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We study a simple system described by a 2�2 Hamiltonian and the evolution of its quantum states under the
influence of a perturbation. More precisely, when the initial Hamiltonian is not degenerate, we check analyti-
cally the validity of the adiabatic approximation and verify that, even if the evolution operator has no limit for
adiabatic switchings, the Gell-Mann and Low formula allows the evolution of eigenstates to be followed. In the
degenerate case, for generic initial eigenstates, the adiabatic approximation �obtained by two different limiting
procedures� is either useless or wrong, and the Gell-Mann and Low formula does not hold. We show how to
select initial states in order to avoid such failures.
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I. INTRODUCTION

Adiabatic switching is a crucial ingredient of many-body
theory. It provides a way to express the eigenstates of a
Hamiltonian H=H0+H1 in terms of the eigenstates of H0. Its
basic idea is to switch the interaction H1 very slowly, i.e., to
transform H into a time-dependent Hamiltonian H�t�=H0
+e−��t�H1 where the small parameter ��0 eventually van-
ishes. Under the influence of H�t�, an eigenstate ��0� of H0
becomes a time-dependent wave function ����t��, and it
might be expected that an eigenstate of H=H�0� is obtained
by taking the limit of ����0�� when � tends to zero. It turns
out that this naive expectation is not justified because
����0�� has no limit when �→0. When the initial state ��0�
belongs to a nondegenerate eigenspace �isolated from the
other eigensubspaces�, Gell-Mann and Low �1� solved the
problem by dividing out the divergence by a suitable factor.
The ratio is called the Gell-Mann and Low wave function
and its convergence can be proved by using the adiabatic
theorem �2�.

In the first part of this work, we present an exactly solv-
able 2�2 model that illustrates the fact that the limit �→0
of ����0�� does not exist. The validity of the Gell-Mann and
Low wave function is shown by analytically calculating the
corresponding adiabatic approximation.

It was realized 50 years ago �3� that the Gell-Mann and
Low formula must sometimes be extended to the case of a
degenerate initial state of H0. This happens in many practical
situations, for instance when the system contains unfilled
shells. This problem has been discussed in several fields,
including nuclear physics �4�, solid state physics �5�, quan-
tum chemistry �6�, and atomic physics �7�. In most cases, it
is assumed that there is some eigenstate ��0� for which the
Gell-Mann and Low formula holds. More precisely, if V0 is

the vector space generated by the eigenstates of H0 associ-
ated with the degenerate ground state energy E0, then the
claim is that there exists some initial state ��� in V0 whose
time-evolved state ����0�� is �up to a divergent phase� an
eigenstate of H. To see that it is not possible to choose any
element of V0 as initial state, let us forget for a moment the
divergent phase and consider a perturbation H1 that splits the
degeneracy and two initial states ��1� and ��2� whose time
evolutions give rise to two eigenstates of H, denoted by
���

1�0�� and ���
2�0��, with different energies E1 and E2. By

linearity, the initial state ��1�+ ��2� evolves into ���
1�0��

+ ���
2�0��, which is not an eigenstate of H because E1�E2.

Therefore, ��1�+ ��2� is not a proper initial state.
When the initial state of H0 is degenerate, we show that,

even for the very simple 2�2 model considered here, the
Gell-Mann and Low wave function does not have a limit for
almost all initial conditions. We find, however, the specific
initial states that lead to convergent wave functions. For the
application of many-body methods to degenerate systems, it
is crucial to find a way to select the proper initial states.

II. NONDEGENERATE INITIAL STATES

Two-dimensional matrices are the simplest nontrivial
models that can be considered in quantum physics, and were
indeed already used as toy models for many-body theory
studies �see Ref. �8� and references therein�. However, this is
the first time to our knowledge that the evolution operator
and its adiabatic approximation have been calculated explic-
itly for such a model.

We consider the two-dimensional system described by the
Hamiltonian H=H0+H1 with

H0 = �� − � 0

0 � + �
�, H1 = �0 x

x 0
� . �1�

We assume that ��0, so that the initial state is nondegener-
ate. Without restriction, it can further be assumed that ��0.
Moreover, by properly choosing the energy origin, it can also
be assumed that �=0.
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According to the usual treatment of adiabatic switching
�9,10�, it is convenient to transform the Schrödinger equation
for the time-dependent Hamiltonian H�t�=H0+e−��t�H1 to the
interaction picture. The dependence of the operators and
wave functions on the parameter ��0 will be implicit in the
following. If we denote by �S�t� a solution of the
Schrödinger equation

i
��S�t�

�t
= H�t��S�t� ,

the wave function in the interaction picture is defined as

��t� = eiH0t�S�t� .

It satisfies

i
���t�

�t
= Hint�t���t� ,

subject to the boundary condition ��−	�=�, where � may
be an eigenstate of H0. The Hamiltonian Hint�t� is the Hamil-
tonian H�t� in the interaction picture,

Hint�t� = e−��t�eiH0tH1e−iH0t.

In the simple case �1� considered here, this operator reads

Hint�t� = xe−��t�� 0 e−2i�t

e2i�t 0
� . �2�

Instead of using wave functions, it is customary to work
with the evolution matrix U�t� such that ��t�=U�t��. We
refer to �11� for sufficient conditions on the time-dependent
Hamiltonian Hint�t� in order to ensure the existence of the
unitary propagator U�t�.

A. The evolution operator: Analytic solution and limiting
behavior

We give in this section the analytic expression of the evo-
lution matrix. This operator is the solution of the Schrödinger
equation in the interaction picture,

i
dU�t�

dt
= Hint�t�U�t� , �3�

with the boundary condition U�−	�=Id. In the following, we
consider t
0, so that the switching function is e�t. We also
assume that x�0. With the matrix elements of U�t� denoted
by

U�t� = �a�t� b�t�
c�t� d�t�

� ,

Eq. �3� is equivalent to the system of equations

ia� = xe−i�2�+i��tc ,

ic� = xei�2�−i��ta ,

ib� = xe−i�2�+i��td ,

id� = xei�2�−i��tb , �4�

with the boundary conditions

a�− 	� = d�− 	� = 1, b�− 	� = c�− 	� = 0.

Since the functions c ,d are independent of the functions a ,b,
and satisfy equations of the same form as for a ,b, it is
enough to solve the first two equations of the above system.

1. Solution of the equation for the unknown function a

By elimination of the function c in Eq. �4�, the second-
order evolution equation

a� + �2i� − ��a� + x2e2�ta = 0 �5�

is obtained. This equation can be solved by using standard
techniques ��12�, p. 442, Eq. �23��. If we rewrite the un-
known function a as a�t�=e−i��+i�/2�tZ��xe�t /�� and introduce
the variable s=xe�t /�, Eq. �5� becomes the Bessel equation
for Z��s�, with

� = 1/2 − i�/� . �6�

Since J� and J−� are two independent solutions of the Bessel
equation when � is not an integer �13�, the function a�t�
= ā�s� has the general form

ā�s� = ��s

x
��

�C1J��s� + C2J−��s�� , �7�

where the constants C1 and C2 are determined by the bound-
ary conditions at s=0 �i.e., in the limit t→−	�. Since
a�−	�= ā�0�=1, and by the series expansion ��13�, Eq.
�9.1.10��

J��s� = � s

2
��

	
k=0

	
�− s2/4�k

k!��� + k + 1�
,

it follows that C1=0 and C2=2−���1−��.

2. Solution of the equation for the other unknown functions

The function c�t�= c̄�s� can be obtained from the expres-
sion of a�t�= ā�s�, relying on the first equation in the system
�4�, rewritten in the s variable as c̄�s�= i��s /x�1−2�ā�s�. Since
�s�J−��s���=−s�J1−��s� ��13�, Eq. �9.1.30��, it holds that

c̄�s� = − iC2��

x
�1−2�

s1−�J1−��s� .

The functions b and d satisfy the same equations as a and c,
respectively, but with different boundary conditions. With
the above notation, it can easily be checked that b is also a
combination of Bessel functions as given by �7�, but with
C1=−i�� /x�2�−12�−1���� and C2=0.

3. Properties of the solution

In view of the above results, the problem �4� has the ana-
lytic solution

a�t� = C2� x

�
��

e��tJ−�� xe�t

�
� ,

b�t� = C1� x

�
��

e��tJ�� xe�t

�
� ,
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c�t� = − iC2� x

�
��

e��1−��tJ1−�� xe�t

�
� ,

d�t� = iC1� x

�
��

e��1−��tJ�−1� xe�t

�
� ,

with

C1 = − i��/x�2�−12�−1����, C2 = 2−���1 − �� ,

and where � is defined in �6�. As a consistency check, it is
possible to verify that the matrix U is unitary. This follows
from �C1�2= �C2�2=������1−�� /2= / �2 sin �� and
J��s�J1−��s�+J−��s�J�−1�s�=2 sin��� / �s� �see �13�, Eq.
�9.1.15��.

The series expansion of the Bessel functions gives

ā�s� = 1 + 	
k=1

	
�− s2/4�k

k!
 j=1
k �j − ��

,

b̄�s� = ie−2i�t s

2	
k=0

	
�− s2/4�k

k!
 j=1
k+1�j + � − 1�

,

c̄�s� = − ie2i�t s

2	
k=0

	
�− s2/4�k

k!
 j=1
k+1�j − ��

,

d̄�s� = 1 + 	
k=1

	
�− s2/4�k

k!
 j=1
k �j + � − 1�

.

Note that these solutions are valid for all values of x, ��0,
and ��0. We have the symmetries a�t ,−��=d�t ,�� and
c�t ,−��=−b�t ,��, a�t�*=d�t� and b�t�*=c�t�. Moreover, a�t�
and d�t� are even in x, while b�t� and c�t� are odd in x.

4. Limiting behavior of the evolution operator

Figure 1 illustrates the divergence of a�0� as a function of
�. The above analytic expressions therefore show that the

evolution operator does not have a limit when �→0. Rather,
as illustrated by Fig. 1, a strongly oscillatory behavior is
observed. This is the reason that the phase factor has to be
canceled out by considering a renormalized wave function in
the Gell-Mann and Low fashion, as explained in the next
section.

B. The Gell-Mann and Low wave function

Rigorous proofs of the Gell-Mann and Low formula rely
on the adiabatic approximation. Therefore, we first compute
the adiatic approximation for the problem �1�, and then the
Gell-Mann and Low wave functions.

1. The adiabatic approximation

The adiabatic approximation consists in approximating
the evolution operator in the interaction picture U�t� by the
adiabatic operator in the interaction picture:

Ua�t� = eitH0A����̄���� , �8�

with

�̄���� = lim
�0→−	

����,�0�e−it0H0,

where �=�t�0 and �0=�t0 �14,15�. The unitary matrices A
and �� are calculated from the eigenprojectors of H���=H0
+e�H1, as explained below �see formulas �10� and �11��.

The eigenvalues of H��� are

e���� = � �, � = ��2 + x2e2�.

With the notation y=xe� /� the corresponding eigenprojectors
read

P���� =
1

2�1 + y2��1 + y2 � 1 �y

�y �1 + y2 � 1
� .

Defining the Hermitian matrix �15�

K��� = i 	
�=�

dP����
d�

P���� =
iy

2�1 + y2�
� 0 1

− 1 0
� ,

the matrix A appearing in �8� satisfies the equation

A���� = − iK���A��� , �9�

with the boundary condition A�−	�=Id. The unique solution
is

A��� =
1
�2
� �1 + � �1 − �

− �1 − � �1 + �
� �10�

with �= �1+y2�−1/2� �0,1�.
The phase matrix ���� ,�0� is obtained from the integral

of the eigenvalues

����,�0� = 	
�=�

exp�−
i

�
�

�0

�

e�����d���P���0� .

For large negative �0, up to O�e�0� terms coming from the
approximation P���0� P��−	�,

� �

� � � �

� � � �

� � � �

� � � �

�

� � �

� � �

� � �

� � �

�

	



�
�


�

�
�

� � � � � � � � � � � � � � � � � � � �

�

FIG. 1. Real part of a�0� as a function of � for x=�=1. For
clarity, the region x�0.005 is not plotted.
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����,�0� = �ei���,�0�/� 0

0 e−i���,�0�/� � , �11�

where

���,�0� = �
�0

�

��2 + x2e2�d� = F��� − F��0� ,

with

F��� = ��2 + x2e2� −
�

2
ln���2 + x2e2� + �

��2 + x2e2� − �
� .

Note that F��0� has no finite limit for �0→−	. However,
because the computations are done in the interaction picture,
the phase matrix ���� ,�0� is multiplied by the unitary opera-
tor e−it0H0, and the operator so obtained has a limit when �0
→−	. Indeed,

�̄���� = lim
t0→−	

����,�0�e−iH0t0

= �exp�i����/�� 0

0 exp�− i����/��
� ,

where

���� = lim
t0→−	

���,�0� + ��0 = F��� − ��1 − ln
2�

x
� .

At t=0, we obtain the adiabatic approximation

Ua�0� =
1
�2
� ei��0�/��1 + � e−i��0�/��1 − �

− ei��0�/��1 − � e−i��0�/��1 + �
� ,

where � is now �1+x2 /�2�−1/2.

2. Quality of the adiabatic approximation

The rigorous adiabatic theorem �see Ref. �16� for a recent
account� states that the adiabatic evolution operator Ua de-
fined by Eq. �8� is such that

sup
t
0

�U�t� − Ua�t�� 
 C� ,

for some constant C. In particular, for t=0, �U�0�−Ua�0��

C�. Figure 2 shows that this result is indeed verified in the
case considered here, and allows a numerical estimate to be
given for the constant C.

3. The Gell-Mann and Low limit

The Gell-Mann and Low formula describes how an eigen-
vector of the reference �unperturbed� Hamiltonian H0
evolves under an added perturbation H1. Starting from one of
the initial eigenstates of H0, namely,

��1� = �1

0
�, ��2� = �0

1
� , �12�

the associated Gell-Mann and Low wave functions

��i�0�� = lim
�→0

U�0���i�
��i�U�0���i�

= lim
�→0

Ua�0���i�
��i�Ua�0���i�

can be computed using �8�. They read, respectively,

� 1

a21�0�
a11�0�

� = � 1

−
x

�x2 + �2 + �
�

and

�a12�0�
a22�0�

1
� = ��x2 + �2 + �

x

1
� ,

where aij��� are the matrix elements of A��� given by �10�. It
is easy to check that these vectors are indeed eigenstates of H
for the eigenvalues −�x2+�2 and �x2+�2, respectively. These
eigenvalues can be obtained by the energy-shift formula
��10�, p. 200�. The difference �E between the energy of an
eigenstate of H0+H1 and that of the corresponding eigenstate
��0� of H0 is

�E = lim
�→0

i�x
d

dx
ln��0�U�0���0�

= lim
�→0

i�x
d

dx
ln��0�Ua�0���0� .

We find indeed that �E=�−�x2+�2 for ��1� and �E=−�
+�x2+�2 for ��2�.

III. DEGENERATE CASE

Initial degenerate states for the model �1� are obtained
when �=0. In this case, the evolution operator can still be
computed analytically, and actually has a simpler expression
than the one obtained in Sec. II A in the nondegenerate case:

U�t� = � cos�xe�t/�� − i sin�xe�t/��
− i sin�xe�t/�� cos�xe�t/��

� . �13�

In particular,

U�0� = � cos�x/�� − i sin�x/��
− i sin�x/�� cos�x/�� .

� .

�

� � � �

� � � �

� � � �

� � � �

� � � �

�
	

	



	

� � � � � � � � � � � � � � � �

�

FIG. 2. Modulus of the difference between a�0� and its adiabatic
approximation as a function of � for x=�=1.

BROUDER, STOLTZ, AND PANATI PHYSICAL REVIEW A 78, 042102 �2008�

042102-4



A. Failure of the adiabatic approximation and the Gell-Mann
and Low formula

1. Adiabatic approximation

There are two ways to calculate the adiabatic approxima-
tion, depending on the order of the limits �→0 and �0→
−	. If we first carry out the limit �→0, the computation of
Sec. II B 1 can be repeated by starting from the Hamiltonian
H0 with �=0. The eigenvalues corresponding to H��� are
�xe�, and the eigenprojectors are constant:

P���� =
1

2
� 1 �1

�1 1
� .

Thus, K���=0, so that A��� is constant and equal to its

boundary value A���=Id. The computation of �̄���� is there-
fore straighforward and leads to the adiabatic approximation

Ua�t� = U�t� ,

where U�t� is given by Eq. �13�. The adiabatic approximation
is therefore exact but, as we shall see, the Gell-Mann and
Low wave function has no limit for the initial states �1 and
�2 when �→0.

Taking first the limit �0→−	 amounts to taking the limit
�→0 in the adiabatic evolution operator �8�. For the operator
A, the limit is

A��� =
1
�2

� 1 1

− 1 1
� �14�

for any �
0. Notice that the boundary condition at �=−	
for Eq. �9� on A is therefore not satisfied. For the matrix
�����, the limit is

����� = �exp�ixe�/�� 0

0 exp�− ixe�/��
� .

The limit of the adiabatic evolution operator reads now

Ua�t� =
1
�2

� exp�ixe�t/�� exp�− ixe�t/��
− exp�ixe�t/�� exp�− ixe�t/��

� . �15�

It is, however, not an approximation of U�t�.
The discrepancy between the two approaches clearly

shows that the two limits �→0 and �0→−	 do not commute
for degenerate systems.

2. Nonvalidity of the general Gell-Mann and Low formula

When �=0, the unperturbed Hamiltonian is H0=0 and
any initial state ��0� is an eigenstate of H0 �with eigenvalue
0�. Thus, there seems to be some arbitrariness in the choice
of the initial state. However, we shall see that most initial
states lead to divergent Gell-Mann and Low wave functions.
If for instance ��0�= ��1�= � 1

0 � as in Sec. II B 3, the Gell-
Mann and Low wave function

U�0���0�
��0�U�0���0�

= � 1

− i tan�x/��
�

has no limit when �→0. This shows that the Gell-Mann and
Low formula fails for the initial state ��1�. It fails also for
��2�.

Similarly, the energy shift would be given by the limit for
�→0 of

�E = i�x
d

dx
ln��1�U�0���1� = − ix tan�x/�� .

But this has no limit when x�0. The question is then
whether there are some initial states for which the Gell-Mann
and Low wave function has a limit, and how those states can
be characterized.

B. Selection of the proper initial states

In this section, we try to find initial states that are eigen-
states of H0 and that lead to convergent Gell-Mann and Low
wave functions. Any initial state ��0� for the model �1� in the
degenerate case is of the general form �up to a trivial scaling
changing this state into −��0��

��0� = cos ���1� + sin ���2� ,

where 0
�� and ��1� and ��2� are defined in �12�.
Straightforward computations show that

U�0���0�
��0�U�0���0�

has a limit if and only if �= /4 or 3 /4. This defines two
proper initial states

���� =
1
�2

� 1

�1
� ,

with associated Gell-Mann and Low wave functions

U�0�����
����U�0�����

= � 1

�1
� ,

which obviously have limits in the regime �=0. Since H0
=0 in this very simple setting, the proper initial states form a
basis diagonalizing H1, as expected.

Moreover, in the basis ���−� , ��+��, the evolution operator
becomes

U�t� =
1
�2

� exp�ixe�t/�� exp�− ixe�t/��
− exp�ixe�t/�� exp�− ixe�t/��

� . �16�

Similarly, the energy-shift formula gives now the correct re-
sult �E�= �x.

Interestingly, the adiabatic operator given in Eq. �15� is
equal to the evolution operator in the basis ���−� , ��+��.

IV. CONCLUSION

The adiabatic theorem was investigated here by using an
exactly solvable model. Within this model, the adiabatic
theorem is valid when the initial state of the system is non-
degenerate. When it is degenerate, our simple model exhibits
several problems that are generally present for an arbitrary
initial state: the Gell-Mann and Low wave function does not
converge, the energy-shift formula is not valid, and the adia-
batic approximation becomes ambiguous. Moreover, our toy
model shows that these problems cannot be solved by arbi-
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trarily lifting the degeneracy �resorting to ��0� and then
taking �→0, because in that case the adiabatic approxima-
tion is generally not valid.

However, we show that the degeneracy problems are
solved by properly choosing the initial state. At least since
the work of Tolmachev �17�, it has been conjectured that the

Gell-Mann and Low formula is valid for properly chosen
initial states when the system is degenerate. Until now, this
conjecture has not been rigorously proved and no practical
method has been given to select the proper initial states. We
intend to come back to this question in a forthcoming pre-
sentation.
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