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A recent proposal for mixed dynamics of classical and quantum ensembles is shown, in contrast to other
proposals, to satisfy the minimal algebraic requirements proposed by Salcedo for any consistent formulation of
such dynamics. Generalized Ehrenfest relations for the expectation values of classical and quantum observ-
ables are also obtained. It is further shown that additional desirable requirements, related to separability, may
be satisfied under the assumption that only the configuration of the classical component is directly accessible
to measurement, e.g., via a classical pointer. Although the mixed dynamics is formulated in terms of ensembles
on configuration space, thermodynamic mixtures of such ensembles may be defined which are equivalent to
canonical phase-space ensembles on the classical sector. Hence, the formulation appears to be both consistent
and physically complete.
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I. INTRODUCTION

Many proposals have been made for mixing classical and
quantum dynamics �1,2�. These proposals may be broadly
classified into mean-field, phase-space, and trajectory catego-
ries, and all fail some important criterion—such as conserva-
tion of energy and probability, back reaction by the quantum
component on the classical component, positivity of prob-
abilities, correct equations of motion in the limit of no inter-
action, and description of all interactions of physical interest
�2–11�. Hence, while often of practical interest for calcula-
tions in molecular dynamics �10–12�, the above proposals
have not led to a formulation of mixed classical and quantum
dynamics that may be regarded as physically fundamental.
Such a formulation would be of interest not only for making
physically consistent numerical calculations, but also for
modeling “classical” measurement apparatuses and coupling
quantum systems to classical spacetime metrics �4�.

Recently, a new proposal has been made that falls outside
the above categories �13�. It is based on the description of
physical systems by ensembles on configuration space, and
satisfies all of the above-mentioned criteria. Moreover, it has
been successfully applied to discuss position and spin mea-
surements, interacting classical and quantum oscillators, and
the coupling of quantum fields to classical spacetime �13,14�.
However, while this “configuration-ensemble” approach is
therefore a promising formulation of mixed dynamics, only
particular observable properties, such as position, momen-
tum, energy, and angular momentum, have been discussed in
any detail. Hence, further investigation is necessary to deter-
mine whether it is fully self-consistent.

In this regard, Salcedo has recently specified two “mini-
mal requirements for a consistent classical-quantum formu-
lation” �10�:

�i� a Lie bracket may be defined on the set of observables,
�ii� the Lie bracket is equivalent to the classical Poisson

bracket for any two classical observables, and to �i��−1 times
the quantum commutator for any two quantum observables.

These have been previously justified on physical grounds
by Caro and Salcedo �6�, and are highly nontrivial: none of
the above-mentioned proposals, in those cases where they

have been sufficiently developed to identify the general
“classical” and “quantum” observables of the theory, satisfy
both requirements �6,10,11�. These minimal requirements
therefore provide a critical test for the configuration-
ensemble approach to mixed dynamics.

In Sec. II it is shown that the configuration-ensemble for-
mulation, unlike other proposals, does pass the above test. In
particular, a Lie algebra of observables may be defined that
satisfies requirements �i� and �ii� above.

It is further shown in Sec. II that the quantum Ehrenfest
relations generalize to mixed systems, and in particular that
the expectation values for the position and momentum ob-
servables of linearly coupled classical and quantum oscilla-
tors obey the classical equations of motion. It follows that
the configuration-ensemble formulation also satisfies the
“definite benchmark… for an acceptable classical-quantum
hybrid formalism” proposed by Peres and Terno �7�.

In Sec. III it is demonstrated that the additional reasonable
requirement that

�iii� The classical configuration is invariant under any ca-
nonical transformation applied to the quantum component

and vice versa, is also satisfied. This requirement is
weaker than a related requirement, that the Lie bracket van-
ishes for all pairs of classical and quantum observables, pre-
viously proposed by Caro and Salcedo �6� �see Eq. �18�
thereof�, but is sufficient if the physically reasonable as-
sumption is made that only the configuration of the classical
component is directly accessible by measurement �e.g., via a
classical pointer�.

Finally, in Sec. IV it is shown that the configuration-
ensemble approach is consistent with thermodynamics. In
particular, a generalized “canonical ensemble” may be de-
fined as a suitable mixture of distinguishable stationary en-
sembles on configuration space, which is equivalent to the
usual canonical ensemble on phase space for any semi-
ergodic classical system, and to the usual canonical ensemble
on Hilbert space for any quantum system. This demonstrates
that the formulation of the approach on configuration space
is not a barrier to a description of all physically relevant
systems �and also implies classical statistical mechanics may
be given a Hamilton-Jacobi formulation�.
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II. OBSERVABLES IN THE CONFIGURATION-ENSEMBLE
APPROACH

A. General observables

The description of physical systems by ensembles on con-
figuration space may be introduced at quite a fundamental
and generic level �13,15�. The starting point is simply a prob-
ability density P on the configuration space of the system,
the dynamics of which is assumed to satisfy an action prin-
ciple. Thus, there is a canonically conjugate quantity S on the

configuration space and an ensemble Hamiltonian H̃�P ,S�
such that

�P

�t
=

�H̃

�S
,

�S

�t
= −

�H̃

�P
. �1�

Here � /�f denotes the appropriate variational derivative on
the configuration space. For the particular case of a continu-
ous configuration space, indexed by the position coordinate
�, and a functional L�f� of the form L�f�=�d� F�f ,�f ,��,
one has the useful formula �16�

�L/�f = �F/�f − � · ��F/���f�� .

As a simple example, the ensemble Hamiltonian

H̃Q =� dq P� ��S�2

2m
+

�2

8m

��P�2

P2 + V�q�	
describes a quantum spin-zero particle of mass m, moving
under a potential V�q�. In particular, the equations of motion
�1� reduce in this case to the real and imaginary parts of the
Schrödinger equation,

i����/�t� = �− ��2/2m��2 + V�� ,

where ��q , t�ªP1/2eiS/�. Moreover, if the limit �→0 is

taken in the ensemble Hamiltonian H̃Q, the equations of mo-
tion for P and S reduce to the Hamilton-Jacobi and continu-
ity equations for an ensemble of classical particles �13�.
Thus, in the configuration-ensemble approach, the primary
difference between quantum and classical evolution lies in
the choice of the ensemble Hamiltonian.

It may be noted that the numerical value of the above
ensemble Hamiltonian is just the quantum average energy,
i.e.,

H̃Q�P,S� =� dq �*�q��− ��2/2m��2 + V���q� ,

as first demonstrated by Madelung in Eq. �5�� of Ref. �17�.
The fact that the quantum equations of motion can be gen-
erated by regarding P and S as canonically conjugate fields
appears to have first been noted by Bohm, following Eq. �9�
of Ref. �18�. Examples of mixed quantum-classical ensemble
Hamiltonians are given elsewhere �13,14�, and also in the
following sections.

While a number of general properties and applications of
the configuration ensemble formalism have been previously
considered �13�, the description of “observables” has only
been briefly alluded to, with emphasis on particular quanti-
ties such as position, momentum, spin, and energy. The gen-

eral description is therefore addressed here, to enable the
properties of observables for mixed configuration ensembles
to be compared against the two minimal requirements dis-
cussed in the Introduction.

Note first that the conjugate pair �P ,S� allows a Poisson
bracket to be defined for any two functionals A�P ,S� and
B�P ,S�, via �16�


A,B� ª� d���A

�P

�B

�S
−

�B

�P

�A

�S
	 �2�

�where integration is replaced by summation over any dis-
crete parts of the configuration space�. Thus, the equations of

motion �1� may be written as �P /�t= 
P , H̃� and �S /�t

= 
S , H̃�, and more generally it follows that

dA/dt = 
A,H̃� + �A/�t �3�

for any functional A�P ,S , t�. The Poisson bracket is well
known to be a Lie bracket �16�, and in particular is linear,
antisymmetric, and satisfies the Jacobi identity. Hence, the
first minimal consistency requirement, given in Sec. 1 above,
is automatically satisfied by choosing the observables to be
any set of functionals of P and S that is closed with respect
to the Poisson bracket.

It is important to note that an arbitrary functional A�P ,S�
will not be allowable as an observable in general. This is
analogous to the restriction of expectation values to bilinear
forms of linear Hermitian operators in standard quantum me-
chanics, even though a commutator bracket can be more gen-
erally defined �19�. For example, the infinitesimal canonical
transformation

P → P + ��A/�S, S → S − ��A/�P

generated by any observable A must preserve the interpreta-
tion of P as a probability density, i.e., the normalization and
positivity of P must be preserved. This imposes the corre-
sponding fundamental conditions �13�

A�P,S + c� = A�P,S�, �A/�S = 0 if P��� = 0, �4�

where c is an arbitrary constant.
Note that each of the above conditions is consistent with

the Poisson bracket. First, with the definition I�P ,S�
ª�d� P, the normalization condition is simply the require-
ment that I is invariant under allowed canonical transforma-
tions, i.e., that �I=�
I ,A�=0. Hence, if it holds for two ob-
servables A and B, then it automatically holds for 
A ,B� via
the Jacobi identity, since

ˆI,
A,B�‰ = − ˆA,
B,I�‰ − ˆB,
I,A�‰ = 0.

Similarly, the positivity condition may be rewritten as �P
=�
P ,A�=0 whenever P���=0 �otherwise P��� can be de-
creased below 0 by choosing the sign of � appropriately�,
which again holds for 
A ,B�, if it holds for A and B, as a
consequence of the Jacobi identity.

It follows that the observables corresponding to a
configuration-ensemble description should be chosen as
some set of functionals, satisfying the normalization and
positivity constraints �4�, that is closed with respect to the
Poisson bracket in Eq. �2�. Under any such choice, the first
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minimal requirement �i� in Sec. I is automatically satisfied,
where the Lie bracket is identified with the Poisson bracket.

B. Classical and quantum observables

To determine whether the second minimal requirement �ii�
in Sec. I is also satisfied, it is necessary to first define the
classical and quantum observables of a mixed quantum-
classical ensemble. Consider, therefore, a mixed quantum-
classical ensemble, indexed by the joint configuration �
= �q ,x�, where q labels the quantum configuration and x la-
bels the classical configuration. For example, q may refer to
the position of a quantum system, or, more generally, label
some complete set of kets 
�q�� �15�. In contrast, x will al-
ways be taken here to refer to some continuous set of coor-
dinates on a classical configuration space �to enable the dis-
cussion of classical phase-space relations�. Hence, the mixed
ensemble is described by two conjugate quantities P�q ,x , t�
and S�q ,x , t�.

First, for any real classical phase-space function f�x ,k�,
define the corresponding classical observable Cf by

Cf ª� dq dx Pf�x,�xS� �5�

�where integration with respect to q is replaced by summa-
tion over any discrete portions of the quantum configuration
space�. This is similar in form to a classical average, and
hence the numerical value of Cf will be identified with the
predicted expectation value of the corresponding function
f�x ,k�, i.e.,

Cf  �f� .

It is easily checked that Cf satisfies the required normaliza-
tion and positivity conditions �4�. Note that, for classical
observables, �xS plays the role of a momentum associated
with the configuration �q ,x�.

The Poisson bracket of any two classical observables Cf
and Cg follows, using Eq. �2� and integration by parts with
respect to x, as


Cf,Cg� =� dq dx�− f�x · �P�kg� + g�x · �P�kf��

=� dq dx P��xf · �kg − �xg · �kf� = C
f ,g�, �6�

where all quantities in the integrands are evaluated at k
=�xS, and 
f ,g� denotes the usual Poisson bracket for phase-
space functions. Hence, the Lie bracket for classical observ-
ables is equivalent to the usual phase-space Poisson bracket,
as required. Given that the observables are evaluated on a
configuration space, rather than on a phase space, this is a
somewhat remarkable result.

Second, for any Hermitian operator M acting on the Hil-
bert space spanned by the kets 
�q��, define the corresponding
quantum observable QM by

QM ª� dq dx �*�q,x�M��q,x�

=� dq dq�dx�PP��1/2ei�S−S��/��q��M�q� , �7�

where ��q ,x�ªP�q ,x�1/2eiS�q,x�/�, P= P�x ,q�, P�= P�x ,q��,
etc. �and where integration with respect to q and q� is re-
placed by summation over any discrete portions of the quan-
tum configuration space�. This is similar in form to a quan-
tum average, with respect to the hybrid wave function
��q ,x�, and hence the numerical value of QM will be identi-
fied with the predicted expectation value of the correspond-
ing operator M, i.e.,

QM  �M� .

It follows immediately from the second equality in Eq. �7�
that QM satisfies the normalization and positivity conditions
�4�.

To evaluate the Poisson bracket of any two quantum ob-
servables QM and QN, it is convenient to first express the
Poisson bracket in terms of the hybrid wave function ��q ,x�
and its complex conjugate �*�q ,x�. One has in particular for
any real functional A�P ,S� that

�A

�P
=

��

�P

�A

��
+

��*

�P

�A

��*
=

1

�*�
Re��

�A

��
� ,

�A

�S
=

��

�S

�A

��
+

��*

�S

�A

��*
= −

2

�
Im��

�A

��
� ,

and hence, noting that −ad+bc=Im
�a+ ib��c− id��, that


A,B� =
2

�
Im�� dq dx

�A

��

�B

��*� . �8�

Recalling that M and N are Hermitian, so that �*M� may be
replaced by �M��*� in Eq. �7�, it immediately follows that


QM,QN� =
2

�
Im�� dq dx�M��*N�� = Q�M,N�/�i��, �9�

where �M ,N� denotes the usual quantum commutator MN
−NM. Hence, the Lie bracket for quantum observables is
equivalent to the usual quantum commutator, as required.

Equations �2�, �6�, and �9� are the main results of this
section. They imply that any set of observables containing
the quantum observables Cf and the quantum observables
QM, which is closed under the Poisson bracket, will satisfy
both of the minimal requirements �i� and �ii� in Sec. I for a
consistent mixed quantum-classical formulation. In the fol-
lowing sections, it will be shown that further desirable prop-
erties can also be accommodated within the configuration-
ensemble formulation.

C. Example: Generalized Ehrenfest relations

Consider a mixed quantum-classical ensemble, corre-
sponding to a quantum particle of mass m interacting with a
classical particle of mass M via a potential V�q ,x�, where q
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and x denote the position configurations of the quantum and
classical particles, respectively. For simplicity, it will be as-
sumed that both q and x are one dimensional. The mixed
ensemble is therefore described by a probability density
P�q ,x�, a canonically conjugate field S�q ,x�, and an en-
semble Hamiltonian of the form �13�

H̃QC�P,S�

ª� dq dx P� ��qS�2

2m
+

�2

8m

��qP�2

P2 +
��xS�2

2M
+ V�q,x�	 ,

�10�

where �q and �x denote the partial derivatives with respect to
q and x, respectively.

Now, the expectation values of the classical position and
momentum observables follow from Eq. �5� as

�x� = Cx =� dq dx Px, �k� = Ck =� dq dx P�xS ,

and the expectation values of the quantum position and mo-
mentum observables follow from Eq. �7� as

�q� = Qq =� dq dx Pq, �p� = Qp =� dq dx P�qS .

The evolution of these expectation values may be calculated
via Eqs. �3� and �10�, and, as shown below, one finds

d

dt
�x� = M−1�k�,

d

dt
�k� = − ��xV� , �11�

d

dt
�q� = m−1�p�,

d

dt
�p� = − ��qV� . �12�

These results are a clear generalization of the standard
Ehrenfest relations for quantum systems, and similarly imply
that the centroid of a narrow initial probability density
P�q ,x� will evolve classically, for short time scales at least.

Note that for the case of linearly coupled classical and
quantum oscillators, with

V�q,x� =
1

2
m�2q2 +

1

2
M�2x2 + Kqx ,

Eqs. �11� and �12� simplify to give the closed set of equa-
tions

d

dt
�x� = M−1�k�,

d

dt
�k� = − M�2�x� − K�q� ,

d

dt
�q� = m−1�p�,

d

dt
�p� = − m�2�q� − K�x� .

Thus, the centroid of the probability density obeys precisely
the same equations of motion as two fully classical oscilla-
tors �or two fully quantum oscillators�. As noted in the Intro-
duction, this correspondence principle has been previously
proposed by Peres and Terno as a benchmark for any accept-
able classical-quantum hybrid formalism �7�. The above re-
sult therefore further supports the consistency of the

configuration-ensemble formulation of mixed dynamics.
To demonstrate the generalized Ehrenfest relations �11�

and �12�, note first that �x� has no explicit dependence on S
or t, and hence from Eqs. �2�, �3�, and �10� one has

d

dt
�x� =� dq dx x

�H̃QC

�S

= −� dq dx x�m−1�q�P�qS� + M−1�x�P�xS�� .

Applying integration by parts with respect to q and x to the
first and second terms, respectively, one obtains the first re-
lation in Eq. �11�. The first relation in Eq. �12� is obtained in
a similar manner.

To obtain the remaining relations, note that

�H̃QC

�P
=

��qS�2

2m
+

��xS�2

2M
+ V

+
�2

2m

�P1/2

�P

�

�P1/2 � dq dx��qP1/2�2.

The final term simplifies to −��2 /2m���q
2P1/2� / P1/2, which

may be recognized as the so-called quantum potential �18�,
and Eqs. �2�, �3�, and �10� then yield

d

dt
�k� = −� dq dx��xS���q�P

�qS

m
	 + �x�P�xS

M
	�

+� dq dx��xP�� ��qS�2

2m
+

��xS�2

2M
+ V	

− ��2/2m� � dq dx��xP���q
2P1/2�/P1/2.

Application of integration by parts to the first line, with re-
spect to q and x for the first and second terms thereof, re-
spectively, and to the second line with respect to x, leads to
cancellation of all terms involving S, with a term
−�dq dx P�xV remaining. Since the integral in the third line
is proportional to

� dq dx��xP
1/2���q

2P1/2� = −
1

2
� dq dx �x��qP1/2�2,

which vanishes identically, the second relation in Eq. �11�
immediately follows. Finally, the second relation in Eq. �12�
is obtained by similar reasoning �replacement of �q by �x in
appropriate places�.

III. SEPARABILITY AND MEASUREMENT

In contrast to other proposals for mixed dynamics, the
configuration-ensemble approach has been shown to pass the
critical test of meeting the two minimal consistency require-
ments �i� and �ii� in Sec. I. However, while the approach
thereby gains a special status, there are a number of other
requirements that may reasonably be expected of a physical
theory. Some of these, related to local aspects of separability
and measurement, are discussed below.
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A. Configuration separability

It is natural to expect that the classical configuration is
invariant under any canonical transformations applied solely
to the quantum system, and vice versa. This means, in par-
ticular, that a measurement of the classical configuration can-
not detect whether or not a transformation has been applied
to the quantum system, and vice versa, when the components
are noninteracting. This property of configuration separabil-
ity corresponds to requirement �iii� of the Introduction.

To show that this property indeed holds, consider first a
canonical transformation generated by an arbitrary quantum
observable QM. Any classical observable depending only on
the classical configuration x is of the form Cg with g=g�x�
�e.g., Cx�. One thus has Cg=�dq dx Pg�x�=�dq dx �*�g�x�,
and it follows immediately via Eq. �8� that


Cg�x�,QM� =
2

�
Im�� dq dx �*g�x�M�� = 0, �13�

since M acts only on the quantum component of the hybrid
wave function and so commutes with g�x�. Hence, the expec-
tation value of Cg is not changed by the transformation.
Similarly, consider a canonical transformation of the classi-
cal component, generated by an arbitrary classical observable
Cf. Any quantum observable depending only on the quantum
configuration q is of the form QG with G=G�q�. Thus, QG

=�dq dx �*G�q��=�dq dx PG�q�, and it follows immedi-
ately via Eq. �2� that


QG�q�,Cf� = −� dxdqG�q��x · �P�kf� = 0, �14�

using integration by parts with respect to x.
Equations �13� and �14� show that configuration separa-

bility is satisfied. Further, if qm and pm label the mth position
and momentum coordinates of a quantum particle, and xm
and km similarly label the mth position and momentum coor-
dinates of a classical particle, then, noting that Qpm
=�dq dx P��S /�qm� and using Eq. �2�,


Ckm
,Qpn

� =� dq dx�−
�S

�xm

�P

�qn
+

�S

�qn

�P

�xm
	 = 0,

using integration by parts with respect to q and x on the first
and second terms, respectively �it can also be shown that

Ckm

,QM�= 
Cf ,Qpm
�=0�. Together with Eqs. �13� and �14�,

this yields the properties


Cxm
,Qqn

� = 
Cxm
,Qpn

� = 0, �15�


Ckm
,Qqn

� = 
Ckm
,Qpn

� = 0, �16�

for all m and n. Noting Eqs. �6� and �9�, these properties
correspond to conditions assumed by Salcedo �5� �in Eq. �1�
thereof� for proving a no-go theorem for mixed classical and
quantum dynamics. However, this theorem is inapplicable
here, as a further required condition, that observables are
generated by a product algebra, does not hold �see also Sec.
V below�.

B. Strong separability

It is important to note that, while configuration separabil-
ity holds, as per Eqs. �13� and �14�, the stronger separability
requirement


Cf,QM� = 0? �17�

does not hold for arbitrary classical and quantum observ-
ables. For example, for classical and quantum particles hav-
ing masses m and m�, respectively, the Poisson bracket of the
“kinetic energy” observables corresponding to f�x ,k�
= �k�2 / �2m� and M =−�2��q�2 / �2m�� is given by


Cf,QM� =
�2

2mm�
� dq dx P��xS� · �x�P−1/2�q

2P1/2� ,

which does not vanish identically for arbitrary P and S.
However, it will be argued here that the violation of strong
separability does not necessarily lead to any physical incon-
sistencies.

First, it should be noted that in the particular case where
the mixed system describes quantum matter coupled to clas-
sical spacetime �4,13�, a failure of Eq. �17� is irrelevant to
separability issues, as there is no sense in which interaction
between the systems can be switched off—matter bends
space and space curves matter, and so a change in one com-
ponent is fully expected to drive a change in the other com-
ponent. This corresponds to the direct coupling of the metric
tensor to the fields in the corresponding ensemble Hamil-
tonian �13�, and there is no sense in which this ensemble
Hamiltonian can be reduced to a simple sum of a classical
and a quantum contribution.

Second, it is important to note that Eq. �17� does hold in
the special case that the classical and quantum components
are independent �13�, i.e., when

P�q,x� = PQ�q�PC�x�, S�q,x� = SQ�q� + SC�x� . �18�

Thus, independent ensembles are fully described by two con-
jugate pairs �PQ ,SQ� and �PC ,SC� corresponding to the quan-
tum and classical components, respectively. To demonstrate
Eq. �17� for this case, note first from Eq. �5� that

Cf =� dq dx �*�f�x,k�, k =
�

2i
��x�

�
−

�x�*

�*
	 ,

and hence that

�Cf

��
= �*f + �*���kf� ·

�k

��
− �x · ��*���kf� ·

�k

���x��	
= �*f −

�

2i

�*

�
��kf · �x�� −

�

2i
�x · ��*�kf� .

Moreover, from Eq. �7� one has �QM /��*=M�. Since Eq.
�18� is equivalent to a factorization ��q ,x�=�Q�q��C�x� of
the hybrid wave function, implying that k=�xSC is indepen-
dent of q, it follows that
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� dq dx
�Cf

��

�QM

��*

=� dq �
Q
*M�Q�� dx �

C
*�Cf

−
�

2i
� dx��

C
*��kf · �x�C� + �C�x · ��

C
*�kf��	

=� dq �
Q
*M�Q� dx �

C
*�Cf ,

where integration by parts has been used to obtain the final
result. This expression is clearly real, implying immediately
from Eq. �8� that 
Cf ,QM�=0, as required.

Thus, strong separability is satisfied for independent en-
sembles. Further, since such ensembles remain independent

under ensemble Hamiltonians of the form H̃=C+Q �for
some pair of classical and quantum observables C and Q�,
strong separability holds at all times for noninteracting inde-
pendent ensembles.

More generally, the violation of strong separability poses
an apparent problem: a transformation acting solely on one
component can lead to changes in the expectation values of
observables in the other component. However, this problem
may be resolved by imposing a physically reasonable restric-
tion on the types of observables that are directly accessible to
measurement.

For example, consider the assumption that �A� the only
observables accessible to direct measurement are classical
configuration observables. Here “configuration observables”
are those that depend only on the configuration of the clas-
sical system, i.e., they are of the form Cg�x�. Under this as-
sumption, information about any other classical or quantum
observables is obtainable only indirectly, by coupling them
to such a classical configuration observable.

Empirically, this assumption is a very reasonable one to
make, as in practice all measurements do reduce to the ob-
servation of some position or configuration of a classical
apparatus �such as the position of a pointer�. It is of interest
to note that a similar assumption �for different reasons� is
also made in the de Broglie–Bohm interpretation of standard
quantum mechanics �18,20�.

Now, under assumption A, only changes in the expecta-
tion values of classical configuration observables are directly
observable. However, from Eq. �13� above, such expectation
values are invariant under any canonical transformations that
act solely on the quantum component. Hence, the assumption
implies that violations of strong separability are simply not
observable.

C. Measurement aspects

Examples of measurements of position and spin on quan-
tum ensembles, via interaction with an ensemble of classical
pointers, and the corresponding decoherence of the quantum
component relative to the classical component, have been
described previously within the configuration-ensemble ap-
proach �13�. Here it is noted that there is a simple model for
describing the indirect measurement of any quantum observ-

able, via a direct measurement of the configuration of a clas-
sical measuring apparatus. The existence of such a model
indicates that assumption A, discussed in Sec. III B above,
does not restrict the types of information that can be gained
by measurement.

In particular, the measurement of an arbitrary quantum
observable QM may be modeled by the ensemble Hamil-
tonian

H̃ ª H̃0 + ��t� � dq dx �*�q,x���

i

�

�x
	M��q,x� ,

where ��t� vanishes outside the measurement period, and x
denotes the position of a one-dimensional classical pointer
�with integration over q replaced by summation over any
discrete values�. Note that the interaction term satisfies the
normalization and positivity constraints �4�. As will be
shown, this term correlates the eigenvalues of M with the
position of the pointer, in a manner rather similar to purely
quantum models of measurement.

It is convenient to assume that the measurement takes

place over a sufficiently short time period �0,T� such that H̃0
can be ignored during the measurement. The equations of
motion during the interaction then follow via Eqs. �1� and �8�
as being equivalent to the hybrid Schrödinger equation

i�
��

�t
= ��t���

i

�

�x
	M� .

For an initially independent ensemble at time t=0, as per Eq.
�18�, this equation may be trivially integrated to give

��q,x,T� = �
n

cn�C�x − K	n��q�n� �19�

at the end of the measurement interaction, where K
=�0

Tdt ��t�, �n� denotes the eigenstate corresponding to ei-
genvalue 	n of M, and cn= �n ��Q� �with ��Q� defined via
�q ��Q�ª�Q�q��. It has been assumed for simplicity here that
M is nondegenerate �the degenerate case is considered fur-
ther below�.

The pointer probability distribution after measurement
follows immediately from Eq. �19� as

P�x,T� =� dq �*� = �
n

�cn�2PC�x − K	n� . �20�

Hence, the initial pointer distribution is displaced by an
amount K	n with probability �cn�2, thus correlating the posi-
tion of the pointer with the eigenvalues of M. In particular,
choosing a sufficiently narrow initial distribution PC�x� �e.g.,
a � function�, the displaced distributions will be nonoverlap-
ping �corresponding to a “good” measurement�, and the ei-
genvalue 	n will be perfectly correlated with the measured
pointer position.

The above shows that the indirect measurement of any
quantum observable may be modeled via interaction with a
strictly classical measuring apparatus, followed by a direct
measurement of the classical configuration. Note that “col-
lapse” of the quantum component of the ensemble can also
be modeled, if desired. Suppose, in particular, that the real
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position of the pointer is determined to be x=a. This must
correspond to just one of the nonoverlapping distributions
PC�x−K	n�, and updating of P�q ,x ,T� via Bayes theorem
implies, via Eqs. �19� and �20�, that

Pa�q,x,T� = ��x − a�P�q,a,T�/P�a,T� = ��x − a���q�n��2.

Moreover, it is natural to update the conjugate quantity
S�q ,x , t� via the minimal substitution

Sa�q,x,t� = S�q,a,T� .

Note that the collapsed ensemble after measurement is thus
independent as per Eq. �18� �with quantum component de-
scribed by �a�q�= �q �n� up to a phase factor�. Hence, strong
separability as per Eq. �17� is satisfied if the pointer and the
quantum system do not interact after the measurement.

Finally, for a degenerate operator M with eigenvalue de-
composition �n	nEn, similar results are obtained, but with
cn�q �n� in Eq. �19� replaced by �q �En ��Q�, �cn�2 by pn
= ��Q�En��Q�, and the collapsed quantum component by
�a�q�= �pn�−1/2�q�En��Q�.

IV. MIXTURES AND THERMODYNAMICS

It has been demonstrated above that the configuration-
ensemble approach provides a consistent formulation of
mixed quantum and classical dynamics. However, given that
this approach describes classical ensembles via a configura-
tion space, rather than a phase space, this raises a potential
completeness issue: do all classical phase space ensembles
have a counterpart in this approach? Further, given the lack
of a natural phase-space entropy, can the configuration-
ensemble approach deal with thermal ensembles in a manner
that is compatible with both classical and quantum thermo-
dynamics? It is shown briefly below that both these questions
have positive answers.

The central concept required is that of a mixture of con-
figuration ensembles. In particular, if a physical system is
described by the configuration ensemble �Pj ,Sj� with prior
probability pj, then it may be said to correspond to the mix-
ture 
�Pj ,Sj� ; pj�. For quantum ensembles, such mixtures are
conveniently represented by density operators. More gener-
ally, however, there is no similarly convenient representa-
tion. The average of any observable A�P ,S� over a mixture is
given by

�A� = �
j

pjA�Pj,Sj� . �21�

The first question posed above can now easily be an-
swered, using the fact that any classical phase space point

= �x� ,k�� may be described by a classical configuration en-
semble �P
 ,S
�, defined by

P
�x� ª ��x − x��, S
�x� ª k� · x .

In particular, the value of any classical observable Cf, corre-
sponding to the average value of f , follows via Eq. �5� as

Cf�P
,S
� = �f�
 = f�x�,k�� . �22�

It follows immediately that any classical phase-space en-
semble, represented by some phase-space density p�x� ,k��,

may equivalently be described by the mixture 
�P
 ,S
� ; p� of
classical configuration ensembles.

To address the second question above, one further re-
quires the notions of “stationary” and “distinguishable” con-
figuration ensembles. First, stationary ensembles are those
for which all observable quantities are time independent, and
they are characterized by the property �13�

�P/�t = 0, �S/�t = − E �23�

for some constant E. Second, two configuration ensembles
are defined to be distinguishable if there is some observable
that can distinguish between them, unambiguously i.e., the
ranges of the observable for each ensemble do not overlap.
Thus, for example, two quantum ensembles are distinguish-
able if the corresponding wave functions are orthogonal,
while two classical ensembles are distinguishable if the
ranges of �x ,k� over the supports of the ensembles are non-
overlapping �with k=�xS�.

A thermal mixture may now be defined as a mixture of

distinguishable stationary ensembles 
�P ,S� ; p�P ,S � H̃�� such
that

p�P,S�H̃� � e−�H̃�P,S�, � � 0. �24�

This definition is, for present purposes, justified by its con-
sequences, but it may also be motivated by appealing to
properties of two distinct noninteracting systems in thermal
equilibrium, described by the joint ensemble Hamiltonian

H̃T, for which one expects

p�PP�,S + S��H̃T� = p�P,S�H̃�p�P�,S��H̃�� �25�

for pairs �P ,S�, �P� ,S�� of stationary ensembles.
For a quantum system with Hamiltonian operator H, the

above definition immediately leads to the usual quantum ca-
nonical ensemble represented by the density operator propor-
tional to e−�H. It will be shown below that, for an ergodic
classical system with phase-space Hamiltonian H�x ,k�, the
corresponding thermal mixture of configuration ensembles is
equivalent to the classical canonical ensemble with phase-
space density proportional to e−�H. Note that this result gen-
eralizes immediately, via the factorizability of thermal mix-
tures in Eq. �25�, to all semi-ergodic classical systems, i.e., to
any classical system comprising noninteracting ergodic sys-
tems. Thus, for example, since a one-dimensional oscillator
is ergodic for any energy E, and higher-dimensional oscilla-
tors can be decomposed into noninteracting normal modes
�16�, any classical oscillator is a semi-ergodic system.

In particular, the classical ensemble Hamiltonian is

H̃�P,S� = CH =� dx PH�x,�S� ,

and it follows from Eqs. �1� and �23� that the stationary
ensembles are then given by the solutions of the continuity
and Hamilton-Jacobi equations

�x · �P�kH�x,�xS�� = 0, H�x,�xS� = E .

Now, since H is time independent, the general solution to the
Hamilton-Jacobi equation for S is of the form W�x�−Et, and
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generates a canonical transformation on phase space from
�x ,k� to a set of constants of the motion, which may be
chosen as the initial values �x0 ,k0� at some fixed time �16�.
One then has E=H�xt ,kt�=H�x0 ,k0�, and a corresponding set
of solutions Sx0,k0

�x , t�ªWk0
�x�−H�x0 ,k0�t of the Hamilton-

Jacobi equation �where x0=�k0
Wk0

�16��. Further, recalling
that the classical velocity is ẋt=�kH, the above continuity
equation simply requires that P�x��ẋt� is constant along any
given trajectory �xt ,kt�. One may therefore define a corre-
sponding set of solutions by Px0,k0

�x���ẋt�−1 when x lies on
the particular trajectory having initial values �x0 ,k0�, and
Px0,k0

�x�=0 elsewhere.
The stationary ensembles �Px0,k0

,Sx0,k0
� are all distinguish-

able, since they correspond to a set of distinct initial values
�x0 ,k0�. Hence, they are suitable for defining a thermal mix-
ture. Further, by construction, one has via definition �5� that

Cf�Px0,k0
,Sx0,k0

� =� dxt�ẋt�−1f�xt,kt��� dxt�ẋt�−1,

where integration is along the trajectory defined by the initial
point �x0 ,k0�. Changing the variable of integration to t then
gives

Cf�Px0,k0
,Sx0,k0

� = lim
T→

1

T
�

0

T

dt f�xt,kt� , �26�

which is always well defined for ergodic systems. Further,
for such systems the right-hand side is simply the micro-
canonical ensemble average of f�x ,k�, corresponding to
constant energy E=H�x0 ,k0� �21�. Finally, noting that

H̃�Px0,k0
,Sx0,k0

�=H�x0 ,k0� by construction, the associated
thermal mixture in Eq. �24� is characterized by p�x0 ,k0�
�e−�H�x0,k0�, and it immediately follows via Eqs. �21� and
�26� that the average of f over the mixture is the usual ca-
nonical ensemble average, as required.

V. DISCUSSION

The configuration-ensemble approach satisfies the two
minimal requirements for a consistent formulation of mixed
dynamics, as shown in Sec. II. No other formulation appears
to be known that passes this critical test.

Moreover, while the approach does not satisfy a strong
separability condition for quantum and classical observables,
it does satisfy the weaker condition of configuration separa-
bility, as per Eqs. �13� and �14� of Sec. III. This condition is
sufficient to avoid difficulties in the case of quantum matter
coupled to a classical spacetime metric, and is also sufficient
more generally if it is assumed that only the classical con-
figuration of a mixed ensemble is directly accessible to mea-
surement.

It should further be noted that the configuration-ensemble
approach has a number of interesting applications outside the
domain of mixed dynamics. It also provides a basis for, e.g.,
the derivation of classical and quantum equations of motion
�22�, a generalization of quantum superselection rules �15�,
and, as seen in Sec. IV above, a “Hamilton-Jacobi” approach
to classical statistical mechanics. Hence, overall, the ap-

proach appears to be valuable in providing a fundamental
tool for describing physical systems, and merits further gen-
eral investigation.

It is of interest to remark on how the configuration-
ensemble approach is able to avoid various no-go theorems
on mixed dynamics in the literature �5–7,9�. This is essen-
tially because such theorems require a formal assumption
that the set of observables can be extended to form a product
algebra, where the product A*B is assumed to satisfy
Cf *Cg=Cfg, QM *QN=QMN, and some further property such
as the Leibniz rule 
A ,B*C�= 
A ,B�*C+B* 
A ,C�. How-
ever, the assumption of such a product algebra clearly goes
beyond the domain of observable quantities �e.g., the product
of two Hermitian operators is not a Hermitian operator�, and
hence cannot be justified on physical grounds. Thus, any
import of such no-go theorems for the configuration-
ensemble approach, where no such product is defined or re-
quired, is purely formal in nature.

For application to mixed dynamics, the set of observables
must be chosen such that it contains the classical and quan-
tum observables defined in Eqs. �5� and �7�, with all mem-
bers satisfying the normalization and positivity conditions in
Eq. �4�. It must also, of course, contain the Poisson bracket
of any two of its members—however, this can always be
assured by replacing a given set by its closure under the
Poisson bracket operation. It is of interest to consider what
further physical conditions might be imposed on the set of
observables. For example, for ensembles of interacting clas-
sical and quantum nonrelativistic particles, it is reasonable to
require that the equations of motion are invariant under Gal-
ilean transformations, leading to the interesting property that
the center of mass and relative motions do not decouple �13�.

A more general condition that might be imposed on ob-
servables is that they are homogeneous of degree unity with
respect to the probability density P, i.e.,

A�	P,S� = 	A�P,S� �27�

for all 	�0. Note that, if this condition holds for two ob-
servables A and B, then it holds for the Poisson bracket

A ,B�, as may be checked by direct substitution into Eq. �2�.
It is also easily verified to hold for the classical and quantum
observables defined in Eqs. �5� and �7�. Differentiating Eq.
�27� on both sides with respect to 	 and choosing 	=1 yields
the numerical identity

A�P,S� =� d� P��A/�P� ¬ ��A/�P� , �28�

i.e., A can be calculated by integrating over a local density
on the configuration space. Thus, the homogeneity condition
consistently allows observables to be interpreted both as gen-
erators of canonical transformations and as expectation val-
ues.

Finally, while the question of decoherence has not been
addressed in any detail here, it is worth noting that the
configuration-ensemble approach provides at least two pos-
sibilities in this regard. First, for any mixed quantum-
classical ensemble, one may define a conditional quantum
wave function �x�q� and corresponding density operator
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�Q�C, which describe the conditional decoherence of the
quantum component relative to the classical component �13�.
Second, while at any time the hybrid wave function ��q ,x , t�
describing a mixed quantum-classical system always has a
decomposition of the form

��q,x,t� = �
n

�pn�t��C,n�x,t��Q,n�q,t�

�e.g., a Schmidt decomposition�, only at particular times �if
at all, depending on the ensemble Hamiltonian�, can it have
such a decomposition for which �i� the classical ensembles
corresponding to �C,n�x , t� are classically distinguishable

�see Sec. IV�, and �ii� the quantum ensembles corresponding
to �Q,n�q , t� are mutually orthogonal. Moreover, unlike a
Schmidt decomposition, such a decomposition would be
unique even for equal pn�t�. Hence, decoherence could be
modeled by imposing a spontaneous collapse of the en-
semble at such well-defined times, similarly to the collapse
model in Sec. III C.
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