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Entanglement speeds up evolution of a pure bipartite spin state, in line with the time-energy uncertainty.
However, if the state is mixed this is not necessarily the case. We provide a counterexample and point to other
factors affecting evolution in mixed states, including classical correlations and entropy.
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I. INTRODUCTION

The speed with which a quantum system evolves from
one state to the next is a subject of both theoretical and
practical interest. The question sheds light on the nature of
time and of quantum evolution in general �1�. Practical ap-
plications are evident in the design of a possible quantum
computer, in quantum metrology including the establishment
of precise frequency standards �2�, and in optical and atomic
clocks �3�. Some applications will require as fast a period as
possible, while others require maximal distinguishability be-
tween states. Since practical applications nearly always in-
volve some loss of purity, it is also necessary to consider the
evolution of mixed states.

The speed of evolution of a quantum system has been
shown to be inversely proportional to energy or energy
spread �E or �E� �4�. It has also been shown that entangle-
ment speeds up evolution �5�. We find that with mixed states
these are not always the case. Mixed states with identical �E
show completely different time evolution, and there is no
clear relationship to the entanglement. In addition to en-
tanglement, factors related to the mixing contribute.

We look at a specific model of a bipartite two-level sys-
tem and examine factors affecting time evolution, first when
the system is in a pure state, and then when it is mixed. With

a pure state the system behaves as expected. However, with
mixed states we find surprising behavior. We look at three
states that mix a maximally entangled state and separable
states in different representative ways �6�. One is a Werner
state, which mixes a maximally entangled state with a maxi-
mally mixed state: �Wer= ��1−x� /4�Id+x��+���+� where
��+�= �1 /�2���10�+ �01��. The second, which we name
�Gis �7�, mixes �+ with a mixture of product states: �Gis

= ��1−x� /2���00��00�+ �11��11��+x��+���+�. This will enable
us to inspect the role of classical correlations of the product
states. The third state is a mixture of �+ with a maximally
polarized state with no correlations at all: �3= �1−x�
�00��00�+x��+���+�. �Wer is entangled for x�

1
3 , �Gis for

x�
1
2 , and �3 for all x�0.

Our model has two physically separated spins each in a
magnetic field, with the field for each spin orthogonal to the
spin axis, so that the evolution operator contains �x for each
spin. Units are dimensionless with �=1. Figure 1 shows the
time evolution for these three classes of mixed state for small
t. The graphs show the speed of decay from the original state
as a function of x. For all three classes of states, taking �E�
=tr��H� we find �E=2�1+x�. However we see in Fig. 1 that
although the states have the same �E, their time evolution is
different.
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FIG. 1. �Color online� Time
evolution for the three matrices
�decay coefficient as function of
mixing�.
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As will be discussed in Sec. III, the change in a state is
proportional to exp�−t2 /�2�, and Fig. 1 shows �2 as a func-
tion of x, so that the lower the graph, the faster the rate of
decay. With the Werner state entanglement increases with x,
and indeed the state is stationary at the identity and the speed
of evolution increases with increasing x. However, the center
graph of the Gisin state shows increasing speed both for
increasing x �increasing entanglement�, and also for decreas-
ing x. For the Gisin state, decreasing x means increasing
classical correlations so that these too may affect the speed.
The third matrix gives the most surprising graph. Entangle-
ment, as measured by the concurrence �8�, rises linearly with
x, but the graph of the speed of decay is clearly not a mono-
tonic function of the entanglement, and for x	0.38 speed
increases as entanglement decreases. Thus we see from Fig.
1 that the short-time evolution reveals the essential differ-
ence between mixed and pure states: with mixed states the
speed is no longer inversely proportional to �E, and it is not
necessarily a monotonic function of entanglement.

Therefore other factors are at work as well. These are
connected to the mixing and include classical correlations
and entropy. In this paper we provide an analysis of their
contribution to evolution. The paper is organized as follows.
First we give details of the model and its evolution when the
system is in a pure state. Then we consider mixed states. In
that case it becomes necessary to inspect different aspects of
evolution separately: evolution for a short time �as discussed
above�, period of evolution, and maximal distance from the
original state. We then separate the effect of classical corre-
lations by looking at the period and distance of states which
are mixed but not entangled. We see that classical correla-
tions too can speed up the period of evolution, but at the
expense of reducing maximal distance. This can be useful in
applications where the change itself is important rather than
the distance between states. Finally, we show through nu-
merical means that all correlations speed up evolution while
entropy slows it down.

II. DETAILS OF THE MODEL

We take a bipartite two-level system, modeled as two
spins in magnetic fields. The spins are physically separated
so that a local operation on one will not locally affect the
other. The Hamiltonian for the total system is H=Ha+Hb,

where Hi=�� i · n̂i; i refers to the first or second spin and ni
ˆ

refers to the direction of the magnetic field at the location of
that spin.

For a pure state it is easily shown that the speed of evo-
lution is a monotonically increasing function of entangle-
ment. Taking a state with arbitrary entanglement, �
=
�↑ ↑ �+��↓ ↓ �, where quantization is along the z axis and
entanglement is maximal for 
=�=1 /�2, the state will reach
orthogonality when ���U���=0, where U=e−i��� · n̂�a+��� · n̂�b

= ��cos t�Id− i �sin t��� · n̂�a��cos t�Id− i �sin t��� · n̂�b. Equating
the real and imaginary parts separately to zero, we find the
time to reach an orthogonal state,

t� = arccot ����� a · n̂a���� b · n̂b�� . �1�

Plugging in, for example, �x on both spins, t�=� /2 for a
product state, where either 
 or � is zero. The time decreases

continuously with increasing entanglement, and for a maxi-
mally entangled state reaches a minimum at � /4.

The magnet angles that will give maximal speed are ob-
tained by minimizing the function for time, and by taking
into account constraints from the imaginary part of the equa-
tion. It turns out that optimal angles for product states must
have one of the magnets orthogonal to its spin axis, while for
maximally entangled states the optimum depends solely on
the relationship between the two magnets. For example, for
the anticorrelated singlet optimal magnet angles are antilin-
ear, whereas for a correlated entangled state �1 /�2���11�
+ �00�� we have 
a=
b, �=−�b. Each of the four Bell states
has a different set of constraints for optimal angles, so that
we have an external physical constraint reflecting the inner
structure of the state.

III. MIXED STATES: SHORT-TERM EVOLUTION

Time evolution in this model has �at least� three aspects:
evolution for a short time, period, and maximal distance
from the original state. With pure states this distinction does
not add information, but in the case of mixed states each of
the three aspects gives different results.

We begin with evolution for a short time, which we call
the kickoff. For pure states

	��0���t��	2 = 	��0�e−�i/��Ht��0�	2 
 �1 −
it

�
�H� −

t2

2�2 �H2��2

= 1 −
t2

�2 ��H2� − �H�2� � e−�t2/�2��E2
�2�

so that for a short time the decay coefficient is �E2 /�2 and
the speed of evolution is indeed proportional to the energy
spread.

For mixed states we take a direct analog of fidelity in the
density matrix formalism:

F„��t = 0�,��t�… =
tr���t = 0���t��

tr���t = 0�2�
=

tr��0U�0U†�
tr��0�2 . �3�

The denominator is for normalization. The transparent anal-
ogy to fidelity for pure states makes this a convenient mea-
sure: for a pure state where �= ������ this reduces to

��������U������U†���
�����

, �4�

which is just the square of the fidelity. Expanding F as we
did in Eq. �2� by taking U
1− iHt, we obtain

tr��0U�0U†�
tr��0

2�
= 1 − t2 tr���HH� − tr��H�H�

tr�2 
 e−t2/�2
, �5�

so that �taking �=1� 1 /�2 is analogous to �E2 for pure states.
Therefore we can examine the relationship between energy
spread and time in the case of density matrices as well. Fig-
ure 1 shows �2 as a function of x. Though �E2 is identical for
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all three classes of states: �Wer, �Gis, and �3, they have clearly
different behavior.1

This behavior is also seen with the more conventional
trace distance measure. The trace distance is defined as
D�� ,��
 1

2 tr��−�� �9�. We take �=��t=0� and �=��t�
=U�U†. For pure states this gives the same result as in Sec.
II: the more entangled the initial state, the faster it evolves to
an orthogonal state. The trace distance for a pure general
entangled state ��ent�= �cos ���10�− �sin ���01� is D�t�
= �sin �2�� sin �2t��. So at t=� /4 the distance may equal
unity �orthogonal state�, but only for maximal entanglement
where sin �=1 /�2; for lower entanglement, orthogonality is
reached at a later time. For mixed states the graph of the
trace distance for small t shows the same surprising results
for our three matrices as that shown in Fig. 1. For example,
with �3, for a certain range of values of x, states that are
more entangled evolve more slowly than states that are less
entangled �see Fig. 2�.

As before, we see that contrary to expectation, there is no
clear indication that the speed increases as a result of increas-
ing entanglement; or rather, it increases with increasing en-
tanglement but also in other cases. Entanglement may be
affecting the speed but there must be another factor or fac-
tors as well.2 The question is what these factors are, aside
from energy and energy spread. The additional factors must

be related to the mixing, and include classical correlations
and entropy.

IV. NONENTANGLED MIXED STATES

The other two aspects of time evolution are helpful in
unveiling additional factors, and it is important to distinguish
between them. Time evolution in this model is periodic. We
therefore look at two different aspects of period. First is the
length of a half cycle, that is, the time needed to reach an
orthogonal or maximally distant state, which for simplicity
we will refer to as “period.” The second aspect of interest is
the maximal achievable distance. Both of these are seen with
the trace distance measure, and optimizing for each gives
different results.

The problem with evolution of mixed states is to separate
out the different effects of mixing and of classical and quan-
tum correlations. In order to isolate the effect of classical
factors we first examine a mixed state with no quantum cor-
relations at all. In this section we treat a specific toy model,
in order to clarify the different effects of period and distance.
In the next section we will deal with separable states in gen-
eral, and attempt to isolate the factors of correlation and
entropy.

Quantum correlations were expressed in Sec. II using 

and �, which went from 0 �or 1� for a product state to 1 /�2
for maximal entanglement. We now look at a classical
analogy in a nonentangled density matrix, �=a�11��11�
+ �1−a��00��00�, where for a= 1

2 we call the state maximally
correlated in analogy to the quantum formalism. This is not a
standard measure of correlations; that would be better ex-
pressed with mutual information, and we do so in Sec. V.
The measure in this section attempts to look only at the
extent of the departure from a pure product state to a mixed
correlated state, and its effect on time evolution.

1We also graphed �2 for the three matrices with angles optimized
at each point of x; the graphs are less dramatic but display the same
general shape and slopes.

2Giovanetti et al. showed that the evolution is inversely propor-
tional to �E, by showing that the time to reach a given fidelity is
T�F�=��F��� /2�E, ��F�= �2 /��arccos�F� �10�. We graphed
�1 /���x� for our three matrices, taking F as in Eq. �3� and an arbi-
trary time t=6. This graph is identical to our graph for �2�x� �Fig.
1�. So our decay coefficient is proportional to Giovanetti’s et al.
time bound, and is a function of the fidelity.
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FIG. 2. �Color online� Trace
distance for partially entangled
mixed state �3. The concurrence
grows linearly with x. Top is for
time until � /4 and bottom shows
a full cycle. The lowest curve in
both graphs is more entangled
than the second lowest.
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We look at the time evolution from two different aspects.
First we optimize for period, choosing magnet angles that
give the fastest possible period regardless of the distance
achieved. Afterward we optimize for trace distance rather
than period. In the first case the mixing leads to speedup and
reduces distance. In the second it causes slowdown but even-
tually all states reach orthogonality.

Figure 3 shows a graph of the trace distance as a function
of time for representative values of a, optimized for period.
The fastest period �� /4� but with the smallest achievable
distance �1 /2� are attained when the state is maximally
mixed, a=1 /2. For a pure product state, a=1 and a=0, the
period is twice as slow �� /2� but the states reach orthogo-
nality with a distance of 1. The graph shows that as the
mixing approaches the product state, the point of maximal
distance comes later and the distance grows. Thus we see

that under the appropriate operators increasing mixing re-
duces the trace distance, but the distance reaches maximum
more quickly.

If instead we optimize angles for the largest attainable
trace distance �which is at the expense of speed� we see in
Fig. 4 that all states achieve optimal distance, but the greater
the mixing �the farther from a pure product state�, the slower
the kickoff and general rate of evolution. This is probably the
reason that when optimized for trace distance, entangled
mixed states do not necessarily achieve the optimal distance
so quickly: the mixing attentuates the result. For practical
purposes it is the first case, with optimization for period, that
is interesting: in applications where the speed of change is
important rather than its extent, increasing mixing of classi-
cally correlated states may improve the result. It should be
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noted that this applies only to a bipartite state. For larger
systems, further investigation is necessary.

V. MUTUAL INFORMATION AND ENTROPY

In the previous section we looked at the effect of mixing
as a whole on a toy model, and distinguished between the
aspects of period and distance. We now deal with the prob-
lem on a more general basis, and attempt to separate out the
factors of correlations and of entropy. A measure of the total
correlations between two subsystems is mutual information,
defined in terms of entropy: I��AB�=S��A�+S��B�−S��AB�.
This is actually the relative entropy between �AB and �A
� �B and so it is a measure of correlations between the sub-
systems �11�. Groisman et al. �12� have shown that mutual
information may be seen as describing both classical and
quantum correlations. States with maximal classical correla-
tions have I=1, and entangled states include classical as well
as quantum correlations and have higher I, up to 2 for maxi-
mally entangled states. For separable states, a numerical
search went through a total of 36�106 separable states.
Nearly all of these separable states are mixed �pure states
constitute only the surface of the Bloch sphere�. For these
states, we show in Fig. 5 the difference in distance, Ddif
=D�t=� /4�−D�t=� /2�, as a function of mutual informa-
tion, where for each state we optimized angles to give the
highest value of Ddif. This optimizes for fastest period, that
is, reaching the maximal trace distance as quickly as pos-
sible. Taking the distance from 0 to � /4 would be deceptive,
because we have seen that one state may have a higher dis-
tance at � /4 than another, but then continue to a maximum
at, for example, � /3, so that it actually reaches its maximum
later, while the first state reached its maximum at � /4. We
could have optimized for kickoff or maximal distance rather
than period, of course; it was necessary to choose one spe-
cific aspect of evolution, and this proved the least ambiguous
of the three. In the previous section, when optimizing for

period, we found a specific reference point that proves use-
ful: a distance of 1 /2 for t=� /4. Indeed, we will see with a
numerical search that no unentangled state reaches a greater
distance at this point.

We found that the fastest evolving states have a half cycle
of � /4 and so this function Ddif shows the maximal distance
obtained at the fastest cycle. As with the toy model, here too
the maximal trace distance for this period is found to be 1 /2.
Therefore if correlations were the sole cause we would ex-
pect all optimal states that have a distance of 1 /2 to have
mutual information of 1, that is, maximal total correlations
for a separable state. In fact, the majority of these states
do—but not all of them. Some states that do not have maxi-
mal correlations still achieve the optimum trace distance.
Therefore trace distance is not a monotonic function of the
total correlations, and some other factor is in effect as well.

We therefore used the results of the same search to graph
trace distance as a function of von Neumann entropy. The
result is similar to the previous section: most states with the
optimal trace distance have the minimal entropy S=1, as for
a maximally correlated state—but again, not all of them.
Some states with higher entropy also achieve the maximum
trace distance, as shown in Fig. 6. Yet although the same data
were used for both—the same states each with its trace
distance—the graphs are not exactly inverse images of each
other. It appears that in nonentangled mixed states both cor-
relations and entropy affect time evolution, and further work
is necessary to clarify the effect.

VI. ENTANGLED MIXED STATES

We now turn to entangled states. It would be desirable to
isolate the effect of entanglement on evolution from the other
factors in all mixed states. At present we can show this for
the three matrices mentioned above, as follows:

When the magnet angles are ẑ, −ẑ, as shown in Fig. 7, all
three matrices have the same graph, while the product mix-
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ture does not evolve at all. This is because product states
�e.g., �11� �11�� are invariant at these angles, so that in this
column we are looking only at the effect of the amount of
entanglement on the trace distance and have neutralized the
effect of mixing product states. In this case all three matrices
give exactly the same analytical function for the trace dis-
tance D= �x sin�2t�� and thus the double cycle is preserved
for all x, that is, for any degree of entanglement in the mix-
ture. In addition, x attenuates the maximum distance. It is
notable that the three matrices have the identical analytical
trace distance function, even though the third is always en-
tangled and the others are not. In addition, the general shape
is the same whether the matrix is entangled or not �e.g., x
	

1
3 and x�

1
3 for Werner states�. Entanglement clearly

speeds up evolution, but the increase is smoothly affected by

something else as well and evidently this is not the mixing
with product states which has now been neutralized. It must
be noted that entangled states possess classical correlations
as well. Therefore evolution in this case may be affected both
by quantum and by classical correlations. This would ac-
count for the smoothness of the graphs.

However, in addition all three matrices have the same
energy spread �E so the relation between energy spread and
evolution seems here to be in force. This shows that it is the
mixing with product states that distorted the relationship, and
when they are neutralized it returns.

VII. CONCLUSIONS

We found that the speed of evolution in mixed states dif-
fers from that in pure states in that it is influenced not only
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by entanglement �which reflects the amount of energy
spread� and by external constraints �magnet angle in this
model�, but also by factors due to the mixing. For the three
matrices, the accepted �E�t relationship is preserved only if
mixing with product states is neutralized. Mixing introduces
classical correlations and entropy, both of which affect evo-
lution. Neither of them alone can account for it, but the re-
lationship between them is not yet clear. This may be be-
cause the measure of mutual information includes quantum
correlations as well as classical, and the two do not neces-
sarily have the same effect �e.g., maximally mixed classical
correlations decrease distance with increased period, quan-
tum correlations do not�. Further work might include a mea-
sure which excludes quantum correlations and then a func-
tional relationship might be found between the effect of
classical correlations and of entropy.

The period can be speeded up by maximally mixed clas-
sical correlation, but this reduces the trace distance. When
optimized for maximal distance rather than period, such cor-
relations attenuate the possible trace distance and slow the
evolution down. In any case it is necessary to clarify which
aspect of time evolution—period or maximal distance—is

relevant to the discussion, as optimization for either gives
different results.

In sum, time evolution in mixed states appears to be af-
fected by entanglement, classical correlations, entropy, and
external constraints. We have attempted to point out the vari-
ous effects of these factors. These conclusions are a result of
numerical methods and of analytic calculations for specific
cases. Future work should include an attempt to reach a gen-
eral analytic expression for the relative contributions of clas-
sical and quantum correlations as well as entropy to the
speed of evolution.
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