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We study the relation between the sudden death and revival of the entanglement of two qubits in a common
squeezed bath and the decoherence. By getting “close” to the decoherence free subspace, we show that the
death time shows a decrease and subsequent increase until the sudden death disappears and the concurrence
goes to its steady-state value asymptotically.
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In one-party quantum systems, coherence is inevitably de-
stroyed by the action of the environment, a phenomenon that
is local and occurs asymptotically in time. On the other hand,
there could be multiparty systems, with nonlocal quantum
correlations, often referred to as quantum entanglement. En-
tanglement between separate quantum systems is one of the
key features in quantum mechanics. The nonlocality and co-
herence of the quantum entangled states makes them very
important, not only for their fundamental properties but also
for their different applications such as quantum teleportation
�1�, quantum cryptography �2�, and dense coding �3�.

If the environment would act on the various parties the
same way it acts on single systems, one would expect that a
measure of entanglement, say the concurrence, would also
decay exponentially in time. However, this is not always the
case. Recently Yu and Eberly �4–6� showed that under cer-
tain conditions, the dynamics could be completely different
and the quantum entanglement of a bipartite qubit system
may vanish in a finite time. They called this effect “entangle-
ment sudden death” �ESD�. In a previous work, Diósi �7�
demonstrated that ESD occurs in two state quantum systems,
using Werner’s criteria for separability. This effect has also
been observed experimentally �8�.

Different schemes have been derived to remove the ef-
fects produced by the environment, for example, quantum
error correction, decoherence free subspace �DFS�, and
quantum Zeno effect. In fact, there are some proposals re-
lated to the use of DFS as the memory space for storing the
quantum information �9�.

Here, we consider two two-level atoms that interact with a
common squeezed reservoir, and we will focus on the evo-
lution of the entanglement between them, using as a basis the
DFS states, as defined in Refs. �11,12�.

This model includes others as special cases �atoms in ther-
mal bath at zero temperature� and has the advantage of hav-
ing a known DFS, a two-dimensional plane, that will be our
starting point in connecting decoherence with sudden death
and revival of the entanglement.

In particular, we show that for states that belong initially
to the DFS plane, the phenomenon of entanglement sudden
death �ESD� never occurs. However, if our initial state is
away from the DFS the sudden death shows up, followed by
sudden revival �10�. When the ESD occurs, the entanglement
of the quantum state undergoes a process of decay from a
positive value to zero within a finite time that we will call the
death time. In our analysis we find a curious effect. For N
=0 �no squeezing�, the death time increases as we get closer

to the DFS, which is the normal behavior one would expect
since we have a decrease in the interaction with the reservoir,
up to a critical “distance” where the death time becomes
infinite and the sudden death effect disappears. On the other
hand, as we increase N �nonzero squeezing�, as we get near
the DFS, the death time decreases, showing an increased
disentanglement, down to zero, for a first critical distance,
and subsequently, as we get closer, it increases “the normal
way” and goes to infinity for a second critical distance. This
effect is related to the nature of the reservoir-atom interaction
and will be discussed at the end.

The master equation, in the interaction picture, for a two-
level system in a broadband squeezed vacuum bath is given
by �13�
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where � is the spontaneous emission rate and N=sinh2�r�,
M =�N�N+1�, r= �r�ei�, and � are the squeeze parameters of
the bath and �† ,� are the usual Pauli raising and lowering
matrices.

It is simple to show that the above master equation can
also be written in the Lindblad form with a single Lindblad
operator S,
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with

S = �N + 1��� − �Nei���†� . �3�

For a two two-level system in a common bath, the master
equation has the same structure, but now the S operator be-
comes

S = �N + 1��1 + �2� − �Nei���1
† + �2

†�

= cosh�r���1 + �2� − sinh�r�ei���1
† + �2

†� . �4�

PHYSICAL REVIEW A 78, 042114 �2008�

1050-2947/2008/78�4�/042114�4� ©2008 The American Physical Society042114-1

http://dx.doi.org/10.1103/PhysRevA.78.042114


The decoherence free subspace for this model is found in
Ref. �11� and consists of the eigenstates of S with zero ei-
genvalue. The states defined in this way form a two-
dimensional plane in Hilbert space. Two orthogonal vectors
in this plane are

��1� =
1

�N2 + M2
�N� + + � + Me−i��− − �� , �5�

��2� =
1
�2

��− + � − � + − �� . �6�

We can also define the states ��3� and ��4� orthogonal to
the ���1� , ��2�	 plane:

��3� =
1
�2

��− + � + � + − �� , �7�

��4� =
1

�N2 + M2
�M� + + � − Ne−i��− − �� . �8�

We solved analytically the master equation by using the
���1� , ��2� , ��3� , ��4�	 basis. The various components of the
time-dependent density matrix depend on the initial state as
well as the squeezing parameters. For simplicity, we assumed
�=1 and �=0.

A popular measure of entanglement is the concurrence.
This measure was proposed by �14� and is defined as

C��� = max�0,��1 − ��2 − ��3 − ��4	 , �9�

where �i are the eigenvalues ��1 being the largest one� of a
non-Hermitian matrix ��̃, and �̃ is defined as

�̃ = ��y
1

� �y
2��*��y

1
� �y

2� , �10�

�* being the complex conjugate of � �in the standard basis�
and �y is the usual Pauli matrix. The concurrence C varies
from C=0 for an unentangled state to C=1 for a maximally
entangled state. For the class of initial states considered be-
low, the density matrix written in the standard basis is in the
form

��t� =

�11� 0 0 �14�

0 �22� �23� 0

0 �32� �33� 0

�41� 0 0 �44�
� , �11�

one easily finds �15� that the concurrence is given by
C(��t�)=max�0,Ca��� ,Cb���	, where

Ca��� = 2���23� �32� − ��11� �44� � , �12�

Cb��� = 2���14� �41� − ��22� �33� � , �13�

where �ij� are the density matrix elements in the standard
basis.

In order to study the relation between decoherence and
disentanglement, we consider as initial states superpositions
of the form

��1� = 	��1� + �1 − 	2��4� , �14�

��2� = 	��2� + �1 − 	2��3� , �15�

where 	 is a variable amplitude of one of the states belonging
to the DFS. We would like to study the effect of varying 	 on
the sudden death and revival times.

For both ��1� and ��2� as initial states, the solution of the
master equation written in the standard basis has the form
shown in Eq. �11�. We can also write Ca and Cb in terms of
the density matrix ��t� in the �
i	 basis as

Ca��� = ��33 − �22� − 2�N��11 + �44� + �44 + 2�14
�N�N + 1�

2N + 1

��N��11 + �44� + �11 − 2�14
�N�N + 1�

2N + 1
, �16�

Cb��� =
2

2N + 1
��N�N + 1���11 − �44� + �14�

− ���22 − 2�23 + �33���22 + 2�23 + �33� . �17�

If we consider first the initial state ��1�, in which case
�22=�23=0, the concurrence is given by

C„�1�t�… = max�0,Cb„�1�t�…	 , �18�

since Ca�0. On the other hand, for the initial state ��2� the
concurrence is

C„�2�t�… = max�0,Ca„�2�t�…,Cb„�2�t�…	 , �19�

where �i�0�= ��i���i� for i=1,2.
In both cases, we vary 	 between 0 and 1 for a fixed value

of the parameter N. We observe that for the interval 0	
�	c the initial entanglement decays to zero in a finite time,
td. After a finite period of time during which the concurrence
stays null, it revives at a time tr reaching asymptotically its
steady-state value. We find that this death and revival cycle
happens once for the initial state ��1�. However, when the
initial state is ��2�, this cycle may occur twice �16�.

For certain values of 	=	c, for the initial state ��1�, td
= tr and the entanglement dies and revives simultaneously
and eventually goes to its steady-state value. This revival is a
curious effect only possible when the two atoms are coupled
to a common bath �that is, the distance between them is
smaller that the bath correlation length�. For the initial state
��2�, the critical value of 	 is 	c= 1

�2
, so that the initial state

is ��2�= �−+ �, and contrary to the ��1� case, it is independent
of N.

When 	c�	1, that is, when we get “near” the DFS, the
whole phenomenon of sudden death and revival disappears
for both initial conditions, and the system shows no disen-
tanglement.

Figures 1 and 2 show the dynamic behavior of the en-
tanglement in terms of the concurrence for the initial states
��1� and ��2�, respectively. In both cases we use N=0.1.

In the particular case of ��1�=	��1�+�1−	2��4� and N
=0, the critical value is 	c=0.345, and the death and revival
times are solutions of the equation
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te−t =
	

�1 − 	2
, �20�

and for N=0 and ��2�=	��2�+�1−	2��3�, the critical value
is 	c= 1

�2
and the corresponding equation for the death and

revival times is

t =
1

2
ln1 − 	2

	2 � . �21�

Another way of seeing the same effect is shown in Fig. 3,
where we plot, in the ��1� case, the sudden death and revival
times versus 	, for various values of N. In the case N=0, we
notice a steady increase of the death time up to 	c, where the
death time becomes infinite. On the other hand, for N=0.1
and 0.2, we see that the effect of the squeezed reservoir is to
increase the disentanglement, and the death time shows an

initial decrease up to the value 	=
�N�2N+1�

2N+1 , and for larger
values, it shows a steady increase, similar to the N=0 case.

The physical explanation of the above effect is the follow-
ing one: the squeezed vacuum reservoir has only nonzero
components for an even number of photons, so the interac-
tion between the qubits and the reservoir goes by pairs of
photons. Now, for a very small N, the average photon num-
ber is also small, so the predominant interaction with the
reservoir will be with the doubly excited state via two photon
spontaneous emission. Let us write ��1� in terms of the stan-
dard basis

��1� = k1� + + � + k2�− − � , �22�

with

k1 =
	N + M�1 − 	2

�N2 + M2
, k2 =

	M − N�1 − 	2

�N2 + M2
. �23�

In Fig. 4 for N=0.1, we see that initially k1 increases with
	, thus favoring the coupling with the reservoir, or equiva-
lently, producing a decrease in the death time. This is up to
	=0.288, where the curve shows a maxima. This is also
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FIG. 1. Time evolution of the concurrence for ��1�t�� as initial
state and N=0.1: 	=0 �solid line�, 	=0.29 �dotted line�, 	c=0.5
�dashed line�, 	=0.9 �space dashed line�, and 	=1 �dashed-dotted
line�.
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FIG. 2. Time evolution of the concurrence for ��2�t�� as the
initial state and N=0.1: 	=0.1 �solid line�, 	=0.4 �dotted line�, 	
=0.54 �dashed-dotted line�, 	=0.6 �long dashed line�, 	c=0.707
�dashed line�, and 	=0.9 �space dotted line�.
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FIG. 3. Death time versus 	, with initial ��1� for N=0 �solid
line�, N=0.1 �dotted line�, and N=0.2 �dashed line�.
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precisely the point where the death time in Fig. 3 starts to
increase as a function of 	. Beyond this point, k1 starts to
decrease and therefore our system is slowly decoupling from
the bath and therefore the death time shows a steady in-
crease. Of course, if one is in the DFS, the entanglement
does not decay at all.

Finally, a few words about the model. Since we consider
two atoms in a common bath, they will have to be quite near,
at a distance no bigger than the correlation length of the bath.
This implies that one cannot avoid an interaction between the
particles. This interaction between the two-level systems
can, in principle, affect the DFS. For example, one can con-
sider a dipole-dipole Van der Waals coupling of the form

HD=����1�2
†+�1

†�2�, with �= �d�2 �1−3 cos2 ��
R3 , where R is

the modulus of the distance between the atoms and � the
angle between the separation vector and d �dipole matrix�.
It is simple to verify that ��1�2

†+�1
†�2���1�=0 and ��1�2

†

+�1
†�2���2�=−��2�. As we can see, for an initial state within

the DFS, with this type of coupling the state remains within
the DFS. A similar conclusion is reached with an Ising-type
Hamiltonian. Thus this DFS is robust against these types of
interactions.

In summary, we found a simple quantum system where
we establish a direct connection between the local decoher-
ence property and the nonlocal entanglement between two
qubits sharing a common squeezed reservoir.

We showed how the phenomena of entanglement sudden
death and revival depend on the distance from the DFS. If
the initial state belongs to the DFS, this never occurs. In the
case N=0 �no squeezing�, the death time increases as we get
closer to the DFS, up to a critical distance where the death
time becomes infinite and the sudden death effect disappears.
On the other hand, when we increase N �nonzero squeezing�
to a relatively small value, that is, for a reservoir with a small
average photon number, as we get near the DFS, the death
time decreases, showing an increased disentanglement, down
to zero, for a first critical distance, and subsequently, as we
get closer, it increases the normal way and goes to infinity
for a second critical distance. This effect is related to the
nature of the squeezed reservoir that for small N interacts
more efficiently with the atoms when both of them are ex-
cited. These results could be easily extended to mixed states
in the DFS with a variable component outside the subspace.
Also, the sudden death times versus 	 could be measured
using an all optical experimental setup �17�.
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FIG. 4. k1 versus 	 for N=0.1.
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