Second, it only works for a
noiseless channel: In the case of a noisy channel, the HBB
protocol cannot establish a key �as the noise will be mistaken
for an eavesdropper�. This problem is likely not fatal, as
approaches involving entanglement distillation or alterna-
tives could help to overcome the effects of noise in the chan-
nel �10�.

Our protocol employs graph states to generalize the HBB
scheme �2�. By using graph states our scheme could build on
current experimental research for generating graph states for
measurement-based quantum computing �12�. Further, en-
coding onto graph states allows us to use the properties de-
veloped Sec. III to generalize to other access structures.

As an example we show how this approach generalizes
HBB’s protocol to the �3,5� case, together with the �n ,n�
case. Although other examples are not provided here, the
properties given in Sec. III B allow further exploration. In
addition, our graph state shows how the HBB protocol can
be thought of as an extension to Gottesman’s results �14�, in
the sense that HBB’s protocol can be regarded as a purifica-
tion of Gottesman’s.

The underlying concept for the protocol is simple. We use
an entangled state as the channel between the dealer D and n
players. This will be a graph state; hence we can always
write in the following way �cf. Sec. III C�

FIG. 6. �Color online� Application of P1 to the five-qubit ring
encoded graph state to obtain a �3,5� direct secret sharing scheme
by setting �12=�22=�32=�42=�52=S.
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�G�0��� =
1
�2

��0�D�g�0¯0��1,. . .,n + �1�D�g�1 ¯ 1
�ND

0¯0��1,. . .,n�

=
ei�/4

�2
��0��D�g�0¯0�� �1,. . .,n − i�1��D�g�1 ¯ 1

�ND

0. . .0�� �1,. . .,n� .

�4.4�

The dealer measures randomly in either the ��0�D , �1�D� or the
��0��D , �1��D� basis. The dealer’s measurement outcomes pro-
vide the random key.

Through the entanglement, the players can access the key
by making the correct measurement. If the dealer measures
in ��0�D , �1�D�, the results are then correlated to the states

��g�0¯0��1,. . .,n, �g�1 ¯ 1
�ND

0¯0��1,. . .,n�

held by the players. If any set of players can discriminate
these states perfectly, they can find out what the measure-
ment result of the dealer was, and thereby obtain the random
key.

The dealer may instead choose to measure in the
��0��D , �1��D� basis, and then the player’s qubits will end up
in either of the associated conjugate states

��g�0¯0�� �1,. . .,n, �g�1 ¯ 1
�ND

0¯0�� �1,. . .,n�

correlated to the measurement result. The ability to discrimi-

nate �or in other words, to access the information ���2 and
hence get the key� is then determined by the conjugate graph
g�, which must be checked to have the correct access struc-
ture also �if we want to do secret sharing�. We see that this
works for the GHZ and the five-qubit ring encoded graph
states, but it does not work for the four-qubit ring encoded
graph state. This is why we cannot extend the �3,4� CC pro-
tocol to key distribution in this way.

In the case of only one player, this corresponds to Ekert’s
protocol �16�. In our case there is the added structure
given by the graph g. Discriminating these states is the same

as accessing either the information ���2=0� or ���2
= �1, . . . ,1 ,0 , . . . ,0�. By choosing the right graph, only the
authorized players can access the information, or discrimi-
nate the states and access this key. In this first instance we
use exactly the graphs of the last protocols to do this. In this
way these entangled states �4.4� are a purification of the pro-
tocols of the last section—taking a random choice of the two
graph states �which can be viewed as a mixed state� to an
entangled pure state by adding an auxiliary system, which is
the dealer in this case.

The players also measure randomly to either discriminate
states

��g�0¯0��1,. . .,n, �g�1 ¯ 1
�ND

0¯0��1,. . .,n� ,

or the conjugate states

��g�0¯0�� �1,. . .,n, �g�1 ¯ 1
�ND

0¯0�� �1,. . .,n� .

As seen in Sec. III C these states are conjugate in the sense
that discriminating the states

��g�0¯0��1,. . .,n, �g�1 ¯ 1
�ND

0¯0��1,. . .,n�

provides no information about whether we have

�g�0¯0�� �1,. . .,n

or

�g�1 ¯ 1
�ND

0¯0�� �1,. . .,n.

Thus the players cannot discriminate both bases simulta-
neously, so even if a set of players is authorized and can
discriminate perfectly, 50% of the time they will measure in
a basis in which they gain no information about the dealer’s
measurement result, hence will not access the key. To accom-
modate this at some point in the protocol, the dealer or play-
ers must announce which basis they measure. Results where
the bases match are kept, and those that do not match are
discarded. The remaining results should be perfectly corre-
lated and provide a random key, often referred to as the
“sifted key.” By standard classical security protocols �3�, this
can be distilled to a secret key by the dealer and authorized
players sacrificing part of the sifted key.

In this way our protocols are protected against a large
class of attacks, namely the so-called intercept-resend at-
tacks. For such attacks we imagine an eavesdropper �tradi-
tionally called Eve� who tries to gain information about the
secret key by intercepting the qubits before they reach the
players, and either measuring them directly or entangling
them to some ancilla “spy”-qubits of her own and then send-
ing them on to the players. �In fact, this eavesdropper could
instead be some unauthorized players.� At any point in the
protocol Eve may measure her entangled ancilla spy-qubits
to attempt access to the key. She will try to do this in a way
that is not detectable by the dealer and authorized players.

Measuring in two conjugate bases serves two complemen-
tary purposes to counter this particular class of attacks. First
the measurements in conjugate bases is decided randomly,
which protects against any intercept-resend eavesdropping
strategy: if Eve knows which measurement the players will
make, she can make the same measurement herself and thus
be undetected, but, if she does not know the measurement
basis, then any intrusion by her will affect the statistics of
subsequent measurements and thus be detectable. Second,
measurement in conjugate bases allows checking of correla-
tions to verify that the global state indeed corresponds to the
correct form �3.24�, which proves that Eve has not entangled
the state to ancilla during its transit.

If the measurements are truly random, we can view them
as a kind of tomography of the state shared between the
dealer and players, and suppose that all results represent this
state faithfully. In fact these two purposes are not indepen-
dent and are related to the long history of using entanglement
distillation to prove security for key distribution �e.g., �3��. In
both cases, the appropriate measurements are the stabilizers
of the state.
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Our protocol runs as follows.
CQ1: the dealer first prepares the state �g�0¯0��1,. . .,n asso-

ciated to the corresponding CC secret sharing protocol, then
entangles extra qubits �known as the dealer’s qubits� to each
of the qubits upon which the secret is independently distrib-
uted �see Figs. 7�a� and 8�a��.

CQ2: The dealer distributes to the players their qubits
�and keeps the dealer’s qubits�.

CQ3: The dealer and the set of authorized players V�
measure randomly one of a set of conjugate bases on their
qubits and announce they have measured on a public classi-
cal channel.

CQ4: The set of players V� trying to access the secret
announce their measurement basis.

CQ5: The dealer announces her measurement basis.
CQ6: Classical security protocols follow establishing a

secret key between the dealer and an authorized set of play-
ers.

CQ7: The secret key is used to send the secret message.
Now we see how this works for the �n ,n� case. The state

prepared by the dealer is that of the nGHZM state with an
extra vertex attached to player 1’s qubit �CQ1�; this extra
vertex corresponds to a qubit that is retained by the dealer as
shown in Fig. 7�a�.

�G�0���D,1,. . .,n = ��0�D�g�0¯0��1,. . .,n + �1�D�g�10¯0��1,. . .,n�/	2

= ��0��D�g�0¯0��1,. . .,n − i�1��D�g�10¯0��1,. . .,n�/	2.

�4.5�

The stabilizers for state �4.5� are

KD
� = XD � Z1 � 12 � 13 ¯ � 1n,

K1
� = ZD � X1 � Z2 � Z3 ¯ � Zn,

K2
� = 1D � Z1 � X2 � 13 ¯ � 1n,

K3
� = 1D � Z1 � 12 � X3 ¯ � 1n,

]

Kn
� = 1D � Z1 � 12 � 13 ¯ � Xn. �4.6�

The qubit corresponding to vertex D is retained by the the
dealer, and the other qubits are sent to the players �CQ2�. As
prescribed by the protocol, the dealer measures in the Z basis
��0�D , �1�D� or in the Y basis ��0��D , �1��D�, and the players
perform appropriate measurements to distinguish
�g�0¯0��1,. . .,n from �g�10¯0��1,. . .,n, or �g�0¯0�� �1,. . .,n from
�g�10¯0�� �1. . .n, respectively. Our arguments from the CC case
show that discriminating �g�0¯0��1,. . .,n from �g�10¯0��1,. . .,n
cannot be done by a subset of fewer than n players.

Similarly, we can apply properties P1–P4 from Sec. III B
to the conjugate graphs as shown in Fig. 7�b� to see that the
same holds trying to discriminate �g�0¯0�� �1,. . .,n from
�g�10¯0�� �1,. . .,n. The players have various choices of how to
perform both sets of discriminating measurements. Impor-
tantly, the measurements for g will be conjugate to those for
g�.

We choose the following measurement strategy. The
dealer chooses ZD or YD randomly, player one chooses X1 or
Y1 randomly and the other players choose Zi or Yi randomly.
We will see that 50% of the time their measurements will
coincide to allow a shared key. That is, for half of the cases
the randomly chosen combination will be equivalent to per-
forming a suitable stabilzer measurement for which the
dealer and players will share a perfect key, and also be able
to check statistics for security �CQ3�. After the announce-
ments of the measurement bases, the dealer and the players
can discard any results where the bases do not match and are
left with the sifted key �CQ4,5�.

To see this, first suppose that the dealer measures in the
ZD basis. The players can then obtain a secret key �i.e., dis-
criminate �g�0¯0��1,. . .,n from �g�10¯0��1,. . .,n� by measuring any
combination of a product of stabilizers for the subgraph g as
long as they include that of player 1’s vertex, which we
denote k1

� �with lowercase for k indicating a stabilizer for the
subgraph rather than the graph�.

As we can see by comparing the global state’s stabilizers
�4.6� and the stabilizers of the subgraph �which can be imag-
ined by extending those of Eq. �3.17� to n parties�, including
the ZD measurement of the dealer, the dealer plus the players
are effectively measuring k1

� or any combination of the total
graph’s stabilizers, including k1

� such as k1
�k1

�
¯kn

�. Such
stabilizer products correspond to local measurements where
player 1 measures X1 and the remaining players measure Zi
or Yi with an even number of those who measure Yi; or
player 1 measures Y1 and the remaining players measure Zi
or Yi with an odd number measuring Yi.

FIG. 7. �Color online� CQ for �n ,n�. The dealer’s qubit is at-
tached so as to encode on the first qubit in the �n ,n� scheme. As
Eqs. �3.24� and �4.5� indicate, if the authority measures the control
qubit in X the resulting graphs are those of Fig. 4. In the case of Y
measurements, the graphs transform to the right graph �b� �see text
for explanation�.

FIG. 8. �Color online� CQ for �3,5�. The dealer’s qubit is at-
tached so as to encode on all five qubits correlated for the �3,5�
scheme. As Eq. �4.7� indicates, if the dealer measures her qubit in X
the resulting graph is that of Fig. 6�a�. In the case of Y measure-
ments the graph transforms to the right graph �b�.
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Similarly, if the dealer measures in the YD basis, the play-
ers can obtain a secret key by measuring the stabilizers of the
conjugate graph depicted in Fig. 7�b�, k1

�, or any product
including this stabilizer: k1

�k1
�
¯kn

� �discriminating
�g�0¯0�� �1,. . .,n from �g�10¯0�� �1,. . .,n�. Including the measurement
by the dealer in the Y basis, this set of measurements corre-
sponds to the dealer plus the players measuring stabilizers
D1

�K1
� or any combination of the graph’s stabilizers includ-

ing KD
�K1

�, such as KD
�K1

�Ki
�
¯Kn

�. This set of stabilizer
measurements corresponds to local measurements where
player 1 measures X1 and the remaining players measure Zi

or Yi, as long as there is an odd number of those who mea-
sure Yi, or where player 1 measures Y1 and the remaining
players measure Zi or Yi with an even number of those who
measure Yi.

Thus each combination of measurements X1 or Y1 by
player one, and Zi or Yi by the other players corresponds to
the correct measurement to discriminate the appropriate en-
coded graph states either for the dealer measuring ZD or YD.
The dealer chooses randomly so 50% of the time the mea-
surements will coincide and results be correlated. After
checking that the bases match they throw away the cases that
do not to give a sifted key.

As discussed above, the randomness of the measurement
bases ensures that any eavesdropper cannot know which
measurement to make, and so any interference she introduces
will be noticed by standard security checks �steps CQ4–
CQ6� of the protocol. In this case, the dealer and authorized
players should randomly choose a part of the sifted key �for
example, the dealer picks randomly and announces to all the
players�, and both the dealer and the authorized players an-
nounce their results.

They can then check that the results match those ex-
pected. If they do, they are sure there has been no eavesdrop-
per, and that the key is secure. If the correlations do not
match, they are forced to throw away the key and start again.
As in HBB �2� the players announce their measurement re-
sults �CQ4� before the dealer �CQ5� to prevent the players
from cheating.

That matching results imply security is evident from the
fact that the random measurements can be seen as checking
the state as mentioned above. In this case, if measurements
are made randomly as described, each choice measures a
different set of stabilizers. Doing this asymptotically builds
statistics that give the expectation of all the stabilizer opera-
tors. If we obtain the expected results, i.e., that the state is a
+1 eigenstate of operators KD

�
¯Kn

� in Eq. �4.6�, then the
state is by definition that of Eq. �4.5� and hence not en-
tangled to any possible eavesdropper so an eavesdropper is
denied any information about the key. We thus have the fol-
lowing proposition.

Proposition 5. The CC �n ,n� scheme can be extended as
above to give secure distribution of shared random keys with
the same secrecy access structure. The secret key can be
accessed by LOCC.

Let us now see how the �3,5� can be extended to a secret
key distribution protocol. In this case, the state prepared by
the dealer is that of Fig. 8�a�:

�G�0���D12345 = ��0�D�g�00000��12345 + �1�D�g�11111��12345�/	2

= ��0��D�g�00000�� �12345 − i�1��D�g�11111�� �12345�/	2.

�4.7�

The stabilizers of this total state are

KD
� = XD � Z1 � Z2 � Z3 � Z4 � Z5,

K1
� = ZD � X1 � Z2 � 13 � 14 � Z5,

K2
� = ZD � Z1 � X2 � Z3 � 14 � 15,

K3
� = ZD � 11 � Z2 � X3 � Z4 � 15,

K4
� = ZD � 11 � 12 � Z3 � X4 � Z5,

K5
� = ZD � Z1 � 12 � 13 � Z4 � X5. �4.8�

As before, when the dealer measures in the Z basis, the
fact that the graph g is a �3,5� direct threshold scheme means
that any pair of players cannot reveal the dealer’s results,
hence cannot access the key; in contrast any three collabo-
rating players can reveal the key. As the conjugate g� graph
given by the dealer measuring in the Y basis �see Fig. 8�b�� is
just a reordering of the original ring and replacing �→�
vertices, it is also a �3,5� direct thresold scheme, so the same
conclusions hold.

Consider first the subset �v1 ,v2 ,v3�: as the dealer mea-
sures ZD, the players’ appropriate measurements correspond
to the direct �3,5� protocol of the previous section. That is,
player 1 measures Z1, player 2 measures X2, and player 3
measures Z3. This protocol corresponds to players measuring
stabilizer K2

� of the induced subgraph �which is the ring of
Fig. 6�, or the dealer plus the players measuring K2

� of the
total graph �Fig. 8�a��. If the dealer measures YD, the players’
appropriate measurements correspond to the direct �3,5� pro-
tocol of the previous section, but changed slightly for the fact
that it is the conjugate graph.

By applying the properties of Sec. III B, we can see this
can be done by player 1 measuring X1, player 2 measuring
Y2, and player 3 measuring X3. This corresponds to measur-
ing stabilizer k1

�k2
�k3

� of the induced conjugate graph, which
is the ring of Fig. 8�b�, or the dealer plus the players mea-
suring KD

�K1
�K2

�K3
� of the total graph shown in Fig. 8�a�.

We then have the dealer randomly measuring ZD or YD,
and the players randomly measuring in Z1, X2, Z3 or X1, Y2,
X3. As before, they communicate to get the sifted key first
�steps CQ4 and CQ5 in the protocol�, and then follow the
security steps after that.

To observe that the protocol is secure, we study what
these measurements imply about the total state of the dealer
and the players �v1 ,v2 ,v3�. In step CQ5 of the protocol,
some of the sifted key is sacrificed to verify that the mea-
surement results are those we expected, and if not we throw
the key away. If the expectation value of K2

� is +1, and of
KD

�K1
�K2

�K3
� is also +1, as can be verified by the players, this

means that the state of �vD ,v1 ,v2 ,v3� is in the subspace of
graph states
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��g�0000��D123, �g�1100��D123, �g�1001��D123, �g�0101��D123�

of the subgraph �vD ,v1 ,v2 ,v3� given by erasing all other
vertices and edges. This also means that there are no corre-
lations between the dealer and any possible eavesdropper.
This can be seen as follows.

Given the established subspace, any global state of
�vD ,v1 ,v2 ,v3� and the environment E �which may include
any eavesdropper� can be written

��0�E�g�0000��D123 + ��1�E�g�1100��D123 + ��2�E�g�1001��D123

+ ��3�E�g�0101��D123. �4.9�

The reduced density matrix of the environment and the
dealer can be easily calculated, using Eq. �3.24�, thereby giv-
ing

�E � 1/2D, �4.10�

where �E is the reduced density matrix of the environment.
Thus we see that the mutual information between the envi-
ronment and the dealer is zero; hence any environment, in-
cluding a possible eavesdropper, can have no information
about the key.

Now consider players �v1 ,v3 ,v4�. If the dealer measures
ZD, the direct �3,5� protocol tells us that the players should
measure X1, Y3, Y4, which corresponds to the players mea-
suring the stabilizer product k1

�k3
�k4

� of the subgraph �Fig. 6�,
or the dealer plus the players measuring K1

�K3
�K4

� of the
total graph Fig. 8�a�. If the dealer measures in the YD basis,
by considering the discrimination of the conjugate graph
states Fig. 8�b�, the players should measure Y1, Z3, Z4. Such
a measurement protocol corresponds to measuring the stabi-
lizer k1

� of the conjugate graph Fig. 8�b�, for the dealer plus
the players measuring KD

�K1
� of the total graph Fig. 8�a�.

Again the players and the dealer should follow steps CQ4
and CQ5 to obtain the sifted key and then compare some
results for the security analysis in step CQ6. If the expecta-
tion value of K1

�KD
� is +1, and of K1

�K3
�K4

� is +1, the state of
�vD ,v1 ,v3 ,v4� is in the subspace

��g�0000��D134, �g�0011��D134, �g�1110��D134, �g�1101��D134�

of the subgraph �vD ,v1 ,v3 ,v4� given by erasing all other
vertices and edges. Again, any state between the environ-
ment and the dealer and players �v1 ,v3 ,v4�, which has sup-
port only in this subspace, necessarily has no correlations
between the dealer and the environment. Thus again the en-
vironment cannot get any information about the secret key.

Any set of three players can be covered by these two
cases, simply by relabeling the players. We thus have the
following proposition.

Proposition 6. The CC �3,5� scheme can be extended as
above to give secure distribution of shared random keys with
the same secrecy access structure. The secret key can be
accessed by LOCC.

Remark. As it stands, this protocol is not resilient to noise.
Since noise �for example, in the channel between the dealer
and players� could interfere with the results of the measure-
ment results in the sifted key, any noise would be seen as a
potential eavesdropper and so the sifted key would be dis-

carded. In fact this is a problem of the original HBB protocol
also, and was resolved in �10� by relating the problem to the
distillation of the initial entangled state between the dealer
and the players. We expect that the same approach would
work for our generalized protocol. In the case of �n ,n� this
seems a simple extension. However, for the �3,5� case and
possible further graph state bases secret sharing schemes, it
would be more subtle and the distillation would be to sub-
spaces with guaranteed security rather than to specific states,
reflecting the more complicated security analysis. The large
body of work on distilling graph states should prove very
useful to this aim �see, for example, �6� and references
therein�. This is a topic of ongoing work.

C. QQ

We now see how one more extension can be made to
allow for the sharing of quantum secrets. Here we are ad-
dressing the third scenario presented in the introduction QQ,
namely sending a quantum secret in the possible presence of
an eavesdropper. Our approach will be to use the same en-
tangled state as for the key distribution protocol to teleport
the secret quantum state across from the dealer to the set of
players, where the structure of the graph will again imply the
secrecy structure. This teleportation extension is also that
used in �2�, but here we extend it to general graph state
protocols and explicitly show it for the �n ,n� and the �3,5�
threshold schemes.

Although we do not present as general a result as those in
�4�, where any �k ,n� scheme is shown to be possible, our
graph state cases are nevertheless interesting for several rea-
sons. First, they represent a unification of secret sharing
schemes of �2,4,14� via the graph state formalism, second
they use only qubits rather than higher dimensional systems
as in �4�, which has advantages in that they are more easily
implementable at present. Third, the schemes here are explic-
itly written and easy to understand and finally they are writ-
ten in terms of graph states which are of particular practical
interest across quantum information and will be extendible to
the embedded protocols of the next section.

Here we should note that because we are sending a quan-
tum secret �that is, a secret quantum state�, all players cannot
simultaneously obtain the secret if only one is provided,
since this would violate no-cloning �4�. We say a set of play-
ers can access the secret if it sits coherently within the space
of their qubits, in a way they know. In this way with access
to full quantum channels it can be localized to wherever they
choose.

In the case of only classical channels between the players,
it may not be possible to localize information at all, and if it
is we must choose a site to which they will localize the
secret. In each case we discuss where it can be localized if
possible by LOCC only.

The protocol operates as follows.
QQ1: The dealer prepares a secrecy graph state as in the

CQ key distribution protocol.
QQ2: The dealer performs a Bell measurement on the

qubit D and her input secret qubit �S�in, and performs the
appropriate correction operation.
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QQ3: The dealer distributes to the players their qubits.
QQ4: Authorized sets of players access the secret by mak-

ing prescribed measurements and corrections to focus down
the information to one of the authorized parties. This may
require global operations by authorized players �requiring
quantum channels�.

Let us see how this works. After step QQ1 the dealer
possesses the encoded graph state �G�0���D,1,. . .,n and the input
quantum secret �S�in=��0�in+��1�in. We can see what the re-
sultant state of the players will be after step QQ2 by rewrit-
ing the state in the Bell basis

�B00� ª ��00� + �11��/	2,

�B01� ª ��00� − �11��/	2,

�B10� ª ��01� + �10��/	2,

�B11� ª ��01� − �10��/	2, �4.11�

as follows.

�S�in�G�0���D,1,. . .,n = 1/4��B00�in,D���g�0¯0��1,. . .,n+ ��g�1 ¯ 1
�ND

0¯0��1,. . .,n��

+ �B01�in,D���g�0¯0��1,. . .,n − ��g�1 ¯ 1

�ND

0¯0��1,. . .,n�

+ �B10�in,D���g�1 ¯ 1
�ND

0¯0��1,. . .,n+ ��g�0¯0��1,. . .,n�

+ �B11�in,D���g�1 ¯ 1
�ND

0¯0��1,. . .,n− ��g�0¯0��1,. . .,n� .�]

�

�

�

�4.12�

This can be seen using Eq. �3.24�. After obtaining result Bij
corresponding to Bell state �Bij�, the correction operator

U�i, j�1,. . .,n ª �a�Nc
Zi

i/Ka�Nc

�j �4.13�

brings the resultant state to the desired encoded secret state

�Sg� = ��g�0¯0��1,. . .,n + ��g�1 ¯ 1
�NC

0¯0��1,. . .,n.
�4.14�

In fact, Eq. �4.14� is analogous to the direct encoding
approach of �4,14�, where a state is encoded directly onto a
stabilizer space, or codespace. Again �4,14� is more general
than ours in that it covers all �k ,n�, but again our scheme has
the advantage of being set on qubits and explicilty and sim-
ply written down �where as in �4,14� it is done with high
dimensional stabilizer codes via error correction codes and is
not readily understandable in terms of states�.

From Eq. �4.14�, it is clear that our dependency property
�cf. Sec. III B� can be used to show whether subsets of users
have any dependence on the secret qubit �S� �if the two graph
states in the equation are identical for some set of users,
obviously there is no chance they could extract the quantum
secret�. However, the access properties now fail, and we
have to check if the subset of players can access the quantum
secret. In other words, we have to check whether the quan-
tum secret state is coherently placed within the reduced den-
sity matrix, and if it is, whether it can be localized by LOCC.

This illustrates the difference between sharing classical
and quantum secrets as discussed in detail in �14�. Although
we do not have a general method at present to decide when a
quantum secret can be extracted also, for the �n ,n� and �3,5�
threshold schemes we can see that the access structure re-
mains the same. For a more general approach, links to the
flow conditions for determinism in measurement based quan-

tum computation �17� seem very useful, as we see in our
example below. We leave this to later work and for now
concentrate on these two examples.

In the �n ,n� case the initial state prepared by the dealer is
the same as that for the key distilation protocol, shown in
Fig. 7�a�. After the teleportation steps QQ2 and QQ3, the
players share the state

�Sg�1,. . .,n = ��g�0¯0��1,. . .,n + ��g�10¯0��1,. . .,n, �4.15�

encoding the quantum secret. The fact that any set of n−1
players has no dependency on the secret follows from the
dependency property from Sec. III B applied to the graph g,
which, as in the case of the key distribution protocol, means
the states �g�0��� and �g�10¯0�� appear locally identical to any
such set, and thus implies they cannot read the secret.

On the other hand by teleportation the secret state is co-
herently shared by all players, hence if acting all together,
the players can access the secret perfectly, and can certainly
localize it to any chosen player by using quantum channels.
If restricted to LOCC, they can in fact also localize the secret
onto any player. First we consider localizing it to any player
other than player 1. We can see this explicitly if rewrite the
corresponding state �4.14� using Eq. �3.24� in the following
way:

�Sg�1,. . .,n = ��g�0¯0��1,. . .,n + ��g�10¯0��1,. . .,n

= �g�0¯0��1,. . .,n/i���0�i + ��1�i� + �g�10¯0��1,. . .,n/i���0�i

+ ��1�i�; �4.16�

thus if player 1 measures X and the remaining players except
player i measure Z, they can push the quantum state onto
player i’s qubit. To push the secret state onto player 1, it is
enough for the remaining players to measure in the Z basis
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�and of course communicate their result to player 1�, as can
be seen by rewriting the state as

�Sg�1,. . .,n = ��g�0¯0��1,. . .,n + ��g�10¯0��1,. . .,n

= �
m2�¯�mn=0

�m2 ¯ mn�2,. . .,n��� + �1 + ��− �1�

+ �
m2�¯�mn=1

�m2 ¯ mn�2,. . .,n���− �1 + �� + �1� ,

�4.17�

where mi is a bit and �m2¯mn�2,. . .,n is a product of Pauli Z
eigenstates.

We can see this another way, which may give hints of a
possible way to check accessibility in more general cases.
This starts from noting that Eq. �4.14� as having arisen from
another scheme, not teleportation, is analogous to the error
correcting schemes in �18�, uniting these approaches. To do
this the dealer entangles the secret state �S� onto vertex 1 of
the nGHZM state directly and measures it in the Z basis. By
making the appropriate correction �based on the measure-
ment outcome�, the resultant state is that of Eq. �4.14�.

Incidently, we notice that our five party scheme is the
same graph as the five-qubit code in �18�, which is perhaps
not so surprising, since sharing a threshold scheme for quan-
tum secrets is necessarily an error correcting scheme �though
not the other way a round� as pointed out in �4,14�. Indeed
this example appears in �4,14� �although established in a dif-
ferent way�.

Viewing Eq. �4.15� as having arisen in this way, we can
imagine the state of the secret qubit entangled to the nGHZM
state as the start of a measurement based computation with
the secret qubit as the input. We then choose any one player
as an output and application of the flow conditions �17,19�
gives an explicit way to direct the secret onto any one of the
players’ qubits by LOCC.

We thus have the following proposition.
Proposition 7. The direct �n ,n� scheme can be extended

as above to give quantum secret sharing schemes with the
same secrecy access structure. The secret can be localised
onto any one of the authorized players by LOCC.

In the �3,5� threshold case, the dealer starts with the state
of Fig. 8�a�. After teleportation steps �ii� and �iii� in the pro-
tocol, the players have the state

�Sg�12345 = ��g�00000��12345 + ��g�11111��12345. �4.18�

Again, the dependency property applied to the states �g�00000��
and �g�11111�� for the pentagon graph as in Fig. 6 imply that to
any two players these states are identical, hence they have no
dependency on the quantum secret, and so cannot access it.

The ability for three users to access the secret qubit can be
seen to follow from the fact that it is also a two-qubit erasure
error correcting scheme �18�. In general this is not LOCC.
We can see how this works explicitly writing the state

�Sg�12345 = ��g�00000��12345 + ��g�11111��12345

= 1/4��B00�13��� + �2 + ��− �2��B01�45

+ �B01�13��� + �2 − ��− �2��B10�45 + �B10�13���− �2

− �� + �2��B00�45 + �B11�13���− �2 + �� + �2��B11�45� ,

�4.19�

where �� �=1 /	2��0�� �1��. It is clear that if either pair,
�v1 ,v3� or �v4 ,v5�, measure in the Bell basis, they can local-
ize the quantum secret onto player 2’s qubit by telling her the
result. After the Bell measurements, player 2’s qubit will be
projected into one of four possible states as seen above,
which can be brought to �S�2 by the appropriate correction
operation depending on the result �this will consist of a local
Hadamard and possibly local X and Z flips�. Similarly any
set of three players can localize the secret onto one of their
number by two getting together and performing a Bell mea-
sure. This leads to the following proposition.

Proposition 8. The direct �3, 5� scheme can be extended
as above to give quantum secret sharing schemes with the
same secrecy access structure. The secret can be localized
onto one of the players in an authorized set using quantum
channels.

In �4� it is shown that there can exist no �3,4� QSS scheme
using pure states—hence it is clear there is no way to extend
the �3, 4� scheme in this way. This intriguingly coincides
with the fact that we cannot see how to do a CQ for �3, 4�
and may indicate a more fundamental connection.

V. EMBEDDED PROTOCOLS

We now present an example of an embedded protocol.
That is, we embed the �n ,n� protocols of the previous section
into a larger graph, taking advantage of the fact that graph
states are extremely useful for various quantum-information
tasks. The setting we imagine is where a quantum network is
envisaged comprising of graph states, and we would like to
do secret sharing on some subnetwork of the total network.
This may occur as a protocol in its own right or as part of a
more involved protocol, possibly involving error correction
and or MBQC.

We do this via a simple extension of n-party GHZ states,
which we call a n-GHZ tree state, depicted in Fig. 9.

Definition 8. A n-GHZ tree state is any state where there
is an n GHZM state embedded inside another graph, attached
by any of the vertices except v1.

We now imagine a situation where the dealer hands out
this state to be shared by the players �v1 , . . . ,vn� and the rest
of the network, in this case the neighors N2 , . . . ,Nn �which

FIG. 9. �Color online� n-GHZ tree state. Ni represents the
neighbors of qubit vi �minus v1�, and they are allowed to overlap.
This state gives �n ,n� secret sharing schemes for qubits 1 to n �see
propositions 9–11�.
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may overlap�. We then ask, can we still use this state to do
the secret sharing protocols of the last three sections. We find
that we can, starting with the following proposition.

Proposition 9. For all n-GHZ trees �see Fig. 9�, the bit
S= l12 forms an embedded �n ,n� direct CC classical secret
sharing scheme �within the subgroup of players �v1 , . . . ,vn��.
This is true independent of the form of all possible sets of
neighbors Ni �including overlapping�.

The protocol would run as in the case of Sec. IV A, with
the secret being encoded onto the bit S= l12 on the n-GHZ
tree. The validity of the proposition above can be seen since
l12 can, and only can, be read by all n of the subset of
�1, . . . ,n� players together. This requirement is implied by
simple application of the dependency and access properties,
which are unaffected by the addition of neighbors in this
case. However, there is a subtlety introduced if the neighbors
of one of the players may help.

For example, if a neighbor of player 2, say v j �N2, who,
for simplicity’s sake we say only neighbors 2 and no one
else, the secret S= l12 can be read by the players

�v1,v3,v4, . . ,vn,v j�

since they can measure K1
�Kj�N2

� �as it is nontrivial only on
those players’ systems�. Thus they can find l12 � lj2=S with-
out player 2. However, when not allowing for the help of the
neighbors, and only allowing players in the set �v1 , . . . ,vn� to
act together, all n must cooperate to find the secret, hence it
acts as an �n ,n� threshold scheme.

This would not work for the square �3, 4� or �3, 5�
schemes since the secret is shared amongst all the players, so
attaching neighbors to any would spread it out and hence it
could not be found without measuring the neighbors also, by
P2.

This embedded structure can also be extended to key dis-
tribution and quantum secret sharing. As in the �n ,n� key
distribution case the total state is made by taking the CC case
and attaching a vertex to player 1, which is kept by the
dealer. In the case of the n-GHZ tree state, the total state of
dealer, players, and neighbors is given by

�G�0���D,1,. . .,n,N2¯Nn

= ��0�D�g�0¯0��1,. . .,nN2¯Nn
+ �1�D�g�10¯0��1,. . .,nN2¯Nn

�

=
ei�/4

	2
��0��D�g�0¯0�� �1,. . .,nN2¯Nn

− i�1��D�g�10¯0�� �1,. . .,nN2¯Nn
� . �5.1�

The protocol would then run as in Sec. IV B, using this
state. As explained above, if players �v1 , . . . ,vn� work to-
gether, they can discriminate

�g�0¯0�
� �� �1,. . .,nN2¯Nn

and

�g�10¯0�
� �� �1,. . .,nN2¯Nn

because they can measure k1
�,� as they only have support on

�v1 , . . . ,vn�. Hence they can access the key. With the dealer

and the players these measurements correspond to measuring
stabilizers K1

� and KD
�K1

� of the total graph �that of Fig. 9
with the dealer attached to vertex 1�. Again, from the depen-
dency arguments P1 any subset of �v1 , . . . ,vn� cannot, though
again, the same subtleties hold regarding the help of the
neighbors.

With regards to security against an eavesdropper, unfortu-
nately we cannot check all stabilizers in here as we did in the
�n ,n� case, since the remaining stabilizers have support out-
side qubits �1, . . . ,n�. However, we can check that it remains
in a secure subspace, as for the �3, 5� case in Sec. IV B.

Let h denote the subgraph induced by removing all neigh-
boring sets �Ni� from Fig. 9 plus a dealer vertex attached to
v1 �giving the graph as in Fig. 7�a��, and �h���2

� the associated
encoded graph state. If the expectation values of K1

� and
KD

�K1
� are both +1 �as can be checked by sacrificing part of

the sifted key�, then we can be sure that the state of the
dealer and players �v1 . . .vn� are in the subspace

��h00	�
�2
�2,. . .,n��D1,. . .,n� .

That is, in the subspace such that the first two entries of the
bit string are zero, and the remaining n−1 elements are free,
which we denote with bit string

	� �2
�2,. . .,n�

�i.e., the subspace spanned by all such bit strings�.
If we now call p the graph after also removing the deal-

er’s qubit �i.e., the nGHZM graph�, the complete state of the
dealer, players �v1 , . . . ,vn�, and any environment E �includ-
ing the neighbors and possible eavesdropper� can therefore
be written as

�
�ED1,. . .,n = 2−1/2 �
	� �2

�2,. . .,n�
�	�

�2
�2,. . .,n���0�D�p0	�

�2
�2,. . .,n��1,. . .,n

+ �1�D�p1	�
�2
�2,. . .,n��1, . . . ,n��	� �2

�2,. . .,n��E, �5.2�

where the summation is over the bit string 	� �2
�2,. . .,n�. Tracing

out all the players, we have that the state of the dealer and
the environment is �E � 1 /2D; thus we see that the mutual
information between the environment and the dealer is zero.

Hence on the condition that the value of K1
� and KD

�K1
�

are both found to be +1, any environment, including a pos-
sible eavesdropper, can have no information about the key. If
the measurement results do not satisfy this condition, they
should be discarded as in Sec. IV B. Thus we thus have the
following proposition.

Proposition 10. For all n-GHZ trees of n qubits �see Fig.
9�, the bit l1 forms an embedded �n ,n� key distribution QC
secret sharing scheme �within the subgroup of players
�v1 , . . . ,vn��. This is true independent of the form of all pos-
sible sets of neighbors Ni �including overlapping�.

We can also see how to extend this embedded protocol to
sharing a quantum secret. As in Sec. IV C, the dealer uses the
state of the key distillation protocol, in this case Eq. �5.1�, to
teleport the secret qubit onto the player’s qubits giving the
encoded state dealt to the players and their neighbors,
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�Sg�1,. . .,n,N2¯Nn

= ��g�0¯0��1,. . .,n,N2,. . .,nn
+ ��g�10¯0��1,. . .,n,N2,. . .,nn

= �
m2�¯�mn=0

�m2 ¯ mn�2,. . .,n�Nm� �2
�N2¯Nn

��� + �1

+ ��− �1� + �
m2�¯�mn=1

�m2 ¯ mn�2,. . .,n�Nm� �2
�N2¯Nn

����− �1 + �� + �1� , �5.3�

with N the subgraph of the set �N2¯Nn�, �Nm� �2
�N2¯Nn

the
associated encoded graph state, and bit string m� �2 is a func-
tion of bit values �m2 , . . . ,mn�.

From this it is clear that if players �v2 , . . . ,vn� measure in
the Z basis, they project the state of player 1’s qubit onto
either ��+ �1+��−�1 or ��−�1+��+ �1 if the total parity is odd
or even, respectively. These can be taken to the original se-
cret state �S�1 by the action of correction operator U1

even

=H1 for even parity, and U1
odd=H1Z1 for odd parity. Again

the dependency rules used in the CC mean that any less than
a complete set in the set of players v1 , . . . ,vn cannot access
the secret. Thus we have the following proposition.

Proposition 11. For all n-GHZ trees of n qubits �see Fig.
9�, the bit l1 forms an embedded �n ,n� QQ quantum secret
sharing scheme �within the subgroup of players �v1 , . . . ,vn��.
This is true independent of the form of all possible sets of
neighbors Ni �including overlapping�.

The QQ is perhaps the most useful of the embedded pro-
tocols as it could readily be seen as part of an extended
network, for example, the input to our protocol could occur
as an output of some previous MBQC, and the output of our
protocol could be the input to a subsequent computation.

VI. CONCLUSIONS

We have seen that graph states are a good resource giving
a unified approach to secret sharing of both quantum and
classical secrets, in the presence of an eavesdropper. The
protocols presented can be clearly understood from simple
properties of classical information on graph states we have
showed. In particular this gives a way to generate protocols
of addressing the second situation, that of sharing a quantum
secret in the presence of an eavesdropper, beyond �n ,n�. Ex-
plicilty we have presented the case of a �3, 5� secret sharing
protocol for such a setting. Further we have introduced so-
called embedded secret sharing protocols as a first step to
integrated quantum networks.

A natural question to ask next is how far can these ideas
be pushed and which �k ,n� can be covered. This then be-
comes a graph theoretic relabeling problem—where the la-
bels are the secrets �more precisely the encoding of the se-
crets�, and their access given by our rules. We expect that
this way will result in many cases. However, we know that
directly not all �k ,n� cases can be solved. We can see, for
example, that it is impossible to do a �3, 2� direct secret
sharing scheme with a graph state using our protocol. This
can be seen easily, first by noticing that demanding single
individuals get no information means all three must be en-
tangled. Then we have two options, either the 3-GHZM, or

the fully connected graph. In both cases it is easy to see that
there is no way to choose an encoding of secret S onto the �i2
such that all three pairings depend on it simultaneously �thus
they cannot all access it�. The application of the graphical
properties presented to this problem is an ongoing area of
investigation.

We can also ask is it possible to extend the protocols in
this work somehow to cover these cases which currently
cause difficulty. One such extension may be possible via the
connection between the sharing of quantum and classical se-
crets we have seen in our protocols. In �4� solutions to the
general �k ,n� sharing of a quantum secret were provided via
connections made to error correction.

Although we arrived at our QQ from a different approach,
not related to error correction, they can be thought of as
stabilizer codes, so relating to those of �4�, since all stabilizer
codes can be thought of as graph codes �18�. A benefit of our
approach is that we have been able to use intuitive graphical
ideas to prove which players can access which information.
Perhaps extending to higher dimensional graph states, we
would be able to recapture the results of �4� for the most
general case seems likely to be possible for sharing quantum
secrets. The next step would be to translate this to the key
distribution protocol, which would be possible via the con-
nections shown here.

As we have mentioned, there is also the outstanding ques-
tions of security for these protocols. Here we have seen se-
curity against certain classes of attacks, as in HBB �2�. The
question of security for secret sharing is a large problem of
current interest �20–22�. Another problem raised was that of
noisy channels, as it stands our protocol is not resilient to
noise. This was also a problem for HBB, and it seems likely
that the same approach used in �10� can be used to address
both these problems, that is via connection with entangle-
ment distillation. To this end the wealth of results on en-
tanglement distillation for graph states �6� will help push this
direction further.

We hope that this work will enable the integration of dif-
ferent quantum-information protocols, for example, secret
computing, perhaps the most interesting property of these
schemes is their integratability. As quantum technologies be-
come more accessible in the real world, it is likely that in a
real network setting we would like to do combinations of
tasks, without having to change and swap hardware. The
embedded protocols here are a first step towards this goal,
and we hope these ideas can pave the way for more inte-
grated schemes.
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