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Barash has calculated the Casimir forces between parallel birefringent plates with optical axes parallel to the
plate boundaries �Izv. Vyssh. Uchebn. Zaved., Radiofiz. 12, 1637 �1978��. The interesting feature of the
solution compared to the case of isotropic plates is the existence of a Casimir torque which acts to line up the
optical axes if they are not parallel or perpendicular. The forces were found from a calculation of the Helmholtz
free energy of the electromagnetic field. Given the length of the calculations in this problem and hopes of an
experimental measurement of the torque, it is important to check the results for the Casimir forces by a
different method. We provide this check by calculating the electromagnetic stress tensor between the plates and
showing that the resulting forces are in agreement with those found by Barash.
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I. INTRODUCTION

Not long after Casimir’s landmark paper �1� on the attrac-
tive force between two parallel perfect mirrors, Lifshitz gen-
eralized the result to the case of isotropic dielectric plates
�2,3�. Lifshitz’s formidable calculation was subsequently ex-
tended to allow for a third dielectric between the plates �4�,
the case in mind being that of parallel plates immersed in a
fluid. An obvious further generalization of the problem is to
allow for anisotropic permittivities in the plates. The first
exact solution for anisotropic plates was found in 1978 by
Barash �5�, who considered uniaxial �birefringent� plates
with optical axes parallel to the plate boundaries, separated
by an isotropic dielectric. An expression was found for the
Helmholtz free energy of the electromagnetic field at finite
temperature, which was a function of the angle between the
optical axes of the plates as well as of the plate separation.
This means that there is a torque on the plates as well as a
perpendicular force. These forces persist even at zero tem-
perature due to the zero point energy of the quantum
vacuum. The anisotropy thus leads to an interesting phenom-
enon in Casimir forces, a torque that acts to align the optical
axes of the plates if they are not parallel or perpendicular
�5,6�. These results have been used to propose an experimen-
tal measurement of the Casimir torque using birefringent
crystals immersed in ethanol �6�.

The degree of complexity of this problem is considerable.
This is reflected in the very lengthy expression found in �5�
for the free energy, which we will not reproduce here �it can
also be found in �6�, but note an important misprint �18��.
Given the length of the calculations and plans for an experi-
ment to test the theory, it is highly desirable to have an
independent solution of the problem using a different
method. To date however, the only other analysis of this
problem was a very simplified calculation �7�, which gave a
rough estimate of the Casimir forces. �The simpler problem
of one isotropic and one birefringent plate with optical axis
perpendicular to the boundary was analyzed recently in �8�.�

In this paper we solve the problem exactly using Lif-
shitz’s approach �2–4�, in which the electromagnetic stress

tensor is found by a Green-function method. At room tem-
perature, the forces for a realistic experimental setup were
found in �6� to be determined by the zero-temperature Ca-
simir contribution, with contributions from thermal radiation
being negligible. We therefore ignore thermal effects and
find the exact solution at zero temperature. Our approach has
considerable methodological interest, since we present a
much simpler, more physical route to the Green tensor than
is found in the standard Lifshitz theory �2–4�. We developed
this formalism in an analysis of the Casimir forces on mov-
ing plates �9�; here its general usefulness is demonstrated,
since the solution obtained in this paper would have required
considerably more labor if we had taken the usual approach
�2–4�. Our treatment also generalizes the problem to allow
for a magnetic response in the isotropic medium between the
plates. Until recently an influence of magnetic permeability
on Casimir forces was considered of only theoretical interest,
but the development of metamaterials with engineered mag-
netic responses raises different possibilities �8,10–12�.

From the electromagnetic stress tensor between the plates
we obtain an expression for the electromagnetic energy;
when there is no magnetic response our result agrees with the
low-temperature limit of Barash’s formula. This agreement is
highly nontrivial: the formula for the energy in both solu-
tions requires integrations and the integrands in each case are
completely different; numerical evaluation of the integrals
shows that the two expressions give the same number.

Section II sets out the problem and notation in detail. In
Sec. III we show how the electromagnetic stress tensor can
be found from the Green tensor of the vector potential. The
Green tensor is calculated in Sec. IV, and in Sec. V we
present the stress tensor and electromagnetic energy.

II. NOTATION AND GEOMETRY

We consider the arrangement depicted in Fig. 1. Two bi-
refringent plates lie in the yz plane, separated by a distance
a. The optical axis of plate 1 lies at an angle � to the z axis
while the optical axis of plate 2 is directed along this axis.
Between the plates there is an isotropic material with
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frequency-dependent permittivity � and permeability �.
The permittivity along the optical axis is denoted by ��

and the permittivity in directions perpendicular to the optical
axis are denoted by ��; these are also frequency dependent
but to reduce the notational clutter we will not make this
explicit. It follows that the dielectric tensors �13,14� of plates
1 and 2 are, respectively,

���1� 0 0

0 �1� 0

0 0 �1�

��T, �1�

��2� 0 0

0 �2� 0

0 0 �2�

� , �2�

where

� = �1 0 0

0 cos � sin �

0 − sin � cos �
� �3�

is a rotation matrix about the x axis. The angle � in Eq. �3�
produces the orientation of plate 1 portrayed in Fig. 1.

Luckily, the principle axes of a uniaxial crystal are fre-
quency independent �13� so the permittivity tensors are given
by Eqs. �1�–�3� at all frequencies. This property is crucial in
making the problem tractable, although this was not explic-

itly pointed out in �5�. It does not hold for biaxial crystals
�different permittivities in all three principle directions�—
“dispersion of the axes” �13�.

III. LIFSHITZ THEORY

The Casimir forces on the plates are determined by the
expectation value of the electromagnetic stress tensor in the
medium between the plates �4�. This expectation value is
computed for the zero-temperature ground state of the elec-
tromagnetic field, and the remarkable fact is that it is nonzero
even though there are no electromagnetic fields present. The
origin of this stress is the quantum zero-point energy of the
electromagnetic field, which is modified by the materials
�15�. From the classical Lagrangian of macroscopic electro-
magnetism

L =� d3x
1

2
�D · E − H · B� , �4�

one easily obtains the expression for the stress tensor by the
usual methods of field theory �17�. The required quantity is
the expectation value of the quantum version of this stress
tensor as follows:

� = �0	D̂ � Ê
 + �0
−1	Ĥ � B̂
 −

1

2
1��0	D̂ · Ê
 + �0

−1	Ĥ · B̂
� .

�5�

The methodology of Lifshitz theory is to compute the expec-
tation values in the stress �5� using Green tensors of the
vector potential A �with the scalar potential set to zero� �3�.
In quantum electrodynamics the basic computational quan-
tity is the Feynman propagator or Green tensor GF, given by
�3�

	TÂ�r,t� � Â�r�,t��
 = −
i��0

2�
GF�r,t;r�,t�� . �6�

This expression can be used to calculate field correlation
functions, which in turn determine the stress �5� �see below�.
At finite temperature it can be shown �3,4�, through use of
the fluctuation-dissipation theorem among other things, that
the required correlation functions have a simple relation to
the retarded Green tensor. In the zero-temperature case, how-
ever, one can obtain this result much more simply using the
fundamental starting point �6�, without having to invoke the
fluctuation-dissipation theorem. We briefly describe the
derivation.

A Green tensor for the vector-potential wave equation
satisfies

G�r,t,r�,t�� = �
−�

�

d	G�r,r�,	�e−i	�t−t��, �7�

�� 

1

��	�
� 
 −

	2

c2 ��	��G�r,r�,	� = 1��r − r�� , �8�

and depends on the material boundary conditions. From the
monochromatic Maxwell equations leading to Eq. �8� one

ε
μ 2

x

y

z

a

1

θ

FIG. 1. Two birefringent plates lie in the yz plane with constant
separation a. The lines on the plates represent the directions of the
optical axes, which also lie in the yz plane. The axis of plate 2 lies
in the z direction while that of plate 1 is rotated relative to this by �.
Between the plates is an isotropic medium of permittivity � and
permeability �.
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deduces the following property of the monochromatic Green
tensor in Eqs. �7� and �8�:

G�r,r�,− 	*� = G*�r,r�,	� . �9�

A complete set of boundary conditions for Eq. �8� requires
not only the spatial boundary conditions given by the plates,
but also conditions in time. One thus has the usual choice
�16� of retarded or advanced boundary conditions, or some-
thing more complicated. The Feynman Green tensor �6� can
be constructed from the retarded �GR� and advanced �GA�
Green tensors, which are easier to calculate. In the limit r
→r�, t→ t�, which is required to construct the stress tensor
�5� from the matrix element �6�, the relationship is �17�

lim
r→r�

t→t�

GF�r,t,r�,t�� =
1

2
lim

r→r�

t→t�

�GR�r,t,r�,t�� + GA�r,t,r�,t��� .

�10�

Since the boundary conditions are time symmetric, the ad-
vanced Green tensor is found by time reversing the retarded
case as follows:

GA�r,t,r�,t�� = GR�r,− t,r�,− t�� . �11�

It follows from Eqs. �10� and �11� that

lim
r→r�

t→t�

GF�r,t,r�,t�� = lim
r→r�

t→t�

GR�r,t,r�,t�� , �12�

so that only the retarded Green tensor is required to compute
the stress. Once the retarded Green tensor is at hand the
quadratic expectation values of the electric and magnetic
fields in the stress tensor �5� are found from �3�

	D̂�r� � Ê�r��
 = −
��0

�
�

0

�

d���i���2GR�r,r�,i�� , �13�

	Ĥ�r� � B̂�r��
 =
��0

�
�

0

�

d�
1

��i��
� 
 GR�r,r�,i����� .

�14�

These follow from Eqs. �6�, �12�, and �7�, with a final Wick
rotation to imaginary frequencies �	= i�� in which Eq. �9� is
used. The switch to imaginary frequencies ensures that the
integrals are well behaved �2–4�.

IV. GREEN TENSOR

The problem has now been reduced to that of finding the
classical retarded Green tensor for the vector potential in the
medium between the plates. With retarded boundary condi-
tions, the solution of the monochromatic equation �8� has a
simple physical meaning: an oscillating dipole at the point r�
emits electromagnetic waves of frequency 	 and GR�r ,r� ,	�
is the resulting vector potential at the point r. The second
index in Gij

R represents the orientation of the dipole at r�,
while the first index represents the components of the vector
potential at r. Using this physical consideration it is clear

from Fig. 1 that the solution will be a linear superposition of
waves that have reflected off the plates, with the number of
reflections ranging from zero to infinity. To write down the
solution we Fourier transform the Green tensor

G̃R�x,x�,u,v,i�� = �
−�

�

dy�
−�

�

dzGR�r,r�,i��e−iu�y−y��−iv�z−z��

�15�

so that we decompose the waves emitted by the dipole into
plane waves. In the absence of the plates the solution is the
bare Green tensor �3,4�

G̃b
R�x,x�,u,v,i�� =e−w�x−x��G+, x  x�

ew�x−x��G−, x � x�
� , �16�

G� = −
1

2�w�2���w

iu

iv
� � ��w

iu

iv
� − ���21� , �17�

� =
�

c
, w = �u2 + v2 + ���2. �18�

The two possibilities in Eq. �16� are linearly polarized plane
waves propagating to the right �first line� or to the left �sec-
ond line�, with wave vectors

k� = ��iw,u,v� . �19�

The imaginary x component of the wave vectors is a conse-
quence of the imaginary frequency, and in Eq. �18� we sim-
ply have the relation ���	=ck. In physical terms the
vacuum solution �16� is trivial: it is the only way the dipole
can propagate plane waves from x� to x. In the presence of
the plates both plane waves in Eq. �16� will reflect off the
plates and reverse direction, so the left-moving plane wave
can propagate from x� to x even if xx�, with similar con-
siderations applying to the right-moving plane wave. Conse-
quently, both the right- and left-moving waves will appear in
the solution regardless of whether x is greater or less than x�,
in contrast to the vacuum solution �16�. Let R2 be the reflec-
tion operator �matrix� that transforms a right-moving plane
wave at plate 2 into the resulting reflected left-moving plane
wave, and let R1 be the reflection operator that transforms a
left-moving plane wave at plate 1 into the reflected right-
moving plane wave. We can now write down the solution
�functional dependences are suppressed� as follows:

G̃R = G̃b
R − e−w�x−x��G+ − ew�x−x��G− + �1 − e−2aR1R2�−1


 �e−w�x−x��G+ + e−w�x+x��R1G−� + �1 − e−2aR2R1�−1


 �ew�x−x��G− + ew�x+x�−2a�R2G+� . �20�

The first line in Eq. �20� subtracts the left- or right-moving
plane wave in Eq. �16�, depending on whether x is greater or
less than x�. This subtraction is necessary because the direct
propagation, without reflections, of both the right- and left-
moving plane waves from x� to x is contained in the remain-
ing terms in Eq. �20�; but only one of these propagations is
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possible, depending on whether x is greater or less than x�,
and the first line in Eq. �20� automatically subtracts the irrel-
evant one. The inverse matrices in Eq. �20� are geometrical
series representing every possible number of double reflec-
tions off both plates, the exponentials providing the propaga-
tion distance 2a for each double reflection. The initial right-
and left-moving plane waves that leave x� reach x after both
an even and odd number of reflections; this explains the
terms multiplying the inverse matrices in Eq. �20�. Each term
in Eq. �20�, after the series expansion of the inverse matrices,
has an overall exponential factor that accounts for the propa-
gation distance involved, with e−ws, s0, representing a
propagation distance s to the right for the initial right-moving
plane wave, but to the left for the initial left-moving plane
wave.

The solution for the Green tensor, and thereby the Casimir
forces, is thus determined once we compute the reflection
operators R1 and R2, which describe the reflection of a lin-
early polarized plane wave at each plate. This is a tedious
business, but note that we have avoided the vastly more com-
plicated task of having to solve the differential equation for
the Green tensor with boundary conditions given by the
plates. The use of physical reasoning to write down the so-
lution �20� for the Green tensor is the interesting feature of
our approach to the Lifshitz theory for parallel plates.

A. Reflection operator for plate 2

Consider first the reflection operator for plate 2. There are
two kinds of plane wave that can propagate in a birefringent
crystal: the ordinary wave and the extraordinary wave
�13,14�. When the plane wave with wave vector k+ �see Eq.
�19�� impinges on plate 2 it produces an ordinary and an
extraordinary wave in the plate with wave vectors �13,14�

k2o = �iw2o,u,v�, w2o = �u2 + v2 + �2��2, �21�

k2e = �iw2e,u,v�, w2e = �u2 + v2�2�/�2� + �2��
2. �22�

Although we are dealing with vector-potential waves, the
electric field is proportional to A, so that A oscillates in the
polarization direction. The vector potential of the ordinary
and extraordinary waves can be written

A2o = A2o� u

− iw2o

0
�eik2o·r+c�t, �23�

A2e = A2e� iw2ev

uv

v2 + �2��2�eik2e·r+c�t, �24�

which reveals their polarizations. Note that the ordinary
wave is always polarized perpendicular to the optical axis.

The reflected wave at plate 2 has wave vector k− �see Eq.
�19��, but its polarization is rotated relative to the incident
wave. This rotation of the polarization by the plates is the
reason why the final answer for the Casimir energy will be so
much more complicated than in the isotropic case.

To find the reflection operator for the k+ plane wave we
decompose it into its component with polarization perpen-
dicular to the plane of incidence �E polarization� and its
component in this plane �B polarization�. The E- and
B-polarization directions are given by the unit vectors

nE =
1

�u2 + v2� 0

− v

u
� , �25�

nB2 =
1

�����u2 + v2�i�u2 + v2�
uw

vw
� . �26�

The reason why there is no number subscript on nE is that
this is also the E-polarization direction for the k− plane wave
reflecting off plate 1. We must now solve the reflection prob-
lem separately for the E and B polarizations. This is done as
in the isotropic case by imposing the standard boundary con-
ditions that arise from the macroscopic Maxwell equations
�16�. From Eqs. �25� and �26� we can take the incident E-
and B-polarized waves to be

AE = AE� 0

− v

u
�eik+·r+c�t, �27�

AB = AB�i�u2 + v2�
uw

vw
�eik+·r+c�t. �28�

The answer for the reflection cannot be expressed in terms of
a scalar reflection coefficient because of the rotation of the
polarization referred to above. Nevertheless, for both inci-
dent polarizations �27� and �28�, everything can be written in
terms of two scalars, which refer to the transmitted ordinary
and extraordinary waves. The first of these scalars is the ratio
A2e /A2o; for the E polarization we denote this ratio by �2,
and for the B polarization we denote it by �2 as follows:

�2 =
iu��w2o + �2�w�

v��w2o
2 + �2�w2ew�

, �29�

�2 = −
ivw2o�w + �w2o�

�2�u�2�w + �w2e�
. �30�

The second scalar relates the transmitted ordinary wave to
the incident wave; for the E polarization it is A2o /AE, which
we denote by �2, and for the B polarization it is A2o /AB,
which we denote by �2 as follows:
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�2 =
2i�vw

�w2ow + �2�u2 + iuv�2��w + �2�w2e� + ���v2 + �2��2�
, �2 =

2�w�u2 + v2�
�uw2o + i��2vw2o

2 + �2�w�u + i�2vw2e�
. �31�

The reflected waves for the two incident polarizations �27�
and �28� are, respectively,

− �u2 + v2�nE + mE2�AEeik−·r+c�t, �32�

− �����u2 + v2�nB2 + mB2�ABeik−·r+c�t, �33�

where the vectors mE2 and mB2 are

mE2 =
1

�u2 + v2��2��2�u + i�2vw2e�/�
�2�− iw2o + �2uv�
�2�2�v2 + �2��2�

� , �34�

mB2 =
1

�����u2 + v2��2��2�− iu + �2vw2e�/�
− �2�w2o + i�2uv�

− i�2�2�v2 + �2��2�
� . �35�

The reflection operator R2 at plate 2 for a general plane wave
projects the wave to its components in the directions �25�
and �26�, reflects these components according to Eqs.
�27�–�35�, and adds the reflected components; it is therefore
given by

R2 = − �nE + mE2� � nE − �nB2 + mB2� � nB2. �36�

B. Reflection operator for plate 1

The reflection operator R1 for plate 1 can of course be
obtained from R2. At plate 1 the incident wave has wave
vector k− rather than k+, but this just means w→−w com-
pared to plate 2. The E-polarization direction of the incident
wave is therefore still given by Eq. �25�, but the
B-polarization direction nB1 is Eq. �26� with w→−w,

nB1 =
1

�����u2 + v2�i�u2 + v2�
− uw

− vw
� . �37�

The only nontrivial issue is that the optical axis does not now
lie in the z direction. This is handled by changing the coor-
dinate axes so that the optical axis lies along the resulting z
direction. The required passive coordinate transformation is a
rotation about the x axis by an angle �; this transforms vector

components with the matrix �−1=�T, where � is given by
Eq. �3�. We denote quantities in the rotated basis by primes,
so that the components of the incident wave vector k− in this
basis are

k−� = �− iw,u�,v�� , �38�

u� = u cos � − v sin �, v� = v cos � + u sin � . �39�

It is clear from Eqs. �21� and �22� that in the rotated frame
the �left-moving� ordinary and extraordinary waves in plate 1
have wave vectors

k1o� = �− iw1o,u�,v��, w1o = �u�2 + v�2 + �1��2, �40�

k1e� = �− iw1e,u�,v��, w1e = �u�2 + v�2�1�/�1� + �1��
2.

�41�

The reflection operator in the rotated frame, R1�, is now ob-
tained from R2 by obvious replacements. We then find the
reflection operator in the frame of Fig. 1 from

R1 = �R1��
T. �42�

The result is

R1 = − �nE + mE1� � nE − �nB1 + mB1� � nB1, �43�

where

mE1 =
1

�u2 + v2
���1��1�u� − i�1v�w1e�/�

�1�iw1o + �2u�v��
�1�1�v�2 + �1��2�

� , �44�

mB1 =
1

�����u2 + v2
���1��1�− iu� − �1v�w1e�/�

− �1�− w1o + i�1u�v��
− i�1�1�v�2 + �1��2�

� ,

�45�

and �1, �1, �1, �1 are the plate 1 versions of Eqs. �29�–�31�
in the rotated frame as follows:

�1 = −
iu���w1o + �1�w�

v���w1o
2 + �1�w1ew�

, �1 =
iv�w1o�w + �w1o�

�1�u��2�w + �w1e�
.

�46�

�1 =
− 2i�v�w

�w1ow + �1�u�2 − iu�v��1��w + �1�w1e� + ���v�2 + �1��2�
, �1 =

2�w�u�2 + v�2�
�u�w1o − i��1v�w1o

2 + �1�w�u� − i�1v�w1e�
. �47�
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With the reflection operators determined, we now have
the solution for the Green tensor from Eq. �20�. Equation
�20� contains inverse matrices and we evaluate these before
using the Green tensor to compute the stress. This results in
a lengthy expression for the Green tensor, which we will not
reproduce here. It is clear, however, from the form of the
reflection operators �36� and �43�, together with the
geometrical-series expansions of the inverse matrices in Eq.
�20�, that the Green tensor is largely constructed from scalar
products of the vectors nE, nB1, nB2, mE1, mE2, mB1, and
mB2. Specifically, the following scalar products can be use-
fully employed to expand the Green tensor:

�1EE = �nE + mE1� · nE, �48�

�2EE = �nE + mE2� · nE, �49�

�1BB = �nB1 + mB1� · nB2, �50�

�2BB = �nB2 + mB2� · nB1, �51�

�1BE = mB1 · nE, �52�

�2BE = mB2 · nE, �53�

and these will appear in our solution for the Casimir stress
and energy.

V. STRESS TENSOR AND ENERGY

Using the Green tensor we calculate the Casimir stress
tensor � from Eqs. �5�, �13�, and �14�. It is first necessary to
drop the bare Green tensor �16� in Eq. �20�, as this gives the
diverging zero-point stress in the absence of the plates �3�.
The component �xx is the perpendicular Casimir force per
unit area F on the plates; we find

F =
�c

4�3�
0

�

d��
−�

�

du�
−�

�

dvw� Ae2aw − 2B

e4aw − Ae2aw + B
� ,

�54�

where

A = �1EE�2EE + �1BB�2BB − 2�1BE�2BE, �55�

B = ��1EE�1BB + �1BE
2 ���2EE�2BB + �2BE

2 � . �56�

If there is vacuum between the plates ��=�=1� the perpen-
dicular force is always attractive. With a separating medium,
however, even if �=1, the force can be attractive or repul-
sive �6�, as in the case of isotropic plates �4�. Note that the

dependence of F on the plate separation a is entirely visible
in Eq. �54�, but the dependence on the orientation angle � is
hidden in the nested definitions that specify A and B.

To compute the Casimir torque on the plates we require
the Casimir energy E; this is related to the pressure F and
torque Q by

F = −
�E

�a
, �57�

Q = −
�E

��
. �58�

We can therefore obtain E by integrating Eq. �54� with re-
spect to a. This integration does not produce a function of
integration depending on � but not on a, nor a constant of
integration, since E must go to zero as a→�. Our final result
is therefore

E =
�c

4�3�
0

�

d��
−�

�

du�
−�

�

dv


 �2aw −
1

2
ln�e4aw − Ae2aw + B�� , �59�

which determines the torque through Eq. �58�.
The previous exact analysis of this problem by Barash �5�

found a very different looking formula for the Casimir en-
ergy. When �=1, the result �59� must agree with the zero-
temperature limit of Barash’s expression. This agreement
cannot be seen analytically but we have verified it
numerically.

VI. CONCLUSIONS

We have calculated the Casimir energy for two parallel
birefringent plates with optical axes parallel to the boundary,
allowing for the presence of an isotropic medium between
the plates. This is only the second exact treatment of the
problem, and our result is in agreement with the previous
solution �5�. Given the very different methods employed in
the two calculations, this confirms the prediction of Casimir
torque, an intriguing phenomenon that may be within reach
of experiment �6�.
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