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Quantum criticality as a resource for quantum estimation
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We address quantum critical systems as a resource in quantum estimation and derive the ultimate quantum
limits to the precision of any estimator of the coupling parameters. In particular, if L denotes the size of a
system and \ is the relevant coupling parameters driving a quantum phase transition, we show that a precision
improvement of order 1/L may be achieved in the estimation of N\ at the critical point compared to the
noncritical case. We show that analog results hold for temperature estimation in classical phase transitions.

Results are illustrated by means of a specific example involving a fermion tight-binding model with pair

creation (BCS model).
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I. INTRODUCTION

It is often the case that a quantity of interest is not directly
accessible, either in principle or due to experimental impedi-
ments. In these situations one should resort to indirect mea-
surements, inferring the value of the quantity of interest by
inspecting a given probe. This is basically a parameter esti-
mation problem whose solution may be found using tools
from classical estimation theory [1] or, when quantum sys-
tems are involved, from its quantum counterpart [2]. Indeed,
quantum estimation theory has been successfully applied to
find optimal measurements and, in turn, to evaluate the cor-
responding lower bounds on precision, for the estimation of
parameters imposed by both unitary and nonunitary transfor-
mations. These include single-mode phase-shift [3-5], dis-
placement [6], squeezing [7,8], as well as depolarizing [9] or
amplitude-damping [10] channels in a finite-dimensional
system, lossy channel in infinite-dimensional ones [11,12],
and the position of a single photon [13]. Here we focus on
the estimation of the parameters driving the dynamics of an
interacting many-body quantum system, i.e., the coupling
constants defining the system’s Hamiltonian and tempera-
ture. It is a generic fact that when those are changed the
system is driven into different phases. When this happens at
zero temperature one says that a quantum phase transition
(QPT) has occurred [14]. Different phases of a system are,
by definition, characterized by radically different physical
properties, e.g., the expectation value of some distinguished
observable (order parameter). This in turn implies that the
corresponding quantum states have to be statistically distin-
guishable more effectively than states belonging to the same
phase. It is a non trivial result that the degree of statistical
distinguishability is quantified by the Hilbert-space (pure
states) distance [15] or by the density operator distance
(mixed states) [16]. This amount to saying that the Hilbert-
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space geometry is an information-space geometry [17-19].
One is then naturally led to consider the distance functions
between infinitesimally close quantum states obtained by an
infinitesimal change of the parameters defining the system’s
Hamiltonian. Boundaries between different phases are then
tentatively identified with the set of points where this small
change of parameters gives rise to a major change in the
distance, i.e., major enhancement of the statistical distin-
guishability. This is precisely the strategy advocated in
[20-25] in the so-called metric (or fidelity) approach to criti-
cal phenomena.

The purpose of this paper is to establish the following
result: quantum criticality represents a resource for the quan-
tum estimation of Hamiltonian parameters. Indeed, by ex-
ploiting the geometrical theory of quantum estimation, we
will show that the accuracy of the estimation of coupling
constants and field strengths at the critical points is greatly
enhanced with respect to the noncritical ones. We will also
discuss ultimate limits imposed by quantum mechanics to
this scheme of parameter estimation. These results are, under
several points of view, an analog of those showing that en-
tanglement is a useful metrological resource [26-28]. In par-
ticular, if L denotes the size of a system and \ is the relevant
coupling parameters driving a quantum phase transition, we
will show that a relative improvement of order L may be
achieved in the estimation of \ at the critical point.

The paper is structured as follows. In Sec. II we provide a
brief introduction to the geometrical theory of quantum esti-
mation, whereas in Sec. III we review the metric approach to
quantum criticality. In Sec. IV we show how quantum criti-
cal systems represent a resource for quantum estimation and
derive general results about ultimate quantum limits to pre-
cision. In Sec. V we illustrate properties of the optimal mea-
surements, also for systems at finite temperature, and the
connection with the optimal measurement for state discrimi-
nation. In Sec. VI we illustrate our general results by means
of a specific example involving a fermion tight-binding
model with pair creation. Section VII closes the paper with
some concluding remarks.
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II. GEOMETRY OF QUANTUM ESTIMATION THEORY

The solution of a parameter estimation problem amounts
to finding an estimator, i.e, a mapping N=X(x,,X,, ...) from
the set y of measurement outcomes into the space of param-
eters. Optimal estimators in classical estimation theory are
those saturating the Cramer-Rao inequality,

ViX]=F'(n),

which poses a lower bound on the mean square error
V)\[):]jk=E}\[():—)\)j():—)\)k] in terms of the Fisher informa-
tion

F(\) = f dN)p(AN)[dy In p(\N) .
X

Of course for unbiased estimators, as those we will deal with,
the mean square error is equal to the covariance matrix
VAN = ExIN N = ENINIEN N

When quantum systems are involved any estimation prob-
lem may be stated by considering a family of quantum states
©(\) which are defined on a given Hilbert space H and la-
beled by a parameter A\ living on a d-dimensional manifold
M, with the mapping A— @(\) providing a coordinate sys-
tem. This is sometimes referred to as a quantum statistical
model. In turn, a quantum estimator X for \ is a self-adjoint
operator, which describes a quantum measurement followed
by any classical data processing performed on the outcomes.
As in the classical case, the goal of a quantum inference
process is to find the optimal estimator. The ultimate preci-
sion attainable by quantum measurements in inferring the
value of a parameter or a set of parameters is expressed by
the quantum Cramer-Rao (QCR) theorem [16,29] which sets
a lower bound for the mean square error of the quantum
Fisher information. The QCR bound is independent on the
measurement and very much based on the geometrical struc-
ture of the set of the involved quantum states. The symmetric
logarithmic derivative L(\) (SLD) is implicitly defined as
the (set) Hermitian operator(s) satisfying the equation(s)

7,000 = S1EMIL, M) + £,00e00),

where d,:=d/d,, (u=1,...,d). From the above equation,
when 0;+0;>0, one obtains

(L, M)ep =2(ejla,e0N)|e/(e;+ e,

where we have used the spectral resolution E(\)
=20 ¢{¢s/. The quantum Fisher information H(\) (QFI)
is a matrix defined as follows:

Hy0) =Tr| 20, 00L,00 + £,00£,00} |

The QFI is symmetric, real, and positive semidefinite, i.e.,
represents a metric for the manifold underlying the quantum
statistical model [17,18]. The QCR theorem states that the
mean square error of any quantum estimator is bounded by
the inverse of the quantum Fisher information. In formula
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ViA1= H' (0N, (1)

QCR is an ultimate bound: it does depend on the geometrical
structure of the quantum statistical model and does not de-
pend on the measurement. Notice that due to noncommuta-
tivity of quantum mechanics the bound may be not attain-
able, as it is the case for several multiparameter models.
When one has at disposal M identical copies of the state @y

the QCR bound reads V)\[):] = 1/MH(N), which is easily de-
rived upon exploiting the additivity of the quantum Fisher
information. A relevant remark [16,29] is that the SLD itself
represents an optimal measurement and the corresponding
Fisher information is equal to the QFL

III. GEOMETRY OF QUANTUM PHASE TRANSITIONS

Now we turn to illustrating the achievements of the metric
approach to QPTs that are relevant to the problem investi-
gated in this paper. The crucial point is that this approach,
being based on the state-space geometry is universally appli-
cable to any statistical system and does not require any pre-
liminary understanding of the structure of the different
phases, e.g., symmetry breaking patterns and order param-
eters. In principle, not even the system’s Hamiltonian has to
be known as long as the relevant states are (see, e.g., the
analysis of matrix-product state QPTs [24]). Of course the
main conceptual as well as technical obstacle one has to
overcome in order to get this simple strategy at work is pro-
vided by the fact that the relevant phenomena are intrinsi-
cally thermodynamical limit ones. More technically, one
considers the set of Gibbs thermal states @ 4(\):=Z"!e PHW
(Z:=Ti[e PHM]) associated with a parametric family of
Hamiltonians {H(\)}\c . Physically the N\’s are to be
thought of as coupling constant strengths and external fields
defining the many-body Hamiltonian H(\). The systems one
is interested in are characterized by the fact that, in the ther-
modynamical limit, they feature a zero temperature, i.e.,
quantum, phase transitions (QPT) for critical values A, [14].
We now consider the Bures metric ds123=2 18 udN AN, over
the manifold of density matrices where [30]

8= lz <§Dj|aﬂg|¢k><¢k|ave|¢’j>'
o Okt 0

)

The key result of the metric (or fidelity) approach to QPTs is
that the set of critical parameters can be identified and ana-
lyzed in terms of the scaling and finite-size scaling behavior
of the metric (2). More precisely the metric has the following
properties: (i) In the thermodynamical limit and in the neigh-
borhood of the critical values . the zero-temperature metric
has the scaling behavior dsg~ LYN—\ |72, where L is the
system size, d is the spatial dimensionality, v is the correla-
tion length exponent (£~[N—\.™), and A,=2{+d-2A,.
Here { is the dynamical exponent and Ay is the scaling di-
mension of the operator coupled to . (ii) At the critical
points, or more generally in the critical region defined by L
< ¢, the finite-size scaling is ds§~Ld+As. The main point is
that for a wide class of QPTs Ag can be greater than zero,
whereas at the regular points the scaling is always extensive,
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ie., dszB ~ L?. To be precise superextensive behavior requires
that the perturbation be sufficiently relevant. The superexten-
sive behavior gives rise, for L—, to a peak (drop) of the
metric (fidelity) that allows one to identify the boundaries
between the different phases. Moreover, it can be proven
[31] that, for local Hamiltonians, superextensive behavior of
any of the metric elements is a sufficient condition for gap-
lessness, i.e., criticality. On the other hand, criticality is not a
sufficient condition for such a superextensive scaling. There
are indeed QPTs driven by local operators not sufficiently
relevant (renormalization group sense) where no peak in the
metric is observed at the critical point [31]. (iii) When the
temperature is turned on one can still see the signatures of
quantum criticality. This is done by studying the scaling, as a
function of the temperature, of the elements of the metric (2)
or fidelity [32]. In particular, when the temperature is small
but bigger than the system’s energy gap one has ds,zg~7“/3
(B8>0). When one sits, in the parameter space, at the critical
point this result can be extended all the way down to zero
temperature giving rise to a divergent behavior that matches
LIN=\"2s. Remarkably, crossovers between semiclassical
and quantum critical regions in the (7',\) plane can be iden-
tified by studying the largest eigenvalue of the metric or its
curvature [33].

IV. CRITICALITY AS A RESOURCE

To the aims of this paper it is crucial to notice that the QFI
is proportional to the Bures metric (2). Indeed, by evaluating
the trace defining the QFI in the eigenbasis of @(\) one
readily finds [16] g = JTH uv This simple remark, along with
the results of the metric approach to criticality summarized
in the previous section, immediately lead to the main conclu-
sion of this paper: the estimation of a physical quantity driv-
ing a quantum phase transition is dramatically enhanced at
the quantum critical point. It is important to notice that the
Hamiltonian dependence on the quantity to be estimated can
be even an indirect one. More precisely, suppose that H de-
pends on a set of coupling constants N and those in turn
depend on the unknown (to be estimated) quantities \'; i.e.,
N=f(\"), through a known function f; we assume also that f
is smooth and that its derivatives are bounded and the sys-
tem’s size independent. From the tensor nature of the Bures
metric, i.e., g,,=84p(INa/ N, )(INg/IN,), one has that the
QFI associated to the N’ has the same dependence on the
system’s size of the QFI associated to the N\’s and the same
divergencies in the thermodynamical limit. From the QCR
bound (1) then it follows that if one is able to engineer a
system such that the coupling constants A defining its Hamil-
tonian (featuring QPTs) depends on the unknown quantities
N\’ in the way outlined above then the \'’s can be estimated
with a greater efficiency in the points corresponding to the
QPTs. For example, if A\=uy—\’, then N\’ can be effectively
estimated around N'=uo—\, (ug is assumed to be exactly
known).

In order to quantitatively assess the improvement in the
estimation accuracy, let us focus on the single parameter case

\ € R. In this case the QCR reads V)\[):] =(4g,,)"". From the
results summarized in the previous section one easily sees
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that (i) in the neighborhood of the critical point and at zero

temperature the optimal covariance V}\[):] scales like |\
—N\ |"2«. This is a remarkable fact for at least two reasons. On
the one hand, it means that the covariance itself scales as the
parameter and thus divergence of the QFI are allowed [12].
On the other hand, for those QPTs such that A,>0, the co-
variance can be then pushed all the way down to zero by
getting closer and closer to the quantum critical point; (ii) the

covariance of X may achieve the limit L™ where a=d in all
regular, i.e., noncritical points, while at the critical ones one
can achieve a>d. For example, in the class of one-
dimensional systems studied in [22-24] one has that the es-
timation accuracy goes from order L™! in the regular points
to L2 at the critical points; (iii) at the critical point in the
parameter space and for finite temperature 7 the covariance
of the optimal estimator scales like 7. The exponent 8 is
related to the A, above and for a class of QPTs is greater
than zero [33]. In this case by approaching zero temperature
accuracy grows unboundedly, i.e., QFI diverges [12]. In con-
trast, at the regular points accuracy remains finite even for
T—0 (and the finite system’s size). In the quasifree fermi-
onic case mentioned above one has S=1.

A. Finite-size corrections

In view of practical applications involving realistic
samples, we now consider corrections arising from the finite
system size. As we have seen, when L — o, the maximum of
the QFI is located at the critical point \... Instead, for finite L,
the location of the maximum is shifted by an amount which
goes to zero as L— 0. To obtain an estimate of the shift one
must include an off-scaling contribution. The previous for-
mulas for the scaling of dsé, ‘H in the off- and quasicritical
regions can be combined in a single equation valid in a
broader regime as follows:

H A A A,—€
= L°s(z) + L2sD(\) + L °C(\) + (smaller terms).
3)

Here z is the scaling variable z=(L/&)"", €>0, and ¢ is a
scaling function satisfying ¢(z) ~z "¢ when z— o (the off-
critical region), whereas we must have ¢(0)# 0 to comply
with the behavior in the quasicritical region (z—0). The ex-
istence of such a scaling function is a consequence of the
scaling hypothesis. Instead the functions C(\), D(\) are ana-
lytic around A and are responsible for corrections to scaling.
The maximum of H(\) defines a pseudocritical point )\;
whose location, for large L is given by

! D/ CI
)\: — )\C ~ — %L—llv_ gL—Z/V_ JL—2/V—E. (4)

One can say that the shift exponent of the QFl is 1/v, 2/ v, or
larger depending on the form of the functions above. A simi-
lar shift of the location of the quantum critical point may be
observed when the temperature is turned on.
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V. OPTIMAL MEASUREMENTS

Our results establish the quantum limits to the degree of
accuracy in estimating the coupling constant of a locally in-
teracting many-body system. It is crucial to stress again that
the QCR bound is, in this case, attainable with the corre-
sponding SLD representing an observable to be measured in
order to achieve the optimal estimation. Of course the SLD
may be, in general, a very complex observable which itself
depends on the ground or thermal state of the system. For a
family of pure states @(N\)=|¢(\)){¢/(\)|, the SLD is easily
derived as

L, (N) =29,0(0\) =23, + |9,4)4).

Using first order perturbation theory, one finds (n|z9M¢)
=(E,—Ey)"(n|d,H|0) where now the [n)’s (E,’s) are the
eigenvectors (eigenvalues) of H(\) being |0) the ground
state. Therefore, we may write the SLD as

L£,(\) =2[(Pyd,HG(E,) +H.c],

where Py=|0)0|, G(E)=P,[H(\)-E]~'P,, being P,=1-P,,.
In the one parameter case the nonvanishing eigenvalues of
the SLD are given by *2\(d¢|d)—|(| d)|>= = 2dsy/ d\
from which the unknown parameter \ can be estimated. The
corresponding QFI is given by [25]

H|n)n|d,H|0)

~ e
P _420 (E,— Eo)’

From this expression one sees that the origin of the diver-
gence of QFI at the critical point is the vanishing (in the
thermodynamical limit) of one of the E,—E, factors.

(5)

A. Finite temperature

Now we would like to show that also classical, i.e., tem-
perature driven, phase transitions provide, in principle, a
valuable resource for estimation theory. Consider the metric
induced on the (inverse) temperature axis by the mapping
B—o(B). In [2533] it has been shown that ds?
~dB*((H*) g—(H)p)=dB*Bcy(B), where c\(p) denotes the
specific heat at the inverse temperature SB. In [25] it was
noticed that this relation suggests a neat and deep interplay
between Hilbert space geometry and thermodynamics. Here
we stress that also quantum estimation gets involved. Indeed,
following the same lines used in the QPTs case, one easily
realizes that when the specific heat shows an anomalous in-
crease then the same happens to the QFI associated to the
parameter 8. From this fact stems the fact that at the classical
phase transitions with diverging specific heat one can esti-
mate temperature with arbitrarily high accuracy. Conversely,
if the specific heat is bounded from above the estimation
accuracy of the temperature is bounded from below. Again,
in analogy with the QPT case discussed above, if 8 can be
made dependent, in some known fashion, on some other pa-
rameter N\, then this latter can be estimated with better ac-
curacy at the phase transition. In other words, we have a
quantitative statement of the intuitive expectation about the
fact that thermometers are more precise at the points where
changes of state of matter occur.
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B. Quantum discrimination

In our analysis the problem of interest is that of estimating
the value of a parameter or a set of parameters. On the other
hand, when one deals with discrimination of parameters
rather than estimation, the relevant metric dSZQCB can be de-
rived from the so-called quantum Chernoff bound [34],
which arises in the problem of discriminating two quantum
states in the setting of asymptotically many copies. In view
of the inequality %dséSdSZQC <dsj, all the results obtained
here can be generalized to dsjcp. This means that quantum
criticality is a resource for quantum discrimination as well.

C. Applications: Two-stage adaptive measurements

A question may arise on how our results may be exploited
in practice, being the form of the SLD, which maximizes the
Fisher information, typically dependent on the true, un-
known, state of the quantum system. The apparent loophole
in the argument is closed by noticing that one can still
achieve the same rate of distinguishability by a two-stage
adaptive measurement procedure [35]. Roughly speaking the
estimation scheme goes as follows: one starts by performing
a generic, perhaps suboptimal, measurement on a vanishing
fraction of the copies of the system and obtains a preliminary
estimation. Then one measures the remaining copies, taking
the the preliminary estimation as the true value. This guar-
antees that the Fisher information obtained by the second
series of measurements approaches the QFI as the number of
measurements goes to infinity, and that the resulting estima-
tor saturates the QCR bound. Notice that the achievability of
the QCR bound is ensured when a single parameter has to be
estimated [36], though the actual implementation of the op-
timal measurement, which is in general, not unique [37],
may be more or less challenging depending on the specific
features of the system under investigation. We also notice
that any maximum-likelihood (ML) [38] estimator, defined

as the estimator N=X(x;,X,, ...) maximizing the likelihood
function E(A):HkMp(xk| \), M being the number of measure-
ments and p(x|\) the conditional probability density of the
measured quantity, is consistent, i.e., it converges in prob-
ability to the true value and is asymptotically (M>1) effi-
cient, i.e., it saturates the Cramer-Rao bound in the limit of
many measurements, thus achieving the ultimate bound in
precision.

VI. QUANTUM ESTIMATION IN THE BCS MODEL

In order to appreciate the critical enhancement of preci-
sion in a specific physical situation we consider a fermionic
tight-binding model with pair creation, i.e., the BCS-type
model defined by the Hamiltonian

L L

Hy=—J2 (cleiy + yelel,, +He) =20, clei, (6)
i=1 i=1

where L denotes the system size and periodic boundary con-
ditions have been used. Upon considering the thermal or the
ground state of the above Hamiltonian we have a unipara-
metric statistical model where J is the parameter to be esti-
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mated, & is the external (tunable) field, and the anisotropy y
is a fixed quantity. For y# 0 this model undergoes a quantum
phase transition of Ising type at h=J (because of symmetries
there is an analogous critical point at h=-J). Precisely
around the Ising transition point we will investigate the en-
hancement in precision offered by criticality.

Moving to Fourier space the Hamiltonian may be rewrit-
ten as

Hy= X glm+n—1)+
keBZ

=>[- &7+ A7, (7)

k>0

> (iAgcfc!, +Hee.)
keBZ

where €,=—J cos(k)—h, A,==Jysin(k), the Brillouin zone
BZ ranges from —m to 7 and the momenta are of the form
k=2mn/L, with integer n. The expression (7) for H, follows
from the observation that in the subspace spanned by

{|0), ckc% |O)} the operators mg+n_—l=—7 and (icjc’,
+H.c.)=1], represent a set of Pauli operators 7" (and they are
zero in the complementary space).

In the above quasispin formulation the Hamiltonian in Eq.
(7) has a block form, and so is the thermal state @,
=Z'exp{-BH,}. Being each block is essentially two-
dimensional, the SLD of the model can be obtained by com-
puting the SLD in each block, with the aid of formula (18) of
[39]. One then arrives at

L) =D BiF+b)7
k>0
where at T=0,
| IZAkEk hlAi
by=a=kk pro 2k (8)
J A} JA;

where Ay=Ve+A7.
Going back to real space we have

1
L) = SLb(0) = X c[b(1 - e
Lj

Y(j - e} +He. |, 9)

1
+=i c;b
2 1y
where

1 .
bi(d) = — E e_lkdbz,
keBZ
and analogously for b*(d). For example, for L=4 the general
formula reduces to

hy JYyN Jy ¥
['(J)z(hz_'_yz‘]z)m{h’ 2 +_[C103+02C4+HC]

+h[cic - cleh+ Hc]} , (10)

which represents a collective measurement on the system.
N=X jc;cj is the total number operator.
In general, the coefficients b%(d) and b”(d) decay expo-

nentially at normal points of the phase diagram and thus the
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SLD is a local operator. On the other hand, the decay is only
algebraic in the critical region |h—J|L=<1 and this corre-
sponds to a SLD given by a collective measurement. Indeed,
at the Ising transition one can show that b”(d)~d~'. For
b*(d) the integral of the Fourier coefficient does not converge
for large L, so that one has to keep the sum with L finite. The
sum is well approximated by b*(d)=2.9|%~1|(~1)%. Notice
that for y=0 the SLD at zero temperature is identically zero
since for any finite L changing J only results in a level cross-
ing.

When the temperature is turned on, one can draw similar
conclusions. The local character of the optimal measurement
is enhanced at regular points VL, whereas in the critical re-
gime nonlocal measurements are needed. More specifically,
the coefficients b>Y(d) decay exponentially at regular points
and algebraically in the region |h—J|<T.

The ultimate precision is determined by the QFI H,,
which, for such a quasifree Fermi system reduces to (see

[25)
S (gogee S 0T g

4
k>0 k>0 [\k

H(J) =

where 9, =arctan(e,/A;). Upon introducing the scaling vari-
able z=L(h-J) one is interested in the behavior around the
Ising transition, i.e., for z<<1 where one can observe super-
extensive behavior. Indeed, upon expanding for small z and
using a Euler-Maclaurin formula, one finally gets

L? L (y»-1)L?
HU) = PP 2P 1%{ 1274 F O(L)]
2 4
- %{m+ O(Lz)] +0(2). (12)

From this expression one can explicitly see the improvement
of precision due to the underlying quantum critical behavior
of the system. Besides, one can locate the pseudocritical
point, defined as a value of the field leading to the maximum
of H(J). Differentiating the above formula with respect to &
one obtains

hy =J+30J(y* = 1)L+ O(L™),

and use this information to achieve the quantum Cramer-Rao
bound also for finite-size systems.

With the notations of Sec. IV A, we note we can write the
scaling form of H(J)/L as in Eq. (3) with A,=v=€=1 and

2

$a)= 24]2y2 7207 +0(@), (13)
(¥ -

D(h) = 12/ 4(h J)+O0((h=J)%), (14)
=5 27;0(/1 . (15)

Having ¢'(0)=0 the shift exponent turns out to be 2/v=2.
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At finite temperature and in the thermodynamical limit the
QFI has been calculated previously for a quasifree Fermi
system [33]. In the present case we obtain

@ B ﬁf” dk [J + h cos(k)? 16

L 8w), cosh’(BA2) Ai (16)
1 [T cosh(BAy) — 1 h** sin(k)*

ZWL cosh(BA,) Ai dk- (17)

In this case we verified numerically that the maximum of
H(J) always occurs at h=J where it has a cusp. Then, since
the first integral vanishes when the temperature goes to zero
we evaluate the second term at the critical point. For h=J the
dispersion A, is linear around k=, which gives the domi-
nant contribution to the integral. One then obtains

20 L
= T|J

H(J) = +0(1°),

C=0.915 being the Catalan constant. From the above formula
one can again appreciate the enhancement of the bound to
precision occurring when 7 goes to zero in the critical re-
gime.

VII. CONCLUSIONS AND OUTLOOKS

In conclusion, upon bringing together results from the
geometric theory of quantum estimation and the geometric
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theory of quantum phase transition we have quantitatively
shown that phase transitions represent a resource for the es-
timation of Hamiltonian parameters as well as of tempera-
ture. To this aim we used the quantum Cramer-Rao bound
and the equivalence of the notion of the quantum Fisher
metric and that of the quantum (ground or thermal) state
metric. We have also found an explicit form of the observ-
able achieving the ultimate precision. A specific example in-
volving a fermionic tight-binding model with pair creation
has been presented in order to illustrate the critical enhance-
ment and the properties of the optimal measurement. The
improvement in estimation tasks brought about by quantum
criticality is reminiscent of the one associated to quantum
entanglement in computational as well as metrological tasks.
The analysis reported in this paper makes an important point
of principle and establishes the ultimate quantum limits to
the precision with which one can estimate coupling constants
characterizing a quantum Hamiltonian. Since the Hamil-
tonian completely characterizes the quantum dynamics one
can say that our results shed light on the ultimate limits
imposed by quantum theory to the observer capability of
knowing a quantum dynamics. Remarkably the boundaries
between different phases of quantum matter are where these
limits gets looser and a deeper knowledge can be achieved.
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