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The PT-symmetric �PTS� quantum brachistochrone problem is re-analyzed as a quantum system consisting
of a non-Hermitian PTS component and a purely Hermitian component simultaneously. Interpreting this spe-
cific setup as a subsystem of a larger Hermitian system, we find nonunitary operator equivalence classes
�conjugacy classes� as natural ingredients which contain at least one Dirac-Hermitian representative. With the
help of a geometric analysis the compatibility of the vanishing passage time solution of a PTS brachistochrone
with the Anandan-Aharonov lower bound for passage times of Hermitian brachistochrones is demonstrated.
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I. INTRODUCTION

Non-Hermitian PT-symmetric quantum mechanical
�PTQM� models �1,2� with exact PT symmetry �PTS� and
diagonalizable spectral decomposition are known to be
equivalent to Hermitian quantum mechanical models �3�.
Under the corresponding equivalence transformations non-
Hermitian Hamiltonians with differential expressions of local
type are in general mapped into strongly nonlocal Hermitian
Hamiltonians �4,5�, whereas non-Hermitian matrix Hamilto-
nians are by conjugation mapped into Hermitian matrix
Hamiltonians. These equivalence relations led to the natural
conclusion �5� that PTQM models with exact PTS are a kind
of economical writing of possibly complicated Hermitian
QM models—and known properties of Hermitian QM will
straightforwardly extend to PTQM in its exact symmetry
sector.

In the recent consideration �6� a PTS quantum brachisto-
chrone model has been proposed which indicates on a viola-
tion of the strict one-to-one equivalence PTQM⇔standard
QM. The model is of 2�2 matrix type, mathematically eas-
ily tractable and therefore it may serve as a toy model for
physical concepts. Here we will show that the violation of
the one-to-one equivalence follows from the fact that the
PT-symmetric brachistochrone model is built from Hermit-
ian operators and PT-symmetric �and therefore non-
Hermitian� operators simultaneously. The model is not re-
ducible to a setup with purely Hermitian operators. Rather
the Hermiticity of one component of the model will be con-
nected with the non-Hermiticity of another component, and
vice versa. The apparent physical inconsistency can be re-
solved by considering the model as an effective subsystem of
a larger Hermitian system going in this way beyond the one-
to-one equivalence assumed, e.g., in �7�.

Moreover, we will find a hyperbolic structure underlying
the PT-symmetric model connected with the complex or-
thogonal group O�2,C� and indicating on certain structural
analogies of the PT-symmetric brachistochrone with Lorentz

boosted spinor systems. In this way it will appear natural to
reconsider PT-symmetric models connected by “boosts” as
model families and corresponding operators and observables
as elements of O�2,C� conjugacy classes. In rough analogy
to special relativity we may introduce different reference
frames. It turns out that for PT-symmetric models of the type
of �6� the conjugacy classes contain at least one Dirac-
Hermitian operator. We find that the probabilistic content of
models belonging to the same conjugacy class allows for a
natural interpretation as frame independence.

The basic subject of the present work is the PTQM bra-
chistochrone problem of �6�. In Sec. II, we analyze the
equivalence relations between the representations of the
PT-symmetric system in terms of non-Hermitian and Her-
mitian Hamiltonian. Re-parametrizing the mapping operator
between PT-symmetric and Hermitian Hamiltonian we show
that it can be re-interpreted as a boost operator of a two-
component spinor setup. Using the close structural analogy
to representations of relativistic systems in different refer-
ence frames and the representation invariance of the proba-
bilistic content of the model we introduce operator equiva-
lence classes. In Sec. III the passage time and probability
content of the brachistochrone are analyzed in detail. The
underlying geometrical structures of the brachistochrone
problem are discussed in Sec. IV in terms of Möbius trans-
formations and deformations of the Fubini-Study metric.
They are visualized as mapping between Bloch sphere setups
and provide an explanation of the vanishing passage time
effect as geometric mapping artifact. The results are summa-
rized in the Conclusions �Sec. V�.

II. OPERATOR EQUIVALENCE CLASSES

A. The PT-symmetric brachistochrone

Let us briefly recall the quantum brachistochrone problem
as formulated in �6�. Given an initial state ��i� and a final
state �� f� of a quantum system the problem consists of ob-
taining a PTS Hamiltonian H, �PT ,H�=0 which minimizes
the time t needed for the evolution U�t�=e−itH : ��i�� �� f�
=U�t���i�. In �6� the Hamiltonian H, the parity operator P,
and the initial and final states ��i� and �� f� were assumed as
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H = �rei� s

s re−i� �, r,s,� � R, P = �0 1

1 0
� ,

��i� = �1,0�T, �� f� = �0,1�T. �1�

The time inversion operator T is antilinear and acts in the
present model as complex conjugation. The Hamiltonian H
has eigenvalues E�=r cos����	s2−r2 sin2��� so that exact
PT symmetry with Im E�=0 and diagonalizability of H hold
for s2�r2 sin2���. Parameter configurations with �=0 corre-
spond to a purely Hermitian �real symmetric� Hamiltonian,
whereas configurations with s2=r2 sin2��� are related to the
boundary between exact and spontaneously broken PTS.
These latter configurations are characterized by coalescing
eigenvalues E+=E−=E0ªr cos��� and eigenvectors, lost di-
agonalizability of

H 
 �E0 1

0 E0
�

and correspond to exceptional points �8�. For fixed

� ª E+ − E− �2�

a Hamiltonian H was found in �6� which led to a vanishing
evolution time t=0.

B. Non-Hermitian Hamiltonian

As plausibly argued in �7�, a vanishing passage time is
impossible for a PTQM model which by an equivalence
transformation can be one-to-one mapped into a purely Her-
mitian 2�2 matrix model. The apparent contradiction be-
tween the results of �6� and those of �7� can be resolved by
noticing that the states ��i� and �� f� can be interpreted as
eigenstates of a spin-1

2 operator

�z = �1 0

0 − 1
� = �z

†

which is not PT symmetric in the representation �1� for P.
This means that the starting assumptions of �6� �only H is PT
symmetric� and �7� �all the system is PT symmetric� are
different and therefore the conclusions are different.

Moreover, the approach of �6� implicitly indicates that
physical effects beyond the 2�2 Hermitian matrix model
can be obtained from systems which comprise Hermitian and
PT-symmetric �non-Hermitian� subsystems simultaneously.
For this purpose it suffices to interpret the PT-symmetric
�non-Hermitian� components as dimensionally reduced
�down-projected� components of a larger Hermitian system.

Specifically, for the model �6� the non-Hermitian
PT-symmetric Hamiltonian H in Eq. �1� induces a nonuni-
tary evolution. This nonunitary evolution described by the
Schrödinger equation

i�t� = H� �3�

can be regarded as effective evolution in the dimensionally
reduced �down-projected� subsystem induced by the unitary
evolution of the larger closed system. Explicitly, the relation
between the down-projected and closed systems is easily

demonstrated with the help of a time-independent Hermitian

block matrix Hamiltonian Ĥ= Ĥ† of the large system and its
Schrödinger equation

i�t�̂ = Ĥ�̂ �4�

which takes the form

i�t��

�
� = � A B

B† D
���

�
� . �5�

Here � denotes the wave function components in the sub-
system living in the Hilbert space components complemen-

tary to �. For time-independent Hamiltonians H and Ĥ the
compatibility of Eqs. �3� and �4� is ensured by a constraint
on H and the matrix blocks A=A†, B, D=D† in the form of
an algebraic matrix Riccati equation

H2 − �A + BDB−1�H − BB† + BDB−1A = 0. �6�

In general, this constraint is not invariant under Hermitian
conjugation so that accordingly H is, in general, non-
Hermitian. The effect of the nonunitary evolution of the
down projection is easily understood by noticing that vectors

�̂, 	̂ orthogonal in a large �Hilbert� space Ĥ=H1 � H2

� �̂ , 	̂ remain orthogonal under unitary evolution in this
space. Their down-projected components are, in general,
nonorthogonal in the lower-dimensional subspaces

��̂�	̂�Ĥ = ��1,	1�H1
+ ��2,	2�H2

= 0,

��1,	1�H1
= − ��2,	2�H2

� 0 �7�

and evolve in these subspaces nonunitarily.
Further on, we restrict our attention to the effective down-

projected system with non-Hermitian PT-symmetric Hamil-
tonian H whose eigenvalues are purely real �sector of exact
PT symmetry�. In contrast to a Hermitian Hamiltonian the
eigenvectors of H are in general nonorthogonal in Hilbert
space and therefore H is not a von Neumann observable. In
this regard it should be noted that in modern quantum theory
the concepts of “observable” and “measurement” are under-
stood in a wider sense than in the early times of Bohr, von
Neumann, Dirac, etc. In particular, one does not associate
Hermiticity with a necessary attribute of an observable �9�
anymore. Nonorthogonal vector sets appear naturally after
measurements of observables. They are used in constructing
nonorthogonal decompositions of the identity operator, so
called positive operator valued measures �POVMs�, and pro-
vide a consistent probabilistic interpretation of the measure-
ment process �9–13�. The corresponding approach is one of
the cornerstones of quantum information and computation
theory �11–13�. von Neumann observables and their orthogo-
nal projector decompositions of the identity operator are con-
nected with repeatable measurements and provide sharp ob-
servables �13�, whereas “generalized observables” with
nonorthogonal identity decompositions are unsharp
�smeared� observables and correspond to nonrepeatable,
purely probabilistic measurements �13�.
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C. Lorentz boost analogy

Let us recall a few basic facts on the PT-symmetric
Hamiltonian H in Eq. �1�. This Hamiltonian is self-adjoint
with regard to the indefinite PT inner product PT �Ek� · �El�
�see �14�� and it is therefore self-adjoint in the Krein space
�15� �KP , �. , . �P�, KP�C2 with the indefinite metric defined
by the parity inversion P as �. , . �Pª �·�P� · �. Moreover, there
exists a Hermitian operator 
=
†�0 so that


H = H†
 �8�

and hence that H is self-adjoint �quasi-Hermitian in the sense
of �16�� in the Hilbert space �H
 , �. , . �
�, H
�C2 endowed
with 
 as positive definite metric �. , . �
ª �·�
� · � �17�. Iden-
tifying the CPT inner product �see, e.g., �2�� with this

-defined inner product one finds CPT �Ek� · �El�
= �Ek��CP�T�El�= �Ek�
�El� and hence 
T=CP. Together with
the relation 
−1=CP obtained in �18� this implies 
T=
−1.
For general N�N matrix models this means that 
 is an
element of the complex orthogonal group O�N ,C��
 �and

�SO�N ,C� in the case of det�
�=1� additionally to the
Hermiticity 
=
†.

In contrast to Hermitian Hamiltonians, the spectrum of
PT-symmetric Hamiltonians may consist of real eigenvalues
as well as of complex conjugate eigenvalue pairs. Concern-
ing the brachistochrone problem we restrict our attention to
PT-symmetric Hamiltonians with a purely real spectrum.
Such Hamiltonians H are known to be in a one-to-one
equivalence relation to Hermitian Hamiltonians h �3�,

�:H � h = �H�−1, h = h†, �9�

where due to Eq. �8� it holds that 
=�†�. Obviously, up to a
unitary transformation of h one may set �=�† so that


 = �2 �10�

and � itself is a complex orthogonal rotation as well: �
�O�N ,C�.

Let us now explicitly apply these considerations to the
brachistochrone system of �6�. For this purpose we represent
the Hamiltonian �1� as

H = a0I2 + s�i sin��� 1

1 − i sin���
� ,

sin��� ª
r

s
sin���, a0 ª r cos��� . �11�

Its bi-orthogonal non-normalized eigenvectors have the form
�8�

�E�� = c���, �Ẽ�� = d
�
* �

�
* , c�,d� � C*,

�� ª �1,− i sin��� � 	1 − sin2����T
�12�

and it holds that �Ẽ
 �E��=0 ∀�, and �Ẽ� �E��
=c�d���

T ���0 ∀�� �N+1 /2��, N�Z. The values �
= �N+1 /2�� correspond to exceptional points �EPs� of the
spectrum �8� and the eigenvectors due to ���= �� /2�
= �1, 
 i�T become isotropic �self-orthogonal� ��

T ��=0 at

these points. In �8� several arguments have been listed which
indicate on a strong similarity of these isotropic eigenvectors
and the isotropic lightlike vectors well known from special
relativity. Here, we take this analogy literally and conjecture
the ansatz sin���=v /c so that �� contains terms which dis-
appear in the light-cone limit �v � →c in the typical relativis-
tic way,

�� = �1,− i
v
c

�	1 −
v2

c2�T

. �13�

On its turn this suggests the usual reparametrization

sin��� = v/c ¬ tanh��� �14�

with �see Eqs. �2� and �11��

cosh��� =
2s

�
. �15�

From P in Eq. �1� and the operator C �see, e.g., �2�� which
encodes the dynamical mapping between the Krein-space PT
inner product and the Hilbert space CPT inner product we
find the explicit representation of the metric


 = PC =
1

cos���
� 1 − i sin���

i sin��� 1
�

= � cosh��� − i sinh���
i sinh��� cosh���

� = e��y ,

�y = �0 − i

i 0
�, det�
� = 1, 
 � SO�2,C� �16�

and with Eq. �10� the transformation ��SO�2,C� :H�h,

� = e��y /2 = � cosh��/2� − i sinh��/2�
i sinh��/2� cosh��/2�

� . �17�

Due to �†�z�=�z the transformation is pseudounitary �
�SU�1,1� as well. In terms of the � parametrization the
Hamiltonian H can be represented via Eqs. �11�, �14�, and
�15�, i.e., via �r ,s ,��� �r ,� ,��, as

H��� = a0I2 +
�

2
�i sinh��� cosh���

cosh��� − i sinh���
� ,

a0 = r cos��� =	r2 −
�2

4
sinh2��� . �18�

Its Hermitian equivalent takes the form

h = �H�−1 = a0I2 +
�

2
�x. �19�

The transformation invariant energy offset a0I2 produces a
general phase factor of the wave function and, for tuned r
= �

2 cosh���, takes the �-independent value a0=� /2. The dy-
namically relevant nontrivial matrix terms of the Hamilto-
nians H and h show a certain structural similarity with the
chiral components of the Dirac equation in its Weyl repre-
sentation �19�,
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DW� 
 � − m p0 + � · p

p0 − � · p − m
��	R�p�

	L�p�
� = 0, �20�

	R,L�p� ª e��·�/2	R,L�0� . �21�

Here 	R,L�p� denote the chiral right and left two-component
spinors of a spin-1

2 particle with energy p0, rest mass m, and
momentum p directed along the unit vector n,

p0 = m cosh���, p = nm sinh��� , �22�

	R�0�=	L�0� are the corresponding rest frame chiral spinors,
and e��·�/2=cosh�� /2�I2�� ·n sinh�� /2� are the pure
boosts relating the spinors in the two frames.

With the help of the rotation

V =
1
	2

�I2 − i�y� � SU�2� �23�

we find from Eq. �19�

h ª V−1�h − a0I2�V = m�z, m ª

�

2
, �24�

and from Eq. �18�

H��� ª V−1�H��� − a0I2�V

= �−1ĥ� = �z�p0 + �ypy� = �z�p0 + � · p� �25�

with

p0 ª m cosh���, py ª m sinh��� , �26�

px= pz=0 and H�−��=�z�p0−� ·p� so that

�zDW� = � − �zm H���
H�− �� − �zm

��	R�py�
	L�py�

� = 0,

�z ª ��z 0

0 �z
� = I2 � �z �27�

with 	R,L�py�=e���y/2	R,L�0�. This means that h and 	 can
be related via the chiral components 	R�0�=	L�0�=V−1	 to a
massive spin-1

2 particle �with rest mass m=� /2� in its rest
frame �co-moving frame�. In contrast, H��� and � can be
associated to the same particle observed from a Lorentz
boosted frame �laboratory or observer frame� �19�. Energy
and momentum are, as usual, related by the mass shell con-
dition p0

2− py
2=m2, which guaranties the compatibility of the

system �27�. The transformation ����=e��y/2 is then the
usual Lorentz boost acting in the two-component spinor rep-
resentation �20�.

D. Operator equivalence classes and their statistical content

The structural analogy of the PT-symmetric matrix sys-
tem and the chiral components of relativistic particle systems
leads to the following natural assumption. Similar as physi-
cal observables in relativistic systems can be measured in
different reference frames, we can associate PTQM systems
represented in terms of Hamiltonians H and h with different
physical reference frames. In analogy to relativistic systems

where the observables described in different reference
frames are related by Lorentz transformations and can be
associated to orbit sections of unitary representations of the
Lorentz group one can assume for PTQM systems that the
corresponding observables in different reference frames are
related by equivalence transformations of the complex or-
thogonal group SO�N ,C�. In accordance with Sec. II B, the
fact that for the PTQM system the corresponding transforma-
tions are not unitary but of SO�N ,C� type can be attributed to
the projection of the larger unitary system to its lower dimen-
sional subsystem �21�.

For the brachistochrone model �6� we have one frame F1
associated with the non-Hermitian Hamiltonian H and the
Hermitian spin operator Sz. The equivalence transformation �
maps H into the Hermitian Hamiltonian h=�H�−1 which can
be associated with a second reference frame F2. Simulta-
neously with H the spin operator Sz maps into

Sz � sz = �Sz�
−1 �28�

which due to the nonunitarity of ����0�, i.e., �†=���−1, is
non-Hermitian sz�sz

†=�−1Sz�. Hence in both frames F1 and
F2 the system is described in terms of Dirac-Hermitian as
well as non-Dirac-Hermitian operators. Therefore it cannot
be regarded as fundamental in the sense that there exists a
frame where all operators are Dirac-Hermitian simulta-
neously and where they can be treated as von Neumann ob-
servables.

In conventional �von Neumann� quantum mechanics, the
expectation values of the physical observables as well as the
probabilities to observe them are invariant under unitary
transformations of the operators and state vectors so that the
physics is not affected by the concrete representation. Below
we show that the probabilities and expectation values of an
observable are independent of the representation used to cal-
culate them. In particular, this means that the properties of a
given observable can be calculated in a representation �or
“reference frame”� where the observable is associated with a
Hermitian operator. Therefore the usual quantum mechanical
orthogonal measurements may be applied to this observable
in the specific frame. Using this property we show that both
probabilities and average values can also be calculated in a
representation where the observable is described by a non-
Hermitian operator �“non-Hermitian” or “observer reference
frame”�. This leads to a generalization of the notions of both
the “statistical operator” describing the state of a quantum
object and the projection operators on eigenstates of the ob-
servable.

Let a quantum system be in pure state ���, �� ���=1, and
we wish to measure an observable �energy� described by a
Dirac-Hermitian operator h=h†. Then according to the axi-
oms of conventional �von Neumann� quantum mechanics we
can detect only eigenvalues Ei of h,

h�ei� = Ei�ei�, �ei�ej� = �ij �29�

�for simplicity we assume h acting in a finite-dimensional
Hilbert space� with the probabilities
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pi = ��ei����2 = Tr�Pi��, Pi = �ei��ei�, � = ������ .
�30�

If the value Ek appeared as a measurement result then after
the measurement the state of the system is described by the
state vector �up to an unessential normalization factor� �ek�. If
now we change the representation �“reference frame”� using
a nonunitary nonsingular similarity transformation �see Eq.
�28��

��� = ���� = �−1��̃�, �ei� = ��Ei� = �−1�Ẽi� ,

h = �H�−1 = �−1H†� �31�

with �Ei� and �Ẽi�=�2�Ei� being eigenvectors of H and H†,
respectively,

H�Ei� = Ei�Ei�, H�Ẽi� = Ei�Ẽi� �32�

then

pi = ��̃�Ei��Ẽi��� = Tr��i�� = ���Ẽi��Ei��̃� = Tr��†�i
†� ,

�33�

where

�i = �Ei��Ẽi�, � = �����̃� . �34�

The expectation value of the energy can be expressed in

terms of �Ei�, �Ẽi� and ���, ��̃� as well,

�E� = ���h��� = Tr�h��

= �
i=1

N

Ei��̃�Ei��Ẽi���

= ��̃�H�� = Tr�H��

= ���H†�̃� = Tr��†H†� . �35�

Thus the operators �, �† play the role of statistical operators
for a pure state associated with the vector ���, whereas �k,
�k

† describe the observable corresponding to the Hamiltonian
�energy� of the system in these “non-Hermitian frames.” The
state with definite value of the energy is described either by

the quasiprojectors �i= �Ei��Ẽi� or by their adjoints �i
†.

If the outcome Ek is detected as a measurement result then
the state of the system after the measurement �up to a nor-
malization factor� in the Hermitian frame is described by the
vector Pk���
�ek� and in non-Hermitian frames by either

�Ek�=�−1�ek� or �Ẽk�=��ek� with statistical operators �k

= �Ek��Ẽk� and �k
†.

Unitary equivalent classes, where the same physical ob-
servables are represented by different operators related with
unitary transformations, are, evidently, subclasses of these
more general equivalence transformations.

Our final comment here is that the probabilities �33� are
intimately related with experiments on unambiguous state
discrimination which, in turn, are based on generalized ob-
servables, POVM, and Naimark’s dilation �extension� theo-
rem. Moreover, quasiprojectors �34� appear in a natural way

when an observable related with a specific symmetry opera-
tor in an extended space is measured �22�.

III. SPIN FLIPS UNDER A NON-HERMITIAN EVOLUTION

Let us illustrate this scheme by re-analyzing the
PT-symmetric quantum brachistochrone problem of �6� as
pseudounitary evolution �spin-flip� problem of a Hermitian
spin-1

2 observable. According to the equivalence relations
found in Sec. II D there are two equivalent ways to calculate
the spin-flip probabilities. One may either consider the pair
Sz ,H with Szª�z=Sz

†, H�H† and find the pseudounitary
evolution operator �23� U�t�=e−itH acting on the spin eigen-
states �↑�, �↓� of Sz. Or, alternatively, one may consider the
equivalent pair sz ,h consisting of a non-Hermitian operator
sz�sz

† whose eigenstates undergo a unitary evolution u�t�
=e−ith governed by h=h†. We choose the first way of calcu-
lation �following �6�� and obtain U�t� via exponentiation of
the PT-symmetric 2�2-matrix Hamiltonian �1� as

U�t� = e−iHt = �
k

e−iEkt��k�0����k�0��

=
e−irt cos �

cos � �cos��t

2
− �� − i sin��t

2
�

− i sin��t

2
� cos��t

2
+ �� � � U†�t� ,

�36�

where sin �ª

r
s sin � and �ª2s �cos � � =�E is the differ-

ence of eigenvalues of H. Applying U�t� to the initial spin-up
state, �↑�, we reproduce the previously reported result of �6�

���t�� =
e−irt cos �

cos � �cos��t

2
− ��

− i sin
�t

2
� . �37�

The probabilities to find the spin either up or down at any
time moment t�0 for a system being in the state �37� are
calculated using the usual quantum mechanical prescriptions
in the Hilbert space �H , �·� · �� �measurement of S=�z�

p↑�t� =
���t��↑��↑ ���t��

���t����t��
,

p↓�t� =
���t��↓��↓ ���t��

���t����t��
�38�

and give in the present case

p↑ =
cos2��t/2 − ��

cos2��t/2 − �� + sin2��t/2�
,

p↓ =
sin2��t/2�

cos2��t/2 − �� + sin2��t/2�
. �39�

From here we find the time intervals
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�t↑→↓ =
� + 2�

�E
, �t↓→↑ =

� − 2�

�E
�40�

necessary for the first spin flips from up to down and back,
respectively. For all values �� �−� /2,0� the evolution time
lies below the Anandan-Aharonov lower bound �t↑→↓
�

�
�E ¬�AA for a spin-flip evolution in a Hermitian system

�24�. In the special case �→−� /2 with �E fixed the zero-
passage time result �t↑→↓��→−� /2�→0 from �6� is repro-
duced. In �8� this regime has been related to an exceptional
point of the spectrum of H where its two eigenvectors coa-
lesce so that the Hilbert space distance between them van-
ishes. Subsequently we show that in the equivalent system
with Hermitian h=h† the originally orthogonal ��i�, �� f�
�H in the Hilbert space H are mapped into nearly coalesc-

ing �	i�, �	 f��H̃ so that �t↑→↓��→−� /2�→0 is not con-
nected with a violation of the Anandan-Aharonov lower
bound �t↑→↓�

�
�E . Rather it can be attributed to changes in

the Hilbert space metric induced by the mapping � :H→H̃.
Before we turn to the corresponding geometrical consid-

erations three comments are in order:
1. The total time for a spin flip followed by a flip back

�t↑→↓→↑ remains invariant �t↑→↓→↑= 2�
�E independently of

the non-Hermiticity parameter �—a result obtained recently
also in �25�.

2. With regard to the concept of conjugacy orbits �opera-
tor conjugacy classes� the general solution technique for a
PTS brachistochrone problem will comprise the following
steps. �i� Given a family of diagonalizable PTS Hamiltonians
H one finds the transformations � which render them Her-

mitian in the Hilbert space H̃. �ii� Initial and final state

��i,f��H are to be mapped into �	i,f��H̃. �iii� With these
vectors as initial and final states the brachistochrone problem
is solved along standard techniques for Hermitian Hamilto-
nians �26� singling out a specific Hermitian Hamiltonian hb.
�iv� Its non-Hermitian representative Hb from the same con-
jugacy orbit is the solution of the PTS brachistochrone prob-
lem.

3. Concerning the implementation of the brachistochrone
�6� and the state preparation–state discrimination we note the
following aspects. The basic background of the interpretation
is connected with the initial and final states of the large Her-
mitian system. The preparation of the initial state and the
probing of the final state of the brachistochrone subsystem
can then be accomplished by simple projection measure-
ments. In the case that the down projection from the large
system to the subsystem is performed in such a way that a
�H ,Sz� type subsystem is obtained then the initial and final
states of the subsystem can be associated with the usual Sz
spin-projection measurements in this subsystem. If instead
the down projection is chosen to result in an �h ,sz� type
subsystem then the nonorthogonal initial �	I� and final �	F�
subsystem states cannot be reinterpreted as eigenstates of a
single effective von Neumann observable in this subsystem.
Instead, preparation and probing �discrimination� of �	I� and
�	F� should remain directly related with the initial and final
states of the large Hermitian system. �A detailed discussion
of these points will be presented in Ref. �22�.� Nevertheless,

effectively �	I� and �	F� can be associated with POVM com-
ponents living in the subsystem Hilbert space. In summary,
the physical mutual consistency of the two representations
�H ,Sz� and �h ,sz� is guaranteed by well defined relations
between different measurement procedures which can be per-
formed on the same large Hermitian system.

IV. GEOMETRY OF THE PT-SYMMETRIC
BRACHISTOCHRONE

The origin of the zero-passage time solution of the
PT-symmetric brachistochrone problem is easily understood
by studying the geometric properties of the 
-related map-
ping � and its action on the projective Hilbert �state� space of

the model CP1��C2− �0�� /C*� Ĉ. Here, C*ªC− �0�, and

ĈªC� ��� denotes the extended complex plane. We briefly
discuss these properties globally in terms of �linear frac-
tional� Möbius transformations of the extended complex

plane Ĉ�z, in terms of the deformation mapping of the
CP1-related Bloch sphere, as well as locally in terms of the
Fubini-Study metric.

An arbitrary state vector ����H=C2 can be represented
as �27�

��� = cos����0� + ei	 sin����1� = � cos���
ei	 sin���

� � �1

z
�C

�41�

with z=ei	 tan���� Ĉ as a coordinate of the extended com-

plex plane Ĉ. A linear transformation

S:��� � ���� = S���, S = �A B

C D
� � SL�2,C� �42�

acts then as linear fractional �Möbius� transformation M�2�
� PSL�2,C� �28� �automorphism Aut�Ĉ�� on z� Ĉ

S:z � z� = f�z� ª
Dz + C

Bz + A
. �43�

Apart from the their decomposition properties �translation,
rotation, dilation, inversion� Möbius transformations are
classified by their type and fixed points z= f�z�. For S
�SL�2,C� the type is given by T�S�ª �tr�S��2 as
T=4—parabolic, T� �0,4�—elliptic, T� �4,��—hyperbolic
and C�T� �0,4�—loxodromic �29�. For the similarity
transformation � in Eq. �17� it holds that T���
=4 cosh2�� /2� so that for ��0 it is hyperbolic and in the
trivial case �=0, �= I2—parabolic. All nontrivial transforma-
tions ���� have the same pair of fixed points ze
z�= � i
independently of the value of ��0. Comparison with Eq.
�13� shows that the fixed point states �I��ª �1, � i�TC* cor-
respond to the eigenvectors at the exceptional points of
H��= 


�
2 +2N��, N�Z. A point z=z�+�, �� � �1 close to a

fixed point maps as

z � z� = f�z� + �� � f�z�� + f��z��� ¬ z� + �� �44�

so that from f��z��=exp�−��� one finds a distance dilation
f��1 for ���0 and a contraction f��1 for ���0. Hence
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for ��0 ���0� the fixed point z+ �z−� acts as an attractor
and z− �z+� as a repellor �see, e.g., �30��.

Closely related to the distances on Ĉ�z is the Fubini-
Study metric �see, e.g., �31�� on P�H�=CP1. In terms of the
affine coordinate z this metric reads

ds2 =
2dzdz*

�1 + �z�2�2 ª g�z,z*�dzdz*. �45�

Under the mapping � :P�H�→P�H̃� it transforms into ds̃2

=g�z� ,z�*�dz�dz�* with z� given by Eq. �43� and S=�. In
terms of the original affine coordinate z it takes the form

ds̃2 =
2dzdz*

�cosh����1 + �z�2� + i sinh����z* − z��2
�46�

and coincides with the 
—deformed Fubini-Study metric of
the Hilbert space �H
 , �·� · �
� �see Eq. �A5� in the Appendix�.
For the fixed point vicinities with z�z�=�i the metric �46�
reproduces �already in zeroth-order approximation� the typi-
cal contraction or dilation �attractor or repellor� behavior
ds̃2�2e−��dzdz* found via Eq. �44�.

A next piece of information can be gained by considering
the mapping � globally as automorphism of the Bloch
sphere. The Bloch sphere representation of a quantum state �
is given by the correspondence ��C2→CP1�S2�R3

which for a state parametrization �41� has the form �32�

x = sin�2��cos�	� ,

y = sin�2��sin�	� ,

z = cos�2�� . �47�

We use this representation together with the projective map-
ping of an arbitrary non-normalized state vector ��C2

� = �a

b
� � � cos���

ei	 sin���
�C*, �48�

and the easily derived relations

	 = arg�b� − arg�a� ,

cos�2�� =
�a�2 − �b�2

�a�2 + �b�2
,

sin�2�� =
2�a��b�

�a�2 + �b�2
�49�

to analyze the �-induced transformations graphically. The
corresponding plots in Fig. 1 demonstrate the global defor-
mations induced by �. Clearly visible is the relative position
of the states in the Hilbert spaces. In the space �H , �·� · �� the
eigenstates �eigenvectors� �E�� of the non-Hermitian
PT-symmetric Hamiltonian H are nonorthogonal �nonantipo-
dal�, whereas the initial and final eigenstates ��i� , �� f� of the
Hermitian spin operator �z are orthogonal �antipodal�. The

mapping � :H→H̃ acts in such a way that it transforms �E��
into the states �e�� which are orthogonal in �H̃ , �·� · ��. Simul-

taneously, it transforms ��i� , �� f� into the nonorthogonal
�	i�=� ��i� and �	 f�=� �� f� dilating or contracting in this way
the distance distH ���i� , �� f��=� into distH̃ ��	i� , �	 f����.
The antipodal fixed point states �I�� remain invariant under
�. The states �E�� are located on a big circle passing through
the fixed points �I��, and ��i� , �� f� on another � /2-rotated
big circle through �I��. Under the transformation � all but the
fixed point states are moved along these big circles away
from the repellor fixed point and toward the attractor fixed
point.

In H̃ the evolution between the states �	i�=� ��i� and
�	 f�=� �� f� is governed by the unitary transformation u�t�
=e−ith with Hermitian Hamiltonian h. This unitary transfor-
mation corresponds to the usual rigid rotation of the Bloch
sphere �26� �elliptic type Möbius transformation� with the
two mapped energy eigenstates �e��=� �E�� as antipodal
transformation fixed points. In �8� it has been shown that the
vanishing-passage-time solution of the brachistochrone prob-
lem of �6� corresponds to an EP limit with coalescing energy
eigenstates �E+�→ �E−�. The mapping � “orthogonalizes”
them into �e�� but simultaneously transforms the orthogonal
��i,f� into coalescing �	i�→ �	 f� and induces a corresponding
vanishing distance distH̃ ��	i� , �	 f��→0. The evolution type
is not affected by this equivalence, i.e., the transformation
U�t� :H→H remains pseudounitary with regard to

�H
 , �·� · �
� and u�t� :H̃→H̃ unitary with regard to H̃. For
u�t� : �	i�� �	 f� the Anandan-Aharonov lower bound �24� on
the passage time remains valid.

Finally, we note that the hyperbolic type Möbius transfor-
mation on the Bloch sphere with its two transformation fixed
points and the distance contraction and dilation mechanism
is a generic projective transformation which in relativistic
physical systems induces the well known aberration effect
�33� of shifting the positions of far stars toward the direction
of motion of the relativistically moving observer.

V. CONCLUDING REMARKS

In the present paper we have interpreted the
PT-symmetric brachistochrone setup of �6� as a quantum

(a) (b)

FIG. 1. �Color� The transformation � maps the initial and final
states ��i,f��H as well as the energy eigenstates �E���H into

�	i,f� , �e���H̃, respectively, and leaves the EP-related fixed point
states �I�� invariant. The contraction or dilation properties of the
evolution paths �highlighted red or green curves� are defined by
their location relative to the originally nonorthogonal energy eigen-
states �E��.
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system consisting of a non-Hermitian PT-symmetric compo-
nent and a Hermitian component simultaneously. This inter-
pretation allowed us to formulate a general recipe for the
construction of partially PT-symmetric quantum systems
which are not 1:1 equivalent to purely Hermitian systems.
Using a strong structural analogy with the reference frames
for inertial observers in special relativity we associated
PT-symmetric models in different representations with cor-
responding measurement frames. We showed that operators
which are Dirac Hermitian are connected with non-Dirac-
Hermitian operators in another frame. The probabilistic con-
tent of the models is frame independent. With the help of a
geometric analysis of the equivalence mapping between mu-
tually PT symmetric and Hermitian operators the compatibil-
ity of the vanishing passage-time solution with the Anandan-
Aharonov lower bound �24� for Hermitian system has been
demonstrated.
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APPENDIX: �-DEFORMED FUBINI-STUDY METRIC

The Fubini-Study metric �31� on a standard QM-related

projective Hilbert space P�H̃�=CPN is given in terms of state

vectors �	��H̃=CN+1 as

ds̃2 = 2
�	�	��d	�d	� − �d	�	��	�d	�

�	�	�2 . �A1�

When the states �	� are the result of a linear invertible map-
ping � : ���� �	�=� ��� with �†�=
 then for ����H=CN+1

the metric �A1� becomes “
-deformed” �see also �7�, but
note an erroneous numerator in Eq. �8� of that paper�

ds̃2 = 2
���
����d��
�d�� − �d��
������
�d��

���
���2 . �A2�

For the affine chart U0� ���= �1,z1 , . . . ,zN�T
¬ �1,z�T of the

projective space CPN�U0 one sets for convenience


 = �a c†

c D
�, a � R, c � CN, D � CN�N �A3�

and finds �due to 
=
†, D=D†�

ds̃2 = 2
dz†�qD − �c + Dz� � �c + Dz�†�dz

q2 ,

q ª a + c†z + z†c + z†Dz � R . �A4�

In the case of det�
�=1 and ����CP1 this reduces via D
�R to

ds̃2 =
2dz*dz

�a + c*z + cz* + D�z�2�2
. �A5�
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