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It is a general fact that the coupling constant of an interacting many-body Hamiltonian does not correspond
to any observable and one has to infer its value by an indirect measurement. For this purpose, quantum systems
at criticality can be considered as a resource to improve the ultimate quantum limits to precision of the
estimation procedure. In this paper, we consider the one-dimensional quantum Ising model as a paradigmatic
example of a many-body system exhibiting criticality, and derive the optimal quantum estimator of the cou-
pling constant varying size and temperature. We find the optimal external field, which maximizes the quantum
Fisher information of the coupling constant, both for few spins and in the thermodynamic limit, and show that
at the critical point a precision improvement of order L is achieved. We also show that the measurement of the
total magnetization provides optimal estimation for couplings larger than a threshold value, which itself

decreases with temperature.
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I. INTRODUCTION

Acquiring information about a physical system involves
observations and measurements, whose results are subjected
to fluctuations, and one would like to eliminate or at least to
minimize the corresponding errors. However, the precision
of any measurement procedure is bounded by the fundamen-
tal law of statistics and quantum mechanics, and in order to
optimally estimate the value of some parameter, one has to
exploit the tools provided by quantum estimation theory
(QET) [1].

As a matter of fact, many quantities of interest do not
correspond to quantum observables. Relevant examples are
given by the entanglement or the purity of a quantum state
[2] or the coupling constant of an interacting Hamiltonian. In
these situations one needs to infer the value of the parameter
through indirect measurements. For many-body quantum
systems, changing the coupling constant drives the system
into different phases and, in turn, this may be used to esti-
mate the coupling itself. In particular, close to critical points,
quantum states belonging to different phases should be dis-
tinguished more effectively than states belonging to the same
phase [3-9]. Distinguishability is usually quantified by fidel-
ity between quantum states, i.e., overlap between ground
state wave functions. In turn, the fidelity approach to quan-
tum phase transitions (QPT) has recently attracted much at-
tention [3,4] since, differently from bipartite entanglement
measure approach [10], it considers the system as a whole,
without resorting to bipartitions. In estimating the value of a
parameter, one is led to define the Fisher information which
represents an infinitesimal distance among probability distri-
butions, and gives the ultimate precision attainable by an
estimator via the Cramer-Rao theorem. Its quantum counter-
part, the quantum Fisher information (QFI), is related to the
degree of statistical distinguishability of a quantum state
from its neighbors and, in fact, it turns out to be proportional
to Bures metric between quantum states [11-18].

As noticed in [19] one can exploit the geometrical theory
of quantum estimation to derive the ultimate quantum
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bounds to the precision of any estimation procedure, and the
fidelity approach to QPTs to find working regimes achieving
those bounds. Indeed, precision may be largely enhanced at
the critical points in comparison to the regular ones. Here we
show that the general idea advocated in [19] can be success-
fully implemented in systems of interest for quantum infor-
mation processing. To this aim we address a paradigmatic
example of a many-body system exhibiting a (zero tempera-
ture) QPT: the one-dimensional Ising model with a trans-
verse magnetic field.

In most physical situations, some parameters of the
Hamiltonian, e.g., the coupling constant, are inaccessible,
whereas others may be tuned with reasonable control by the
experimenter (e.g., external field). Therefore, the idea is to
tune the controllable parameters in order to maximize the
QFI and thus the distinguishability and the estimation preci-
sion. In doing this we consider the system both at zero and
finite temperature, and fully exploit QET to derive the opti-
mal quantum measurement for the unobservable coupling
constant in terms of the symmetric logarithmic derivative. In
the thermodynamic limit we find that optimal estimation is
achieved tuning the field at the critical value, in accordance
with [19], whereas at finite size L, the request of maximum
QFI defines a pseudocritical point which scales to the proper
critical point as L goes to infinity. In turn, a precision im-
provement of order L may be achieved with respect to the
noncritical case.

The optimal measurement arising from the present QET
approach may be not achievable with current technology.
Therefore, having in mind a practical implementation, we
consider estimators based on feasible detection schemes, and
show, for systems of few spins, that the measurement of the
total magnetization allows for estimation of the coupling
constant with precision at the ultimate quantum level.

The paper is structured as follows: In Sec. II we briefly
review some concepts of QET, introduce the symmetric loga-
rithmic derivative, and illustrate the quantum Cramer-Rao
bound. We also review the notion of distance for the quan-
tum Ising model. In Sec. III we derive the ultimate quantum
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limits to the precision of coupling constant estimation at zero
temperature, both for the case of few spins and then in the
thermodynamical limit. In Sec. IV we analyze the effects of
temperature and derive the scaling properties of QFI. In Sec.
V we address the measurement of total magnetization as an
estimator of the Hamiltonian parameter and show its opti-
mality. Section VI closes the paper with some concluding
remarks.

II. PRELIMINARIES

In this section we recall the basic concepts of QET and
the metric approach to quantum criticality, specializing them
to the one-dimensional Ising model in transverse field.

A. Quantum estimation theory
An estimation problem consists in inferring the value of a
parameter N by measuring a related quantity X. The solution
of the problem amounts to finding an estimator A

E):(xl ,X5,...), i.e., a real function of the measurement out-
comes {x;} to the parameters space. Classically, the variance
Var(\)=E[\*]-E[\]? of any unbiased estimator satisfies the
Cramer-Rao theorem

Var(\) = ,
») MF(\)
which establishes a lower bound on variance in terms of the

number of independent measurements M and the Fisher in-
formation (FI) F(N)=E[{d, In p(x|\)}?], i.e.,

FO\) =2 p(xN)[6) In p(x[M) T, (1)

p(x|\) being the conditional probability of obtaining the
value x when the parameter has the value \. When quantum
systems are involved p(x|\)=Tr[@,P,], {P,} being the prob-
ability operator-valued measure (POVM) describing the
measurement. A quantum estimation problem thus corre-
sponds to a quantum statistical model, i.e., a set of quantum
states p, labeled by the parameter of interest, with the map-
ping N — p, providing a coordinate system. Upon introduc-
ing the symmetric logarithmic derivative (SLD) A, as the set
of operators satisfying the equation

1
hpy= E[Axpx + AL, (2)
we can rewrite the FI as

_ < Re(Tr{pyA\PL))°
FN=2 o p]

Then one can prove [11,12] that F(\) is upper bounded by
the quantum Fisher information

(3)

FO\) < G(\) = Ti[p\ ALl (4)

In turn, the ultimate limit to precision is given by the quan-
tum Cramer-Rao theorem (QCR)
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-
Var(\) = MGV’
which provides a measurement-independent lower bound for
the variance which is attainable upon measuring a POVM
built with the eigenprojectors of the SLD.

In the following we will consider the quantum statistical
model defined by the set of Gibbs thermal states p,
=7"1e PHN (Z=Ti{ePHMV]) associated with a family H(\)
of many-body Hamiltonians where \ is the coupling constant
we wish to estimate. The relevant observation at this point is
that the Bures distance d,zg(p,p’) between quantum states at
nearby points in parameter space may be written as

1
dsy; = di(pr. prsar) = §rAN* = ZG()\)CD\Z, (5)

where G(\) is the QFI defined in Eq. (4) and g, is a Bures
metric tensor given by [21]

1 mé] n ?
g =S [CAEN-NIA ’

6
Q’nm pn+pm ( )

|4,) being the eigenvectors of py==,p,|#.){,|. In other
words, maxima of the Bures metric, e.g., the divergence oc-
curring at QPTs [8], correspond to optimal estimation work-
ing regimes. In the following we will systematically seek for
maxima of Bures metric (QFI). In the thermodynamic limit
those occur at the critical points [8], whereas at finite size the
maxima of the QFI define pseudocritical points which scale
to the actual critical points as the size goes to infinity.

B. Quantum Ising model

We are interested in systems which undergo a zero-
temperature quantum phase transition and consider a para-
digmatic example, the one-dimensional quantum Ising model
of size L with transverse field. The model is defined by the
Hamiltonian

L
H=—120'Yk0’1:+1—h2077;’ (7)

where the of are Pauli operators and we assume periodic
boundary conditions o7, =07 unless stated otherwise. As the
temperature and the field & are varied one may identify dif-
ferent physical regions. At zero temperature, the system un-
dergoes a QPT for h=J. For h <J the system is in an ordered
phase whereas for 4 >J the field dominates, and the system
is in a paramagnetic state. For temperature T<<A, A=|J/-A|
the system behaves quasiclassically, whereas for 7> A quan-
tum effects dominate. The Hamiltonian (7) can be exactly
diagonalized by a Bogoliubov transformation, leading to

H=2 A(nim=1), ©)

k>0
where A, denotes the one particle energies and 7, denotes
the fermion annihilation operator, A;=\e&+A7, A,=J sin(k),
€,=J cos(k)+h. Strictly speaking, Eq. (8) holds in the sector
with an even number of fermions. In this case, periodic
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boundary conditions on the spins induce antiperiodic bound-
ary conditions (BC’s) on the fermions and the momenta sat-
isfy k= %ﬁ In the sector with an odd number of particles,
instead, one has k= Q—'LE and one must carefully treat excita-
tions at k=0 and k=m. In any case, the ground state of Eq.
(7) belongs to the even sector so that, at zero temperature we
can use Eq. (8) for any finite L. At positive temperature we
will be primarily interested in large system sizes and there-
fore we can neglect boundary terms in the Hamiltonian and
use Eq. (8) in the whole Fock space. For small L we will
diagonalize explicitly the Hamiltonian (7), without resorting
to Eq. (8).

The QFI for the parameter J may be evaluated starting
from Eq. (6) arriving at

2 _ 2
GJ=E M"'Q'E |<¢n|(9]¢m>|2M’ (9)

n n n#m n m

which, given E;=>;n;A;, where the n;’s are the fermion oc-
cupation numbers, may be written as [9]

D cosh(BA,) -1

~ EZ (9,A)°
G, hB)=—2 cosh(BA,)

%7,
47 coshz(,BAk/2)+ P (9

(10)

where ¥, =arctan Z—kk. Since the QFI is proportional to the
Bures metric one may exploit the results derived for the
Bures metric, which we recall here.

(1) At zero temperature, in the off-critical region (the ther-
modynamic limit) L> £, where € is the system correlation
length, the Bures metric behaves as g, ~ LI\ —\ ¢ close to
the critical point. Here L is the size of the system and A, is
related to the critical exponents of the transition, which turns
out to be one for our system [7,8].

(2) In the quasicritical region ¢>L, g, scales as g, ~L*
with @=1+A,/v, where v is the correlation length critical
exponent, i.e., €~ |\=\." It turns out that a=2 quasifree
fermionic models, as the one considered here.

(3) At regular points (i.e., not critical) the Bures metric is
extensive, i.e., g, ~ L.

(4) As the temperature is turned on, as long as it is small
but larger than the energy gap of the system, quantum-
critical effects dominate. In this region 7> A, thermody-
namic quantities scale algebraically with the temperature and
one has g, ~ 777, with $>0. For the Ising model B=1 [9].

In the following, we will exploit the dramatic increase of
the QFI that one experiences in the critical regions, to im-
prove the ultimate quantum limit achievable in the estima-
tion of the coupling parameter.

III. QET AT ZERO TEMPERATURE

In this section we begin to test the idea of estimating the
coupling constant J of the Ising model by finding the maxi-
mum of QFI at zero temperature, where the system is in the
ground state. At first we consider systems made of few spins
and then we address the thermodynamic limit.

PHYSICAL REVIEW A 78, 042106 (2008)

A. Small L

We start with the case of L=2, 3, and 4 in Eq. (7). The
QFI is obtained from Eq. (9) by explicit diagonalization of
the Ising Hamiltonian where p,=e¢ PEn/Z, and E, and |4,)
are the eigenvalues and eigenvectors of H. For example, for
L=2 we have E,=*2J,=2\J*+h* and Z=2 cosh(23/])
+2 cosh(2B8\J?+h?). For T=0 one gets

2

G,(J,h,0) = e

L=2,

G(JhO)—3—h2 L=3
BT a4 -+ Y T

RA(h* + 4R%T? + 7%
(h*+J4H* 7

G,(J,h,0) = L=4. (11)

Maxima of G; are obtained for h*=J for L=2,3,4. Actually,
this is true for any L (see also the next section), and the
pseudocritical point 4*, which maximizes G, turns out to be
independent of L and equal to the true critical point, h.=J, V
L. At its maximum G, goes like 1/J% and the ultimate lower
bound to precision (variance) of any quantum estimator of J
scales as J2.

B. Large L

In the following we discuss the QFI for a system of size
L. We analyze the behavior of G; near the critical region at
T=0. Taking the limit 7—O0 in Eq. (10), the classical ele-
ments of the Bures metric, which depends only on thermal
fluctuations, vanishes due to the factor of [cosh(8A;/2)]2.
Therefore, at zero temperature, only the nonclassical part of
Eq. (10) survives and one obtains

G,=2 (%)%, (12)
k

—hsink
A7
ground state, the allowed quasimomenta are k=%m, with

n=0,...,L/2-1. Explicitly we have

A . .
where &,ﬂk=m(&1é)= . Since we are in the

h? sin(k)?
G=2—

13
s "

We are interested in the behavior of the QFI in the quasicriti-
cal region £ L. In the Ising model v=1 so the critical region
is described by small values of the scaling variable z=L(h
—J)=L/¢, that is, z=0. Conversely the off-critical region is
given by z—o. We substitute h=J+z/L in Eq. (13) and
expand around z=0 to obtain the scaling of G, in the quasi-
critical regime
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2
<J+ %) sin®(k,,)

n

GJ=2 \‘ B ZEEka(Z).

k % + 4J<J+ I%)sinz(kn&)J n
(14)

Since d,f(0)=0, the maximum of G, is always at z=0 for all
values of L; in turn, the pseudocritical point is A" =J=h, V L.
As already noticed previously, the statement h, =h, is pecu-
liar to this particular situation. For instance, introducing an
anisotropy v so as to turn the Ising model into the anisotropic
XY model, the pseudocritical point gets shifted and one re-
covers the general situation h;=h6+ O(L™?%. The exponent 6
is universal, i.e., independent on the anisotropy (and given
by #=2 in this case), while the prefactor explicitly depends
on 7, vanishing for y=0 [19]. Going to second order one
obtains

1 Z 1
3,0)*=> — cot*(k./2 (1— )
> ( 16)) > 47 cot™(k,/2) 2J%L? sin®(k,/2)

k k,
+0(2). (15)
Using Euler-Maclaurin formula [20] we get
1 2 L
G=L2<———>——+OL°. 16
! 82 3sar) st O (16)

This shows explicitly that at #=J the Fisher information has
a maximum and there it behaves as

12
G,(L,T=0,h*=J)’—Vﬁ+O(L). (17)

We observe that superextensive behavior of the QFI in the
quasicritical region around the QPT, G,~ L?, implies that the
estimation accuracy scales like L2 at the critical points,
while it goes like L' at regular points.

C. Signal-to-noise ratio

Notice that, in assessing the estimability of a parameter A,
the quantity to be considered is the quantum signal-to-noise
ratio (QSNR) given by Q(A\) =\>G(\) which takes into ac-
count the scaling of the variance and the mean value of a
parameter rather than its absolute value. We say that a pa-
rameter N\ is effectively estimable when the corresponding
Q(N) is large and that to a diverging QFI corresponds the
optimal estimability. In both cases of few and many spins, at
the critical point the QFI goes like 1/J2, this means that Q(J)
is independent on J and one can estimate large as well as
small values of parameters without loss of precision.

IV. QET AT FINITE TEMPERATURE

In this section we consider estimation of the coupling
constant J at finite temperature. We first discuss in some
detail the short chains with L=2,3,4 and then we treat the
case L>1.

PHYSICAL REVIEW A 78, 042106 (2008)

A. Small L

As a warm-up let us first focus on the simplest, L=2 case.
A first step in the computation of the SLD for two qubit is to
find the SLD in the single qubit case. Consider a system with
“Hamiltonian” H=a-o in the state p=e*°Z"!, where Z
=Tr e ™7, and the three-component vector a depends on pa-
rameter J. The SLD relative to this state turns out to be

A =—tanh(a)(d,a- o)
—[1 +tanh(a) — 2 tanh(a)?](d,a)(a- o),  (18)

where a is the modulus of a and a=a/a. Now note that the
Hamiltonian (7) for L=2 (with PBC) has the following

block-diagonal form in the basis {|++), |——), [+ —), |- +)}:
oo (Jo"+ho*’ 0 ) 19)
=R o o)

We can then apply formula (18) in each subspace to obtain
the full SLD. After some algebra one realizes that the SLD
has the following form:

A=ci0"®@ "+, @ P +c3(*®1+1® o), (20)

where ¢ , 5 are constants which depend on 3,J, and 7. When
the temperature is sent to zero the above expression becomes

AT=0=m[h(O'X®O'X—O'y®U))

-Jo*®1+1® o)]. (21)

We see that, already in the simple two-qubit case, the SLD is
a complicated operator both at positive and at zero tempera-
ture. More involved expressions are obtained for L=3,4, and
larger. We do not report here the analytic expression of the
corresponding QFIs G, for L=2,3,4 since they are a bit
involved. Rather, in order to assess estimation precision at
finite temperature and compare it to that at 7=0, we consider
the ratio yv;=G;(B,J,h)/ G,(,J,h), for some fixed values of
J and illustrate its behavior in Fig. 1. As it is apparent from
Fig. 1 for small % the ratio is smaller than 1, i.e., estimation
of J is more precise at zero temperature, whereas for increas-
ing A a finite temperature may be preferable. In turn, for any
value of J and B, there is a field value that makes finite
temperature convenient: this is true also for low temperature
as proved by the presence of a global maximum for small A,
besides the local maximum at 2=J. For 8— % the maxima at
small % disappears and we recover the zero temperature re-
sults. Notice that, in view of Egs. (11), the ratio 7y, is pro-
portional to the QSNR. Besides, since the maxima of y; vary
with B as described above, we conclude that the optimal field
h*, which maximizes G (), varies with the temperature. For
high temperature the maxima are located at a field value
close to zero, whereas for decreasing temperature they
switch towards values close to the critical one A*=J. This
may be explicitly seen for L=2 by expanding the Fisher
information at high and low temperatures, respectively,

G,/(Jh.B) = B4~ (K +37)B1+0(8),  (22)
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FIG. 1. The ratio vy; as a function of the external field i for L=2 [(a), (b)], 3 [(c), (d)], 4 [(e), (f)] and J=0.5 [(a), (¢), (e)], J=5 [(b), (d),
(f)]. The curves refer to different values of B=1 (black dashed), B=10 (gray dashed), 8=100 (solid gray), and 8=1000 (solid black).

G/ B) = G, o2) (1 = %) + 2€-BA32<1 Rz )
X[2+e‘BA<1+coth /Z_A)}’ (23)

with A=A(J,h)=2(\J?+h>~J). Upon looking for extremal
points we have that 42*=0 for high temperature and h*=J
+0(e PAUD) for low temperature.

B. Large L

At positive temperature and L large, the sums in Eq. (10)
may be replaced by L[dk. The quantity G =G,/ L is always
convergent, and the convergence rate is exponentially fast in
L in the (renormalized classical) region T<<A whereas it is
effectively only algebraic when T A (the quantum-critical
region). Thus, up to a contribution vanishing with L, éj

=5}+ é; is a bounded function of its arguments as long as
T>0, given by

2 (T 2
~ B dk [J+ h cos(k)]
Gr= 877[0 cosh?(BA,/2) A7 ’ @4
~ 1 (™ cosh(BA,) —1h?sin(k)?
G2= e f PAx . (25)
) cosh(BA,) Ay

For any 7>0 the function G ;7 has a cusp in h=J, where it
achieves its maximum value. Changing a variable from mo-
mentum to energy, the integrals above can be approximately
evaluated in the quantum critical region B|/—h| <1 (actually
we also require low temperature, i.e., 8|J+h|>1). The result
is

= _9B) T
7 87 JI+h

+0(1Y, (26)

~ ClJ+h 1 o)
= —= -+ 5
T2 TR 82

(27)

where C is Catalan’s constant C=0.915 and the Riemann ¢
function gives £(3)=1.202.

In summary, for large sizes and at positive temperature,
the maximum of the QFT as a function of % is always located
at h=J for all values of J,T. At the maximum, the QFI is
approximately given by

G 2C L (28)
TR

As a consequence, the QSNR scales as Q;~JL/T; in other

words, at finite temperature, the estimation of small values of

the coupling constant is unavoidably less precise than the

estimation of large values. As expected, large L and/or low

temperature improve the precision of estimation.

V. PRACTICAL IMPLEMENTATIONS

The SLD represents an optimal measurement, i.e., the cor-
responding Fisher information is equal to the QFI. However,
as we have seen [see, e.g., Eq. (21)], generally the SLD does
not correspond to an observable whose measurement can be
easily implemented in practice. Therefore, in this section, we
consider the total magnetization M, = %Eiof, as a feasible and
natural measurement to be performed on the system in order
to estimate the coupling J. We assume that the system is at
thermal equilibrium, p=Z~'¢7#¥_ and consider short chains
L=2,3,4. We illustrate the procedure in detail for the sim-
plest L=2 case. Upon measuring M, the possible outcomes
are m={1,0,-1} with eigenprojectors P, given by
P,=[00)00|, P_;=|11)(11]|, and Py=|10)(10|+|01){01|. The
corresponding probabilities p(m|J)=Tr(pP,,) are given by
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FIG. 2. The ratio F(B,J,h™)/G,(B,J,h*) as a function of J for
L=2 (solid lines), L=3 (dotted lines), and L=4 (dashed lines). The
bottom group of lines (gray) is for B=3, whereas the top group
(black) is for B=10.

cosh(2BVJ? + h?)

P = 2[cosh(287) + cosh(2BVJ2 + h2)]
X[1 = h(J*+ 1?2 tanh(2 BV + h?)],
(29)
2(01]) = cosh(28J) (30)

cosh(28J) + cosh(2BVJ? + h?) ’

The FI is then obtained by substituting p(m|J) into Eq. (1).
The resulting expression provides a bound for the variance of
any estimator of J based on M measurements of magnetiza-
tion: Var(J)=1/MF),.

The Braunstein-Caves inequality says that the FI of any
measurement F; is upper bounded by the QFI G,. For the
magnetization this is illustrated in Fig. 2, where we plot the
ratio F,(B,J,h™)/G,B,J,h*) for L=2,3,4, h~ being the
field maximizing the FI. Notice that for increasing J the FI of
the magnetization saturate to the QFI, i.e., magnetization
measurement becomes optimal. The saturation is faster for
lower temperature (we report the ratio for 8=3 and 8=10).
Notice also that for low temperature the dependence of the
ratio on the size L almost disappears. In summary, for any
temperature there is a threshold value for J, above which the
measurement of the magnetization is optimal for the estima-
tion of J itself. This threshold value decreases with tempera-
ture, and for zero temperature magnetization is optimal for
any J. Indeed, after explicit calculation of Eq. (1) for L
=2,3,4 we found that, in the limit 7—O0, F,(h,T=0)
=G,(h,T=0), i.e., the FI of the magnetization is equal to the
QFIL. In other words the estimation based on magnetization
may achieve the ultimate bound to precision imposed by
quantum mechanics. Besides, at finite temperature, despite
the fact that the equality does not hold exactly, F; is only
slightly greater than G; almost in the whole parameter range
(J,T). This may be also seen in the behavior of F, versus
temperature: the ratio 8,=F,(B,J,h)/F,(,J,h) at fixed J
may be greater than 1 for some values of the magnetic field,
namely, magnetization measurements may be more precise at
finite 7, as it happens for the optimal measurement with pre-
cision bounded by the QFI. Of course, for T—0, ,— 1.

Overall, we conclude that the magnetization M, is a good
candidate for nearly optimal estimation. Of course we still
need an efficient estimator, that is, an estimator actually satu-
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Var(J)

2 3 4 5 6 h

FIG. 3. Estimation of the coupling constant by magnetization
measurement and Bayesian analysis. The plot is for L=2 and
B=1 with true value of the coupling equal to J=3. We report the
variance of the Bayesian estimator for Monte Carlo simulated ex-
periments (M =500, black dots), the corresponding variance evalu-
ated using the asymptotic a posteriori distribution (dotted black
line), and the (classical) Cramer-Rao bound (solid gray).

rating the (classical) Cramer-Rao bound. To this aim we em-
ploy a Bayesian analysis, since Bayes estimators are known
to be asymptotically efficient [22], i.e., Var(Jg)=1/MF}, for
M>1, Jp being the Bayesian estimator (see below). Accord-
ing to the Bayes rule, given a set of outcomes {m} from M
independent measurements of the magnetization, the a pos-
teriori distribution for the parameter J is given by p(J|{m})
=1/N 11,,p(m|J)"», where N is a normalization constant and
n,, is the number of measurements with outcome m. Bayes
estimator is the mean Jyz=[dJJp(J|{m}) of the a posteriori
distribution and precision is quantified by the corresponding
variance. In the asymptotic limit of many measurements M
>1, n,,— Mp(m|J*), where J* is the true value of the pa-
rameter to be estimated and the a posteriori distribution is
rewritten as p,(J|{m})=1/N =, exp[Mp(m|J*) In p(m|J)].
In order to check the actual meaning of “asymptotic” we
have performed a set of Monte Carlo simulated experiments
of the whole measurement process. In Fig. 3, we report the
result of Monte Carlo simulated experiments of magnetiza-
tion measurements for /=3 and B=1. The black dots repre-
sent the mean variance of the Bayes estimator J averaged
on 20 sets each of 500 measurements. The dotted line is the
corresponding variance evaluated using the asymptotic a
posteriori distribution, whereas the solid gray line is the
Cramer-Rao bound (MF,)~". The plot shows that the Bayes
estimator is indeed asymptotically efficient and that already
with a few hundreds of measurements one may achieve the
ultimate precision. Overall, putting this result together with
the fact F;=G, (see Fig. 2) we conclude that the measure-
ment of the total magnetization of the system provides a
nearly optimal and feasible measurement (at any B) to esti-
mate the coupling of the (small size) one-dimensional quan-
tum Ising model.

VI. CONCLUSIONS

The coupling constant of a many-body Hamiltonian is not
an observable quantity and we have to solve a quantum sta-
tistical model to evaluate the bounds to its estimation preci-
sion. This has fundamental implications since it corresponds
to finding the ultimate limits imposed by quantum mechanics
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to the distinguishability of different states of matter. In this
paper we exploited the equivalence between the quantum
Fisher metric and the (ground or thermal) Bures metric and
all the results recently obtained for the latter. Specifically at
zero temperature, the Bures metric scales with the system
size L at regular points whereas it can increase as L? at or in
the vicinity of the quantum critical point. A similar enhance-
ment takes place when temperature is considered. In turn it is
possible to exploit this enhancement to dramatically improve
the bounds to precision in a quantum estimation problem.
Let us imagine that an experimenter would like to infer the
value of a coupling constant of a physical system over which
he has little or no control. Reasonably the experimenter has
good control over the external fields he can apply to the
system. The idea is then to tune the external field to a value
close to the quantum critical point. At this value of the cou-
plings, an improvement of an order of L can be achieved in
the precision of the estimation of the unknown coupling. To
test these ideas in practice, we have worked out in detail a
specific example, the one-dimensional (1D) quantum Ising
model. This model provides us with all the ingredients we
need, a coupling constant J, an external field 4, and a quan-
tum critical point at 2=J. The main accomplishments of our
analysis are (i) at zero temperature we evaluated the preci-
sion in the estimation of the coupling, exactly for short
chains of L=2,3,4 sites and asymptotically for large L. We
found that the optimal estimation is possible at values of the
field exactly equal to the critical point, independently of L.

PHYSICAL REVIEW A 78, 042106 (2008)

For large L we indeed observe a 1/L enhancement of preci-
sion, and a quantum signal-to-noise ratio independent of the
coupling; (ii) at positive temperature the optimal value of the
field is again given by the critical value when the system size
is large or the temperature is low. In the other working re-
gimes the optimal field maximizing the quantum Fisher in-
formation defines a set of pseudocritical points, and the op-
timal precision scales as TJ/L; (iii) we obtained the optimal
observable for estimation in terms of the symmetric logarith-
mic derivative and showed that already in the case L=2 it
does not correspond to an easily implementable measure-
ment; and (iv) we have shown that for small L the measure-
ment of the total magnetization allows one to achieve ulti-
mate precision. Using Monte Carlo simulated experiments
and Bayesian analysis we proved that this is possible already
after a limited number of measurements of the order of a few
hundreds. We conjecture that this may be true for any L;
work along this line in progress.

Overall, we found that criticality is a resource for precise
characterization of interacting quantum systems (e.g., a
quantum register), and may represent a relevant tool for the
development of integrated quantum networks.
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