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Nonlinear Floquet states associated with a symmetry-breaking driving field are exploited to control the
dynamics of a Bose-Einstein condensate in a double-well potential. The population imbalance between the two
wells is shown to be controllable by slowly tuning system parameters along a closed path. The results extend
symmetry-breaking-based quantum control to many-body systems on the mean-field level and extend naviga-
tion of linear Floquet states to navigation of nonlinear Floquet states.
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Symmetry-breaking driving fields have found a variety of
applications in quantum control, including the generation of
photocurrents by harmonic mixing �1�, the realization of ba-
sic mechanisms of ratchet transport �2�, and the control of
chiral processes �3�, to name a few. To explore how
symmetry-breaking driving fields can be used to manipulate
the dynamics of Bose-Einstein condensates �BECs�, it is nec-
essary to extend symmetry-breaking-based quantum-control
scenarios to interacting many-body systems.

Given the robustness inherent in adiabatic quantum con-
trol, one wonders how a driven BEC system may be manipu-
lated by slowly tuning the system parameters, especially
those of the driving fields. To that end one also needs to
extend the conventional Floquet states to mean-field nonlin-
ear Floquet states �4–7�, a new concept for understanding
periodically driven nonlinear systems. Nonlinear Floquet
states may display degeneracy as well as bifurcation points
that are absent in linear systems �6,7�. This presents both
challenges and opportunities for adiabatic quantum control.
In particular, adiabatic following of nonlinear systems might
break down due to bifurcations �8�.

In this study we demonstrate that the population imbal-
ance of a BEC in a double-well potential �9–13� can be con-
trolled �including its inversion� by using a symmetry-
breaking driving field. Specifically, by considering a closed
path of the system parameters, we show that it is possible to
move one self-trapped state from one well to the other, thus
inducing an inversion of the population imbalance and plac-
ing the system in a different nonlinear Floquet state. Recog-
nizing that a double-well model is relevant to other contexts
as well—e.g., a BEC occupying two hyperfine levels �14� or
a BEC in an optical lattice that occupies two bands �15�—
this work shall motivate further studies of robust control of
the mean-field dynamics of many-body quantum systems
with symmetry-breaking driving fields.

A BEC in a double-well potential can be readily realized
�11–13�. For example, the double-well potential can be
implemented by using two optical lattice potentials �16�. The
periodic driving force can be created by modulating the rela-
tive phase between the two optical lattices �13,17�. Theoreti-
cally, under the mean-field two-mode treatment �18�, the as-
sociated driven dynamics can be described as follows:

i
d�1

dt
= C�2 + g�1N1 + �1f�t� , �1�

i
d�2

dt
= C�1 + g�2N2 − �2f�t� , �2�

where C denotes the tunneling rate constant, g describes the
strength of the self-interaction of the BEC, �1,2 are the quan-
tum probability amplitudes in the left and right wells, and
N1,2= ��1,2�2 are the corresponding populations �under the
normalization N1+N2=1�. f�t�= f1 sin��t�+ f2 sin�2�t+�� is
a zero-bias bichromatic driving force with period T=2� /�,
and � is the relative phase between the � and 2� fields.
Bichromatic forces of the type of f�t� have already been used
successfully in experiments to control the motion of atoms in
optical lattices �19�. For a general value of � the bichromatic
driving force f�t� breaks the time-reversal antisymmetry �7�
and a generalized parity �2�. Throughout we set T=1 �all
parameters are scaled dimensionless variables�. Typical val-
ues of these system parameters are well discussed in, e.g.,
Refs. �4,20�. g is assumed to be tunable via the Feshbach
resonance under an external magnetic field, though the mag-
netic field is not explicitly included in the Hamiltonian.

For f�t�=0, Eqs. �1� and �2� have a left-right permutation
symmetry and reduce to the static double-well model for
self-trapping �9–11�. That is, for a sufficiently large g, there
exist two degenerate eigenstates with a nonzero population
imbalance S�N1−N2. For f�t��0, in the linear limit, Flo-
quet states take over the role of eigenstates for time-
independent systems. In particular, Eqs. �1� and �2� possess
two Floquet states whose time evolution satisfies
��1�T� ,�2�T��= ��1�0� ,�2�0��exp�−i�T�, where �1,2�t+T�
=�1,2�t� and � is the quasienergy. The linear Floquet states
can then be continuously extended into the nonlinear domain
�7�, thus defining nonlinear Floquet states. As in the station-
ary case, Floquet states can also show population imbalance
for large g as a manifestation of self-trapping.

We now map the mean-field dynamics of the two-mode
system onto the dynamics of a periodically driven classical
system. Introducing the variable �=	2−	1, with �1
= ��1�exp�i	1� and �2= ��2�exp�i	2�, a classical effective
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Hamiltonian Heff exactly describing the dynamics of S and �
is found to be �5� Heff=

1
2gS2+2C�1−S2cos���+2f�t�S. The

nonlinear Floquet states can then be mapped to the fixed
points of the Poincaré map of Heff �4,5�.

To examine how the nonlinear Floquet states may be adia-
batically correlated, we first study their behavior as the non-
linear parameter g increases. As we increase g, one of the
two Floquet states can bifurcate into three nonlinear Floquet
states at a critical value gc �It is a function of the tunneling
rate C, frequency, and amplitudes of the force �4�. For ex-
ample, in the high-frequency regime, gc becomes propor-
tional to C�. For �=0,�, time-reversal antisymmetry is pre-
served and consequently we have a pitchfork bifurcation
with two degenerate states with exactly opposite nonzero
population imbalance S. When the above symmetry is broken
a saddle node �Fig. 1� appears instead, where two of the new
states have very close quasienergies with almost opposite S,
and the third state corresponds to a saddle point on the
Poincaré map of Heff. In this latter case the critical nonlin-
earity value for the bifurcation is a function of �, denoted
gc���. Figure 1 shows that with an adiabatic increase in g the
system will continuously follow the upper bifurcation branch
corresponding to a state with increasing S.

How slowly should g change in order to achieve neces-
sary adiabaticity? To answer this question we ramp g linearly
in time between g=g1 and g=g2 located at different sides of
gc, at a rate of 
. To get a rough estimate of how small the
ramping rate 
 should be to ensure adiabaticity, we use the
Landau-Zener tunneling formula of Floquet states in the lin-

ear limit �21�. For a representative case shown in Fig. 1, we
find that 
�10−4 suffices for an adiabatic process. For ex-
ample, we take g1=1.8 and g2=2.2 and consider one initial
state such as the state “1” shown in Fig. 1 �preparing such an
initial state requires the tuning of S and � �11�, followed by
a fast turn-on of the driving field�. After the ramping we let
the state evolve for some time and then examine the time
dependence of N1 and N2. For 
�10−4, the obtained state
after the ramping process is essentially identical with the
adiabatic state associated with g=g2 �or state “2” in Fig. 1�.
The periodic oscillations in N1 and N2 also exactly match the
frequency of the driving field.

Significantly, if the main interest is in the control of the
population imbalance S, then the time-averaged S over many
periods T is more relevant and hence it is unnecessary to
achieve full adiabaticity. Consider then cases with consider-
ably rapid ramping—e.g., 
=10−2. As shown in Fig. 2, for
such a ramping rate that is two orders of magnitude larger
than before, almost the same time-averaged S is obtained.
This can be further appreciated using the classical effective
Hamiltonian Heff. As seen from the right panel in Fig. 2, if 

is much larger than 10−2, self-trapping breaks down. The
classical trajectory after the ramping process is found to be
on a chaotic layer around a separatrix structure, which cor-
responds to the state in the lowest bifurcation branch. This is
understandable because after a fast ramping process, the sys-
tem has not evolved much; so if the initial state is the fixed
point for g=1.8 located at �	−0.3 and S	0, it will neces-
sarily find itself in the neighborhood of the saddle point for
g=2.2 located also at �	−0.3 and S	0.

By contrast, if 
�10−2, then the classical trajectory re-
mains in the neighborhood of the fixed point. Averaging out
the oscillations around the fixed point we obtain an averaged
S close to that in the fully adiabatic case. Evidently then,
manipulation of population imbalance may be effectively
achieved within a relatively short time scale.

We now ask if the population imbalance S can be in-
verted. For that purpose the parameter � becomes crucial
because it is responsible for the symmetry breaking here.
However, for strong self-interaction g�gc, a varying � may
have little effect on a large S due to the self-trapping effect.
Further, a path in the parameter space may not allow for
adiabatic following if certain loop structure of nonlinear Flo-
quet states is encountered �see, for example, case �c� of the
lower panel of Fig. 4�. This motivates us to study how S
might be inverted by tuning both � and g.

Consider then a four-stage control cycle with state 2 in
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FIG. 1. �Color online� �a� Quasienergy � vs g. Points 1 and 2
represent the initial and final states in an adiabatic process �arrows
indicate the direction�. The population imbalance of state 3 on an-
other branch is almost the opposite of that for state 2. �b� Time-
averaged populations as g is adiabatically increased. The dashed
lines labeled by 1 or 2 correspond to the states in �a�. The thin solid
line marks the threshold value gc for the onset of self-trapping for
�=−1.6. Insets depict the populations of atoms in the two wells for
states 1 and 2. Other parameters are �=2�, f1= f2=1, and C=1.
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FIG. 2. �Color online� Left
panel: evolution of the popula-
tions N1 and N2 after ramping g
with different rates 
. Right panel:
the same dynamics as in the left
panel plotted on the S-� plane as-
sociated with Heff. Parameters are
the same as in Fig. 1. The case of

=0 represents the true adiabatic
limit.
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Fig. 1 being the initial state. In stage I, g is ramped from g
=2.2 to g=1.8, a point where degeneracy of nonlinear Flo-
quet states no longer exists for any �. In stage II, � is ramped
from −1.6 to 1.6. In stage III, g is ramped back to 2.2, and in
stage IV, � is ramped back to −1.6. Stages III and IV are
hence the opposite actions of stages I and II, but with a
different order. As we ramp different parameters, we can
have different ramping rates—e.g., 
g and 
�. For simplicity,
we set 
g=
�=
.

Figure 3 compares the time dependence of S associated
with state 2 �bottom curve in the left panel� and that associ-
ated with the final state �upper curve with oscillations similar
to state 2� after the four-stage ramping cycle with the linear
ramp rate given by 
g=
�=10−4. Clearly, the resultant state
after following the parameter cycle inverts S. Moreover, its
dynamics coincides with that of state 3 �see Fig. 1�. This
indicates that after the four-stage control cycle, a nonlinear
Floquet state different from the initial one is reached. Next
we show in Fig. 3 the quasienergy along the control path. At
first glance, the quasienergy path seems to form a closed
loop. However, on a closer inspection of the last stage of the
cycle �see panel �b� on the right of Fig. 3�, it is found that the
quasienergy of the final state �square� coincides with that of
state 3 �see Fig. 1� and hence differs from that of the initial
state �circle�. This again confirms that the system is placed
on a different nonlinear Floquet state after following the
above ramping cycle.

We also calculate the quasienergy surfaces as a function
of � and g �Fig. 4�. For the sake of clarity, we only show the
surface around the region where one quasienergy surface bi-
furcates into three surfaces. Above a critical strength of g,
two quasienergy surfaces can cross each other, forming a
degeneracy line. Because this degeneracy line is along the
�=0 direction �consistent with the above symmetry analy-
sis�, the critical value g for the surface crossing can be iden-
tified as gc��=0�. Note also that the degeneracy line does not
prevent the system from continuously following the ramping

process because �i� S can only change continuously and �ii�
the involved degenerate states have opposite values of S.

Using the quasienergy surfaces we can now visualize the
dynamics associated with the above four-stage cycle. In the
first stage, the state slides down the quasienergy surface
shown in Fig. 4, and at the same time three nonlinear Floquet
states merge into one. At the end of the first stage, the self-
trapping phenomenon has disappeared and this makes it pos-
sible to reverse S by tuning �. The second step does exactly
this by allowing the symmetry-breaking driving force to
change S from a very small, negative value to a very small,
but positive value. In the third stage, g returns to its original
value, the system climbs up the quasienergy surface, and
three nonlinear Floquet states emerge again as a result of
bifurcation. During this stage, the inverted S is then magni-
fied in the same mechanism as shown in Fig. 2. In the last
stage when � is ramped back, the system can maintain its
population imbalance due to self-trapping. In the meantime
the system crosses the degeneracy line, returns all system
parameters to their initial values, and finally ends up in a
different Floquet state. Certainly, via a reversed closed path
one can also change S from positive to negative.

One may regard the above “anholonomylike” behavior as
a consequence of adiabatic following during the entire ramp-
ing process, insofar as the system always follows the control
cycle and never populates two nonlinear Floquet states.
However, due to the nonlinearity-induced degeneracy line
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FIG. 3. �Color online� Left panel: population imbalance S of the
initial state 2 �bottom curve� and the final state �upper curves� after
a four-stage ramping cycle. 
=10−4 for the upper solid curve and

=10−2 for the upper dotted-dashed curve. Inset: the four-stage
cycle with the dot being the starting point. Right panel: �a� quasien-
ergy along the four-stage adiabatic cycle and �b� enlargement of the
panel �a�. The initial and final points are depicted by a circle and a
square, respectively. Arrows indicate the direction of the ramping
process.
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FIG. 4. �Color online� Upper panel: quasienergy surface vs pa-
rameters � and g. Lower panel: quasienergy � vs � for �a� g=2, �b�
g=1.98, �c� g=1.97, and �d� g=1.95. The initial state is depicted by
a black dot in panel �a�. In the first stage, g decreases and the
quasienergy state �black dot� changes as shown in the �a�-�b�-�c�-�d�
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In the third stage, in the order of �d�-�c�-�b�-�a�, the quasienergy
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the arrows in panel �a�.
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along �=0, the evolution during stage IV is diabatic when
crossing the degeneracy line. In either perspective, the net
result is the same: the system finds itself in a different state
after following a ramping cycle in the parameter space.

We next examine whether we can achieve an inversion of
S if the system parameters are tuned at a much faster rate.
Significantly, as already suggested by the results in Fig. 2,
the adiabatic following approach here still works for much
larger 
g and 
�—e.g., 
g=
�=10−2 �Fig. 3�. In this case, as
indicated by the beating patterns of the dynamics �see Fig.
3�, the final state is not on one single Floquet state, but upon
a time average we still achieve an inverted S close to that
obtained from the previous slow-ramping case. We have also
checked many other clockwise �counterclockwise� closed
paths in the g-� plane of Fig. 4, finding that they can yield
similar control from state 2 to state 3 �from state 3 to state 2�
if they enclose the critical point (�=0,g=gc��=0�). Thus,
given the topology of quasienergy surfaces, especially the
degeneracy and bifurcation points, navigation of nonlinear

Floquet states provides a useful control scenario. This also
extends an early control scenario based on the navigation of
linear Floquet states �22�. Applying our approach to nonlin-
ear Floquet states localized in momentum �7�, it should be
possible to invert ratchet transport in many-body systems
without a biased field.

In conclusion, by demonstrating the control of the popu-
lation imbalance associated with a BEC in a double-well
potential, we have shown that the navigation of nonlinear
Floquet states associated with symmetry-breaking driving
fields can offer effective and robust control over many-body
systems on the mean-field level.
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