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Orientation-dependent Casimir force arising from highly anisotropic crystals:
Application to Bi,Sr,CaCu,0yg, 5
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We calculate the Casimir interaction between parallel planar crystals of Au and the anisotropic cuprate
superconductor Bi,Sr,CaCu,0yg, s (BSCCO), with BSCCO’s optical axis either parallel or perpendicular to the
crystal surface, using suitable generalizations of the Lifshitz theory. We find that the strong anisotropy of the
BSCCO permittivity gives rise to a difference in the Casimir force between the two orientations of the optical
axis, which depends on distance and is of order 10-20 % at the experimentally accessible separations

10 to 5000 nm.
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The Casimir force, an attraction between conductors that
arises from the quantum mechanics of electromagnetism in
the vacuum, has been of interest to fundamental physics
since its first description by Casimir [1]. Recently, however,
interest has grown in “tailoring” the Casimir force by adjust-
ing material properties such as film reflectivity [2], thickness
[3], and carrier density [4]. Some recent proposals suggest
that it might even be possible to reverse the sign of the Ca-
simir force between negative-index materials [5] or other
materials with unusual electromagnetic properties [6], which
could be realized in properly designed metamaterials [7].
Since most, if not all, designs for such metamaterials are
anisotropic, it is necessary to consider what effect this aniso-
tropy has on the Casimir interaction.

Here we show that strong anisotropy in the dielectric per-
mittivity alone has a significant influence on the Casimir
interaction. We calculate the Casimir force between crystals
of Au and the cuprate superconductor Bi,Sr,CaCu,Og, s
(BSCCO); when the optical axis of the BSCCO crystal is
switched between being parallel and perpendicular to the
crystal surface, the Casimir force changes by a distance-
dependent amount, up to 25%, at the experimentally acces-
sible separations 10 to 5000 nm. BSCCO is well studied as a
high-temperature cuprate superconductor, though supercon-
ductivity is not at issue here. Rather, BSCCO is an exem-
plary material for the present study because it shows great
anisotropy over a very wide frequency range, yet is a homo-
geneous single crystal and can be modeled with its dielectric
permittivity without having to consider its microscopic struc-
ture, as must be done at high frequencies with artificial
metamaterials.

Some relevant theoretical work has been done already. In
Ref. [8], the van der Waals force was calculated between
anisotropic plates in the nonretarded limit, which is only ap-
plicable to separations of tens of A or less. In Ref. [9], the
Casimir-Polder force was calculated between an atom and a
uniaxial crystal surface in one orientation (called the perpen-
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dicular cleave in the present work; see below), and in Ref.
[10] the Casimir force between an isotropic surface and a
uniaxial surface in the same orientation, both papers dealing
primarily with graphite and graphene. Recently, Ref. [11]
studied specifically the Casimir force between a metal and an
anisotropic metamaterial, though again only in one orienta-
tion (the perpendicular cleave), and at only one separation. In
Refs. [12,13], the Casimir-Lifshitz interaction between two
uniaxial surfaces was analyzed in a different orientation
(called the parallel cleave in the present work) with the goal
of calculating a quantum electrodynamic torque, but the re-
lation of anisotropy to the distance dependence of the force
was largely unexplored. In the following, we show that in
fact this distance dependence can be made to vary signifi-
cantly by changing the orientation of the crystals.

A uniaxial crystal is characterized by a dielectric permit-
tivity that has the value ¢(w) for electric fields polarized
along the so-called optical axis, and a different value €, (w)
for electric fields polarized perpendicular to the optical axis.
The permittivity depends on the angular frequency w of the
field, but the direction of the optical axis is the same for all
frequencies in a uniaxial crystal. Such crystals generally are
birefringent, and waves with the same frequency in the same
direction will have a wave number (or wavelength) that de-
pends on their polarization. Therefore if a cavity is composed
of uniaxial crystal surfaces, the electromagnetic normal
modes will have different dispersion relations for the two
principal polarizations, which affects the zero-point energy
of the modes, and in turn the Casimir interaction.

In the present paper we calculate the Casimir force be-
tween uniaxial crystal surfaces in two orientations (shown
schematically in Fig. 1). The first orientation, which we call
the perpendicular cleave, has the optical axis perpendicular
to the surfaces. The second, which we call the parallel
cleave, has the optical axis in the plane of the surfaces. (We
note that the parallel cleave can give rise to a QED torque as
shown in Refs. [12,13].)

We consider first the perpendicular cleave. (A similar
derivation is used in Ref. [11].) Using Egs. (86) and (90)
from Ref. [14], we calculate the Casimir force per unit area
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FIG. 1. The Casimir force between Au and BSCCO depends on
the orientation of the BSCCO optical axis. The solid curve is fierps
the force per unit area for the perpendicular cleave, and the dashed
curve is fp,, for the parallel cleave are both normalized to the result
for ideal metal plates figeq=—m"fic/240d*. The insets show the ori-
entation of the conducting copper oxide planes in BSCCO. The
optical axis is perpendicular to these planes.

f(d) for parallel plates, made of media 1 and 2, separated by
a distance d of vacuum:

f(d) = 2h2 f 'k

where =7} k(if) is the reflection amplitude at an interface
between vacuum and material j for a wave whose transverse
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where we have made the substitution w=i¢ [16], so
=Vk>+&/¢c?, K= VK2 + e,L§2/c2, \j= \J'kzeﬂ/ €+ ejlfz/cz,
and the permittivities €;=¢€,(i§) are evaluated at imaginary
frequency i¢, for materials j=1,2. For isotropic materials,
€, =€; and \;=k;, and we recover the standard Lifshitz for-
mula [17].

In the parallel cleave orientation, we cannot use the same
method because the principal polarizations in the uniaxial
crystals do not coincide with the TE and TM polarizations.
Therefore, the normal mode frequencies must be calculated
for the entire cavity at once, keeping track of all three com-
ponents of both electric and magnetic fields at both inter-
faces. This straightforward but quite cumbersome calculation
is performed in Ref. [12] (and the result is reported also in
Ref. [13]), yielding the free energy as a function of tempera-
ture and relative angle between the optical axes of the two
materials. In the case at hand, we choose BSCCO as material
1, Au as material 2, and vacuum as the intervening medium
3, and also take the zero-temperature limit of the expression.
[For the more general and more unwieldy form with aniso-
tropic materials 1 and 2, arbitrary intervening medium, and
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component of the wave vector is k, imaginary frequency is
i€, and polarization p € {TE,TM}, and ky=\k>+&/c?. The
reflection amplitudes are well defined for the perpendicular
cleave because TE and TM are the principal polarizations for
waves traveling in the uniaxial crystals (but not for other
orientations of the optical axes). If the crystal-vacuum inter-
faces lie in the xy plane, the optical axis points in the z
direction and the permittivity in material j is the tensor

€. 0 0
&= 0 €. 0| (2)
0 0 €

I

(We suppress the w dependence of all permittivities for read-
ability.) The TE and TM reflection amplitudes are [15]

TE Ko— K; € 1 Ky—N\;
)= 2 () = LR 3)
Ko+ Kj <LK0+7\j

where  ko=\k-0?/?,  Kkj=\k’-€, 0?/c?, and )\
=\k%¢;, / €)—€;, @’/ c*. Thus for this cleave
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nonzero temperature, see Egs. (2.1)=(2.11) of Ref. [13].] In
this case the permittivity tensors are
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With medium 2 and 3 isotropic, we obtain a greatly simpli-
fied expression for the Casimir potential energy per unit area

par(d)
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where
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As before, k=(k cos ¢,k sin ¢) is the transverse component
of the wave vector with k, ¢ its polar coordinates, and the
dielectric functions €;=¢;(i¢) are evaluated at imaginary fre-
quency i&. The Casimir force per unit area is
Jpar(d)=—0up,,/ dd. Tf material 1 is isotropic, as well as ma-
terial 2, €, =€, and we recover the standard Lifshitz
formula.

We now evaluate the Casimir force for our example case,
taking the cuprate superconductor Bi,Sr,CaCu,Oqg, s
(BSCCO) for material 1 and Au for material 2. We assume
the BSCCO to be optimally doped, and consider its normal-
state permittivity. As with other cuprate superconductors,
BSCCO is composed of layers of conductive copper oxide
planes separated by insulating oxides; the conductivity is
much higher in the copper oxide plane than perpendicular to
it, and the permittivity is likewise anisotropic. (There is also
a much smaller anisotropy between the two principal axes
within the copper oxide planes [18], which we neglect.) Due
to the extreme anisotropy of BSCCO, the Casimir force dif-
fers in the two orientations by up to 10% for 10 nm<d
<250 nm, and by up to 25% at larger separations, as shown
in Fig. 1; forces are normalized to the ideal metal result [1]
fidew=—"hc/240d*. The ratio fy/ foer is shown in Fig. 2.
For d>25 nm, the force is stronger for the perpendicular
cleave than the parallel cleave. For d <25 nm, the reverse is
true.

To model the permittivity function of BSCCO, we use
multioscillator models where

Nj

A%
(i) =1+

2 2
m=1 g + g‘ym,j + wm,j

(10)

We model the permittivity of Au using a Drude component
plus two interband transitions in the critical point transition
model [19] (since Au is not well described by a small num-
ber of Lorentz oscillators)
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The parameters are shown in Table T (based on Ref. [19] for
Au, on Ref. [18] for €, of BSCCO, and on our fits to reflec-
tivity [20] and permittivity data [21] for € of BSCCO). The
anisotropy of BSCCO in our model is shown in Fig. 3: the
top panel shows a much higher reflectivity (at normal inci-
dence) for waves polarized perpendicular to the optical axis,
compared with waves polarized parallel to the optical axis,
over a wide range of frequencies; the bottom panel shows the
same information presented as permittivity versus imaginary
frequency.

To perform the computations, we use MATHEMATICA 6 to
numerically integrate the expressions for fne, and f,,. To
control a spurious contribution from roundoff error, we in-
clude an upper cutoff in the integration for the transverse
wave vector and frequency of 10° m™! and ¢ X 10° m™!, re-
spectively. Increasing the cutoffs by a factor of 10 changes
our results insignificantly, by less than 1 part in 10°, at all
separations.

The difference in force between the two orientations fol-
lows our expectations, at least for d>25 nm, if we imagine
BSCCO’s copper oxide planes as a stack of partially reflec-
tive mirrors. In the perpendicular cleave, these “mirrors” are
parallel to the crystal surface and, with the Au surface, con-
stitute a confining Fabry-Perot-like cavity for all modes. In
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FIG. 2. The ratio of Casimir forces fpu/ fperp between BSCCO
and Au, for the two orientations of the optical axis. The two forces
are most different at large separations, where long wavelength per-
mittivity dominates and the anisotropy of BSCCO is most
pronounced.
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TABLE 1. Parameters used in models of the permittivities of
BSCCO and Au. Resonance frequencies w,,, widths 7y, and
strengths A,, and C,, are in rad/s, and €, is unitless. Powers of 10
are bracketed, e.g., 2[4]=2 X 10*. See Eqgs. (10) and (11).

BSCCO ;=0 A=166[15]  %=8.10[13]
€ w,=148[14]  A,=195[15]  y,=4.24[14]
w;=8.06 [14]  A;=2.10[15]  93=147[15]
w,=326[15]  A,=132[15]  9,=118[15]
ws=1.88[16]  A5=3.62[16]  7y5=1.88[14]
BSCCO w;=5.65[13]  A,;=735[13]  y,=4.71[12]
€ w,=1.13[14]  A,=122[14]  9,=9.42[12]
wy=122[15]  A3=1.69[15]  93=2.26[15]
w,=622[15]  A,=113[16]  7,=7.53[15]
Au €,=1.54 w,=132[16] =130 [14]
w,=401[15]  C,=720[15]  %=9.92[14]
,=580[15]  C,=9.02[15]  9,=1.78[15]

the parallel cleave, the “mirrors” are perpendicular to the
crystal surface and resemble a linear polarizer, and effec-
tively confine modes of only one polarization. We should
expect the first case to have a stronger Casimir force than the
second, and this indeed happens. At very small separations,
the high frequency (visible and uv) optical properties be-
come increasingly relevant, and at these frequencies the re-
flectivities for the different polarizations are similar. The
analogy to mirrors therefore breaks down at very small sepa-
rations.

The calculation of the Casimir force depends on the per-
mittivity over all frequencies, and the incomplete knowledge
of the permittivity function is a major source of uncertainty.
Even sample-to-sample variations in the optical properties of
nominally the same material can change the force by 5% or
more [22]. This is the most significant uncertainty in our
calculation for Au and BSCCO. Since the reflectivity of
BSCCO over the reported frequency range 30—30 000 cm™!
is quite different from zero for both polarizations [20], we
can infer that there are resonances at higher frequency, but
cannot know for certain their frequency or number based on
the data published so far.

For this reason, we add to €, (w) a single oscillator term
Al (0hp— 0’ —iwyyp) with center frequency wyr much
higher than the highest frequency for which we have data.
This contributes a constant term Afp/ i for all o< wyp.
We chose wyp=1.88X10'° rad/s, corresponding to a wave-
length of 100 nm. A lower wyr would conflict with existing
optical data. Increasing wygr (while holding A%IF/ w%,F con-
stant) does not have a significant effect on our conclusions:
raising it by a factor of 10 changes the ratio fyem/ fpar by less
than 1% at separations d <100 nm (though the overall mag-
nitude of fp.,, and f,. changes by a few percent), and has
even less effect at larger separations. Further increasing wyg
does not further change the Casimir interaction.
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FIG. 3. Optical properties of BSCCO. Waves with electric field
perpendicular to the optical axis meet with a very conductive and
reflective material, compared with waves polarized parallel to the
optical axis. Top panel: reflectivity at normal incidence vs real fre-
quency for the two polarizations. Bottom panel: permittivity vs
imaginary frequency for the two polarizations.

To choose our model for BSCCO’s €(w), we used the
published reflectivity data [20] as well as unpublished per-
mittivity data covering 0.1 to 4000 cm™' [21]. We obtained a
satisfactory fit to the optical data using a highest resonance at
33000 cm™'.

Regardless of these theoretical uncertainties, this calcula-
tion serves as a proof of principle that realistic material sys-
tems can show a significant change in Casimir force when
their optical axis orientation is changed, even if the calcula-
tion is not quantitatively exact for the Au/BSCCO system. In
any case, we expect our conclusions to hold qualitatively for
this system, as they stem from the established anisotropic
permittivity of BSCCO in the dc to infrared frequency range.

In conclusion, we have shown that strong anisotropy in
the permittivity of a uniaxial crystal can give rise to a Ca-
simir force that depends significantly on the orientation of
the optical axis. We find that the Casimir force between Au
and BSCCO plates varies by an amount of order 10-20 %
when the optical axis of BSCCO lies perpendicular versus
parallel to the crystal surface. We expect a similar effect for
other materials with similar anisotropy. Such an effect repre-
sents a way to vary the strength of the Casimir force between
two given materials merely by changing their relative orien-
tation. This adds to the small number of “handles” on the
Casimir force, which is usually determined only by material
properties and the distance between the plates.
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