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Recently, photon-subtracted Gaussian states �PSGSs�, which well approximate superpositions of coherent
states �SCSs� with small amplitudes, were generated by several experimental groups. We compare the ideal
SCSs and the PSGSs for experimental tests of certain types of Bell inequalities. In particular, we analyze the
effects of the key experimental components used to generate PSGSs: mixedness of the Gaussian states, limited
transmittivity of the beam splitter, and an avalanche photodetector that cannot resolve photon numbers. As a
result of this analysis, the degrees of mixedness and the beam splitter transmittivity that can be allowed for
successful tests of Bell inequalities are revealed.
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I. INTRODUCTION

Quantum optics enables one to experimentally explore
quantum physics and quantum-information processing in the
context of contminuous variables. Gaussian continuous-
variable states with nonclassical properties, such as single-
mode and two-mode squeezed states, have been generated
and used for various applications in numerous quantum-
optics experiments. For example, continuous-variable quan-
tum teleportation has been performed using two-mode
squeezed states of light �1,2�. However, it is experimentally
more difficult to generate and control non-Gaussian
continuous-variable states.

Superpositions of two coherent states �SCSs� in free-
traveling optical fields, a well-known class of non-Gaussian
continuous-variable states, have attracted remarkable atten-
tion. The SCSs, when the component coherent states are well
separate in phase space, are often called “Schrödinger cat
states” as they show typical properties of macroscopic quan-
tum superposition �3,4�. The SCSs show nonclassical prop-
erties such as interference patterns in phase space and nega-
tive values in the Wigner functions �4�. Once single-mode
SCSs are generated, it is relatively easy to generate two-
mode SCSs using a 50:50 beam splitter. These two-mode
SCSs �also called entangled coherent states �5�� have been
found �6–8� using various types of measurements to violate
Bell inequalities �9–11�. It has also been shown that the free-
traveling SCSs can be useful for various applications in
quantum-information processing �QIP� �12–16�. All the QIP
applications and Bell inequality tests using SCSs require
free-traveling SCSs with reasonably large amplitudes. For
example, Lund et al. showed that SCSs with amplitudes �
�1.2 allow for fault-tolerant quantum computing with rea-
sonable photon loss �17�.

On the other hand, until recently, it has been known to be
extremely hard to experimentally generate free-traveling
SCSs. There have been schemes to generate such SCSs using
strong nonlinear interactions �18� or photon-number-
resolving detectors �19,20�, neither of which is feasible using
current technology. Recently, the generation of free-traveling
SCSs has been studied by several authors and more feasible
schemes have been suggested �21–26�. Among those, a

simple and useful observation was made that SCSs with
small amplitudes, such as ��1.2, are very well approxi-
mated by squeezed single photons �21�. It was also pointed
out that squeezed single photons are identical to the photon-
subtrated Gaussian states �PSGSs� obtained by subtracting
one photon from pure squeezed vacuums �27�. Meanwhile,
photon-subtracted PSGSs have been generated by several ex-
perimental groups �28–31�. Some effects of experimental im-
perfections including inconclusive photon subtraction and
impurity of Gaussian sources have been theoretically ana-
lyzed �32,33�. It was pointed out that subtracting a single
photon from a Gaussian state is experimentally more effi-
cient than directly squeezing the single-photon state �34�.

Very recently, a remarkable breakthrough was made: free-
traveling SCSs, called Schrödinger cat states, were generated
and detected �35�, where the size of the states ��=1.6� was
reasonably large for fundamental tests of quantum theory and
quantum-information processing. However, the fidelity of the
generated states is yet to be improved for practical quantum-
information processing. In the meantime, the PSGSs will be
useful for small-scale tests of Bell inequalities and quantum-
information processing. Experimental efforts and progress
are being made to generate SCSs of even larger amplitudes
and higher fidelity �36�.

In this paper, we study tests of certain types of Bell in-
equalities �42� with PSGSs and discuss the possibility of
experimental realization using current technology. Gaussian
squeezed states, a beam splitter, and an avalanche photode-
tector are experimental components typically used to gener-
ate PSGSs �28–31�. We analyze the detrimental effects of
these experimental components, i.e., the mixedness of the
Gaussian states, limited transmittivity of the beam splitter,
and an avalanche photodetector that cannot resolve photon
numbers. As a result of this analysis, we reveal the degrees
of mixedness and the beam splitter transmittivity that can be
allowed for successful tests of Bell inequalities. In particular,
we show that quantum nonlocality may be verified using
current technology with homodyne detection based on the
Clauser and Horn �CH� version of Bell’s inequality �11�.

There have been publications on the study of Bell’s in-
equality utilizing photon subtraction methods, including
Refs. �37–41�. In particular, a state generated by subtracting
one photon from each mode �total two photons� of a two-
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mode squeezed state was considered for Bell inequality tests
�37–41�. We note that, while such two-photon subtraction is
useful to enhance quantum nonlocality �37–41�, the method
considered in our paper using the PSGS can be more effi-
cient �i.e., the success probability is larger� because it re-
quires only a single-photon subtraction.

This paper is organized as follows. In Sec. II, we briefly
review the comparison between the pure PSGS and the SCS
by means of optimized fidelity �21�. In Sec. III, we investi-
gate Bell inequality tests suggested by Banaszek and Wódk-
iewicz �BW� �42� for ideal PSGSs and compare the results
with those for ideal SCSs. In Sec. IV, we consider experi-
mental detrimental effects based on the approaches in Refs.
�32,33� for our Bell inequality tests and analyze the results.
We then conclude the paper in Sec. V with final remarks on
prospects for experimental tests of Bell inequalities using
PSGSs.

II. SUPERPOSITION OF COHERENT STATES AND
PHOTON-SUBTRACTED SQUEEZED VACUUM

A SCS can be represented as

�SCS����� = N�������� + ei��− ��� , �1�

where N���� is a normalization factor, ���� is a coherent
state of amplitude ��, and � is a real local phase factor. The
amplitude � is assumed to be real for simplicity without loss
of generality. The size of the SCS can be defined by the
magnitude of the amplitude �. The SCSs such as
�SCS�����=N��������� �−��� are called even and odd
SCSs, respectively, because the even �odd� SCS always con-
tains an even �odd� number of photons. By splitting a SCS at
a 50:50 beam splitter, the two-mode entangled coherent state

�ECS����� = N����������� + ei��− ���− ��� , �2�

where �=� /�2, can be simply generated.
Jeong et al. pointed out that a squeezed single photon is

identical to a pure PSGS �i.e., an exact single-photon sub-
traction from a pure Gaussian state� �27�. This can be shown
by applying the annihilation operator â to a squeezed
vacuum state:

âS�r��0� = − sinh rS�r��1� , �3�

where S�r�=e�r/2��â2−â†2� is the single-mode squeezing opera-
tor and the squeezing parameter r is supposed to be real
throughout the paper. We note that a squeezed single photon
can also be obtained by adding a photon to a squeezed
vacuum as â†S�r��0�=cosh rS�r��1�.

Lund et al. showed that a small odd SCS with ��1.2 is
well approximated by a squeezed single photon �i.e., a pure
PSGS� as follows �21�. When the squeezing operator is ap-
plied to a single photon the resultant state can be expanded in
terms of photon number states as

S�r��1� = �
n=0

�
�− tanh r�n

�cosh r�3/2

��2n + 1�!
2nn!

�2n + 1� . �4�

The fidelity of this state to an odd SCS is

F�r,�� = 	
SCS−����S�r��1�	2 =
2�2 exp�− �2�tanh r + 1��
�cosh r�3�1 − exp�− 2�2��

.

Figure 1 shows the maximized fidelity on the y axis plotted
against a range of possible values for � for the desired odd
SCS. It shows that the fidelity approaches unity for � very
close to zero, while it decreases as � gets larger. The fidelity
is maximized when r satisfies

cosh r =�1

2
+

1

6
�9 + 4�4. �5�

The fidelity is F�0.99 when ��1.2. Some example values
are F=0.9998 for �=1 /�2 and F=0.997 for �=1, where the
maximizing squeezing parameters are r=−0.164 and −0.313,
respectively.

III. VIOLATIONS OF BELL’S INEQUALITY
WITH PURE STATES

A. Bell–Clauser-Horne-Shimony-Holt inequality formalism
with the Wigner functions

BW studied the Clauser, Horne, Shimony, and Holt
�CHSH�’s version of Bell’s inequality based upon photon
number parity measurements �42�. The measurement opera-
tor is defined as

	�z� = 	+�z� − 	−�z�

= D�z��
n=0

�

��2n�
2n� − �2n + 1�
2n + 1��D†�z� , �6�

where D�z� is the displacement operator D�z�=exp�zâ†

−z*â� for bosonic operators â and â†. Such a measurement
should be able to discriminate between even and odd num-
bers of photons. It is known that the displacement operation
can be effectively performed using a beam splitter with
transmittivity close to 1 and a strong coherent state injected
into the other input port. It was pointed out that in order to
maximize the violation of the Bell-CHSH inequality for two-
mode squeezed states and entangled coherent states, the BW
formalism needs to be generalized to write the Bell operator
as �7�

0.5 1 1.5 2
α

0.9

0.92

0.94

0.96

0.98

1
F

FIG. 1. Maximized fidelity F between an ideal odd SCS of
amplitude � and a pure photon-subtracted Gaussian state.
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BBW = 	1�z1�	2�z2� + 	1�z1��	2�z2� + 	1�z1�	2�z2��

− 	1�z1��	2�z2�� , �7�

while BW assumed two of the four parameters equal to zero
as z1=z2=0. The Bell-CHSH inequality can then be repre-
sented by the Wigner function as

�BCHSH� = �
BBW�� =

2

4
�W�z1,z2� + W�z1,z2�� + W�z1�,z2�

− W�z1�,z2��� � 2, �8�

where W�z1 ,z2� represents the Wigner function of a given
state. In this paper, we refer to BCHSH as the Bell-CHSH
function. Using 	1�z1�	1�z1�=	2�z2�	2�z2�=1, it is straight-
forward to check the Cirel’son bound �
BBW���2�2 �43� in
the generalized BW formalism �7�.

The Wigner function of a PSGS can be obtained from its
characteristic function

�s��� = Tr�S�r��1�
1�S†�r�e�â†−�*â�

= exp�−
1

2
�e2r�r

2 + e−2r�i
2���1 − e2r�r

2 + e−2r�i
2� .

�9�

The Wigner function is then

Ws�z� =
1


2 
 e�*z−�z*�s���d2�

=
2



exp�− 2�e2rzr

2 + e−2rzi
2��


�4e2rzr
2 + 4e−2rzi

2 − 1� . �10�

In order to perform a Bell inequality test, the single-mode
PSGS should be divide by a beam splitter to generate a two-
mode state shared by distant parties. The beam-splitter op-

erator ÔBS acting on modes â and b̂ is represented as

ÔBS��� = exp��

2
�â†b̂ − b̂†â�� , �11�

where the reflectivity and transmittivity are defined as R
=sin2�� /2� and T=1−R, respectively. When the PSGS
passes through a 50:50 beam splitter, the resulting state is

Wtot�z1,z2� = Ws� z1 + z2

�2
�Wv�− z1 + z2

�2
� , �12�

where Wv�z� is the Wigner function of the vacuum,

Wv�z� =
2



exp�− 2�z�2� . �13�

The two-mode state Wtot�z1 ,z2� can be used to calculate the
Bell-CHSH function in Eq. �8�. The Wigner function of the
SCS is obtained by the same method as

Wc
��z� =

e−2�z�2


�1 � e−2�2
�
�e−2�2

�e−4�zr + e4�zr� � 2 cos 4�zi� ,

�14�

where Wc
+�z� �Wc

−�z�� is the Wigner function of the even
�odd� SCS. The Bell-CHSH function can be obtained in the
same manner.

The optimized Bell-CHSH functions �BCHSH�max for the
cases of the PSGS and the SCS are plotted in Fig. 2�a�. In
this figure, the SCS of amplitude � and the PSGS that best
approximates the SCS for the given amplitude are compared.
The PSGS is found to show larger violations for ��1.84,
i.e., for the range where the fidelity between the PSGS and
the SCS is F�0.91. Note that the fidelity between the two
states is high when � is small enough, and in this limit �i.e.,
�→0� the optimized Bell-CHSH functions for the two states
become the same as shown in Fig. 2�a�.

B. Bell-CH inequality formalism with the Q functions

BW used the Q function for a test of a Bell-CH inequality
violation using photon presence �i.e., on-off� measurements
�42�. Note that in this paper, we refer to a dichotomic mea-
surement discriminating between “no photon” and “any pho-
ton�s�” as a photon presence measurement. This is obviously
more realistic for an experimental Bell inequality test since it
is difficult to measure the parity of photon numbers using
currently available photodetectors. The Q function for a two-
mode state �12 is defined as

0.5 1 1.5 2 2.5 3
α

2.2

2

2.4

2.6

2.8
B

(a)

0.5 1 1.5 2 2.5 3
α

−1.15

−1.1

−1
−1.05

−0.95

−0.9
B

(b)

FIG. 2. �a� Optimized Bell-CHSH function B= �BCHSH�max for a
PSGS �solid curve� and a SCS �dashed curve�, each of them divided
at a 50:50 beam splitter, with photon number parity measurements
and displacement operations. �b� The optimized Bell-CH function
B= �BCH�max for a PSGS �solid curve� and a SCS �dashed curve�,
each of them divided at a 50:50 beam splitter, with photon measure-
ments and displacement operations.
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Q12�z1,z2� = 2
z2�1
z1��12�z1�1�z2�2


2 , �15�

where �z1� and �z2� are coherent states of amplitude z1 and z2,
respectively. The Bell-CH function in terms of Q representa-
tion is

BCH = 
2�Q12�z1,z2� + Q12�z1,z2�� + Q12�z1�,z2� − Q12�z1�,z2���

− 
�Q1�z1� + Q2�z2�� , �16�

where Q1�z1� and Q2�z2� are the marginal Q functions of
modes 1 and 2. Then the local theory imposes the Bell-CH
inequality

− 1 � BCH � 0. �17�

Equation �16� is a generalized version of the BW formalism
�7�. The Q function for the entangled coherent state is

QECS�z1,z2�

= N−���2�exp�− �z1 − ��2 − �z2 + ��2�

+ exp�− �z1 + ��2 − �z2 − ��2�

− exp�− �z1 − ���z1
* + �� − �z2 + ���z2

* − �� − 4�2�

− exp�− �z1
* − ���z1 + �� − �z2

* + ���z2 − �� − 4�2�� .

�18�

The marginal Q function can also be calculated from �18� so
that the Bell-CH function in Eq. �16� can be obtained. The
optimized Bell-CH functions �BCH�max for the cases of the
SCS of amplitude � and the PSGS optimized to approximate
the SCS are plotted in Fig. 2�b�. Interestingly, the SCS shows
large Bell violations when ��0.85 �F�0.999� but the
PSGS outperforms the SCS when ��0.85. This result is
obviously different from the one for the Bell-CHSH inequal-
ity using photon parity measurements shown in Fig. 2�a�.

IV. ANALYSIS WITH IMPURE GAUSSIAN STATES, A
BEAM SPLITTER, AND A REALISTIC AVALANCHE

PHOTODETECTOR

In this section, we consider some detrimental factors that
can affect Bell inequality tests with PSGSs in real experi-
ments. First, experimental Gaussian states are not pure states
but have a small amount of mixing. Therefore, we take the
impurity of the squeezed states into consideration in our cal-
culation. Second, when one actually subtracts a photon from
a Gaussian state, a beam splitter with a high transmittivity
and an avalanche photodetector, which cannot resolve pho-
ton numbers, are typically used. In such an experimental
setup, if the transmittivity of the beam splitter approaches 1,
the probability of subtracting only one photon becomes close
to 100%, provided the detector clicked. However, in this
limit the success probability �i.e., the probability of the
“click” event� approaches zero. Therefore we need to con-
sider cases where the transmittivity of the beam splitter is not
unity. In this case, the generated state will be a mixed state
and that may affect the results of the Bell inequality tests.
Furthermore, we need to assess the effects of the nonunit

efficiency and dark counts of a realistic avalanche photode-
tector used for photon subtraction. Note that we shall con-
sider the PSGSs of r�0 in this section without losing gen-
erality.

A. Effects of impure Gaussian states, a beam splitter,
and an ideal avalanche photodetector

Kim et al. derived the characteristic function and the
Wigner function of the PSGS under experimentally realistic
assumptions as follows �32�. We are interested in Gaussian
states with the characteristic functions in the form of

C��� = exp�−
A

2
�r

2 −
B

2
�i

2� , �19�

where A and B are determined by the quadrature variances of
the field. When the squeezed Gaussian field in Eq. �19� is
divided at a beam splitter, the two-mode characteristic func-
tion for the output field of modes 1 and 2 is �44�

Cout��,�� = exp�−
1

2
xVxT� , �20�

where x= ��r ,�i ,�r ,�i� and the correlation matrix

V =�
n1 0 c1 0

0 n2 0 c2

c1 0 m1 0

0 c2 0 m2

� �21�

with

n1 = TA + R, n2 = TB + R, c1 = �TR�A − 1� ,

c2 = �TR�B − 1�, m1 = RA + T, m2 = RB + T . �22�

When the avalanche photodetector, which does not re-
solve photon numbers, clicks at mode 2, the state generated
at mode 1 is

�̂a = N�
n=1

�

2
n��̂out�n�2, �23�

where N is the normalization factor. Consider the unnormal-
ized density operator for mode 1 of the output field,

�̂t = Tr2��̂out� = �
n=0

�

2
n��̂out�n�2. �24�

It is then clear from Eqs. �23� and �24� that

�̂a = N��̂t − 2
0��̂out�0�2� , �25�

where

�̂t =
1




 Cout��,0�D̂1�− ��d2� �26�

and
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2
0��̂out�0�2 =
1


2 
 Cout��,��e−���2/2D̂1�− ��d2� d2� .

�27�

Using Cout�� ,�� in Eqs. �20�–�22� and Eqs. �25�–�27�, the
characteristic function Ca��� for �̂a is found �32�:

Ca��� = Tr��̂aD̂���� = Ne−�n1�r
2+n2�i

2�/2�1 −
2

��m1 + 1��m2 + 1�


 exp� c1
2

2�m1 + 1�
�r

2 +
c2

2

2�m2 + 1�
�i

2�� . �28�

The normalization factor is calculated as

N =
��m1 + 1��m2 + 1�

��m1 + 1��m2 + 1� − 2
.

It is then straightforward to derive the Wigner function from
Eq. �28� by the Fourier transform as performed in Eq. �10�.
The Q function is obtained in the same way but using the
normally ordered characteristic function Ca

Q���
=Ca���exp�−�1 /2����2�. We also obtain the success probabil-
ity of the click event for the avalanche photodetector as

Ps = 1 − 2
0��t��0�2 =
2

��1 + m1��1 + m2�
, �29�

where

�̂t� =
1




 Cout�0,��D̂2�− ��d2� . �30�

The numerically optimized Bell-CHSH functions are plot-
ted and compared with the corresponding success probabili-
ties in Fig. 3�a�. The violation for the pure PSGS �r=0.3�
decreases as T gets smaller. We also consider the total vari-
ance A
B, which is strictly related to the purity in the case
of Gaussian states, as a measure of mixedness for the input
Gaussian state. The total variance is 1 for a pure Gaussian
state and it increases as the level of mixedness becomes
larger. We can observe that the violation is quite sensitive to
the degree of mixedness. We note that only a small amount
of mixing �total variance about 1.02� decreases the Bell vio-
lation significantly, as shown in Fig. 3�a�. The success prob-
abilities for the corresponding cases are plotted in Fig. 3�b�.
When we equally increase A and B, the violation disappears
when the variance is around A=1.024.

The numerically optimized Bell-CH functions using pho-
ton presence measurements are plotted in Fig. 4. In this case,
the violation is obviously less sensitive to the mixedness of
the input Gaussian state. We have considered a recent experi-
mental achievement, where the squeezing degree is −3.57 dB
below and 4.26 dB above the vacuum level, and the Bell-CH
inequality is still violated �31,45�. The total variance in this
case is about 1.17. This confirms that the Bell-CH inequality
test using photon presence measurements is experimentally
more feasible than the Bell-CHSH inequality test using pho-
ton number parity measurements.

Here we briefly compare our results with previous ones
�38�. In our numerical study, the CH inequality using on-off

photon detection is violated for T�0.64 when r=0.39 and
�=1. This is consistent with the results in Ref. �38�, where
the CHSH inequality based on photon on-off measurements
is analyzed. However, in our study, the Bell-CHSH inequal-
ity using photon parity measurements shows Bell-CHSH vio-
lations for T�0.89, while T�0.8 is sufficient for the Bell-
CHSH violation based on the photon on-off measurements.

B. Effects of nonunit quantum efficiency and dark counts
for a realistic avalanche photodetector

We need to consider the effects of nonunit quantum effi-
ciency of the avalanche photodetector used for photon sub-
traction. The postselection to generate the PSGS is made
only when the detector clicks, regardless of the number of
photons. As we pointed out, when the transmittivity T of the
beam splitter is large, the probability of subtracting only one
photon becomes dominant compared to the probability of
subtracting more than one. This essential nature does not
change even when the detection efficiency is low. Therefore,
one may predict that the Bell inequality tests with the PSGS
will be insensitive to the detection inefficiency when T is
sufficiently large. This is confirmed by the following analy-
sis.

Olivares and Paris obtained the generalized quasiprobabil-
ity function Wj�z� of the photon-subtracted squeezed state
with the detection efficiency � as �33�

0.8 0.85 0.9 0.95
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2.3

B
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0.8 0.85 0.9 0.95
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0.015
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FIG. 3. �a� Numerically optimized Bell-CHSH function B
= �BCHSH�max for a PSGS using a pure Gaussian state of r=0.3
�2.61 dB, solid curve� and mixed Gaussian states �dashed curve�.
The mixed Gaussian state corresponds to −2.56 dB below and
2.65 dB above the vacuum level �the two dimensional variance A

B is about 1.02�. The horizontal axis represents the transmittivity
T of the beam splitter used to generate the PSGS. �b� Success prob-
ability of the pure �solid curve� and mixed �dashed curve� cases
shown in �a�.
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Wj�z� = N��G1�z� −
G2�z�

��Det�H + �M�
� , �31�

where N� is the normalization factor and

Gk�z� =

2 exp�−
2�2Ak − j��z�2 + 4Bk�z2 + z*2�

�2Ak − j�2 − 16Bk
2 �


��2Ak − j�2 − 16Bk
2

,

H = �h+ 0

0 h− � ,

�M =
2 − �

2�
1 , �32�

with

Ak =
1

2
�ak

+ + ak
−� ,

Bk =
1

4
�ak

− − ak
+� ,

a1
� =

1

2
�1 + �e�2r − 1�t� ,

a2
� =

1

2
�

t sinh r

cosh r � �1 − ��1 − t��sinh r
,

h� =
1

2
�e�2r�1 − t� + t� . �33�

Here, the function Wj�z� becomes the Wigner function when
j=0, while it becomes the Q function when j=−1. It is then
straightforward to obtain the Bell-CHSH and the Bell-CH
functions using the Wigner and Q functions, respectively,
using Eqs. �8� and �16�. We have plotted the numerically
optimized Bell-CHSH and Bell-CH functions in Figs. 5 and
6, respectively. It shows again that the Bell-CH inequality is
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FIG. 4. �a� Numerically optimized Bell-CH function B
= �BCH�max for a PSGS using a pure Gaussian state of r=0.3
�2.61 dB, solid curve� and mixed Gaussian states. The mixed state
case represented by the dashed curve corresponds to −2.52 dB be-
low and 2.69 dB above the vacuum level �the variance A
B is
about 1.04�. The case represented by the dotted curve corresponds
to −2.43 dB below and 2.78 dB above the vacuum level �the vari-
ance A
B is about 1.08�. �b� Numerically optimized Bell-CH func-
tion for a PSGS using an experimentally feasible Gaussian state.
The squeezing degree is −3.57 dB below and 4.26 dB above the
vacuum level. The two-dimensional variance A
B in this case is
about 1.17. �c� Success probability Ps of the case shown in �b�.
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FIG. 5. �a� Numerically optimized Bell-CHSH function B
= �BCHSH�max for a PSGS using a pure Gaussian state of r=0.3 with
a beam splitter of transmittivity T and a realistic detector of effi-
ciency �. The quantum efficiency of the detector is considered to be
�=1 �solid line�, 0.8 �dashed line�, and 0.6 �dotted line�. �b� Success
probability Ps for the cases shown in �a�.
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more robust against detection inefficiency. In Fig. 6�b�, the
numerically optimized Bell-CH function is plotted against
the detection efficiency � for T=0.95 �solid line� and 0.98
�dashed line�. It seems obvious that, when the transmittivity
T is as large as T�0.95, detrimental effects of the detection
inefficiency are very small.

If the dark count rate of the photodetector used to subtract
a photon is non-negligible, the resulting state will be in a
mixture of the photon-subtracted squeezed state and the
squeezed vacuum. Such a mixed state can be represented as
�28,32�

PmW�z� + �1 − Pm�Ws�z� , �34�

where W�z� is the Wigner function of the photon-subtracted
squeezed state, Ws��� is the Wigner function of the squeezed
vacuum, and Pm is called the modal purity factor. The nu-
merically optimized Bell-CH function is plotted against the
modal purity factor in Fig. 7. If Pm�0.78, the Bell violation
cannot be observed even though T is as large as T=0.99 and
the initial squeezed state was pure.

V. REMARKS

We have studied tests of Bell inequalities with PSGSs. It
has been found that the PSGSs largely violate the Bell-
CHSH inequality using photon number parity measurements
and the Bell-CH inequality using photon presence measure-
ments. The PSGSs and the SCSs violate Bell inequalities in
different ways.

We have analyzed the effects of the key experimental
components used to generate the PSGSs, the mixedness of

the Gaussian states, the limited transmittivity of the beam
splitter, and an avalanche photodetector that cannot resolve
photon numbers, have been taken into consideration in our
analysis. As a result of this analysis, the degrees of mixed-
ness and the beam splitter transmittivity that can be allowed
for successful tests of Bell’s inequality have been revealed.
The tests of the Bell-CH inequality using photon presence
measurements have been found to be less sensitive to the
mixedness of the Gaussian state used to generate the PSGS.
We have also analyzed the effect of nonunit quantum effi-
ciency and dark counts of the photon detector used for pho-
ton subtraction. We have pointed out that when the transmit-
tivity T is large �e.g., T�0.95� the detrimental effects of
detection inefficiency are very small.

We now address the experimental feasibility of the Bell
inequality tests discussed in this paper. The photon presence
measurements are obviously easier to realize using current
technology, and therefore the Bell-CH inequality is a better
candidate for nonlocality tests of the PSGSs. Of course, the
Bell-CH inequality tests using photon presence measure-
ments may still suffer from the inefficiency of the photon
detectors used for Bell inequality tests �not the one used for
photon subtraction� in real experiments. This is a nontrivial
problem to overcome.

As a less challenging experimental task, one may consider
the tomography approach of verification of quantum nonlo-
cality using homodyne detection used in Ref. �46�. Our study
of the Bell inequality tests is based on the quasiprobability
functions �42�, and it is possible to reconstruct the quasiprob-
ability functions using homodyne detection. Homodyne de-
tection can be highly efficient using current technology �31�.
Furthermore, even when the homodyne efficiency is not sat-
isfactory, one may always correct losses at the detectors to
reconstruct the quasiprobability functions of the generated
state. The reconstruction of the two-mode and single-mode Q
functions would be the most efficient method to verify quan-
tum nonlocality of the generated PSGS. If the currently
available Gaussian state is used and the final homodyne in-
efficiency is corrected, one can experimentally show that the
generated state is the one that violates the Bell-CH inequal-
ity, as predicted in Fig. 4. Even though such a method is not
a direct test of Bell’s inequality using homodyne detection
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FIG. 6. �a� Numerically optimized Bell-CH function B
= �BCH�max for a PSGS using a pure Gaussian state of r=0.3 with a
beam splitter of transmmittivity T and a realistic detector of effi-
ciency �. The quantum efficiency of the detector is considered to be
�=1 �solid line�, 0.8 �dashed line�, and 0.6 �dotted line�. �b� Nu-
merically optimized Bell-CH function B against the detection effi-
ciency � for T=0.95 �solid line� and 0.98 �dashed line�.
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FIG. 7. Numerically optimized Bell-CH function B= �BCH�max

for a PSGS using a pure Gaussian state of r=0.3 against the modal
purity factor Pm with a beam splitter of transmittivity T=0.99 �solid
line� and 0.95 �dashed line�. The detection efficiency was supposed
to be �=0.6.
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described in Refs. �8,40,41�, which are experimentally more
demanding, it is enough to show that quantum-mechanically
nonlocal states have been generated �46�.

Of course, it should be noted that the violation of the
Bell-CH inequality shown in Fig. 4�b�, based on a recent
experimental achievement, is small. Such small values may
disappear because of other experimental factors such as the
dark count rate of the avalanche photodetector. This indicates
that it is important to improve the purity of the Gaussian

state to clearly verify quantum nonlocality of the two-mode
PSGS in real experiments.
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