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We experimentally show the existence of labyrinthine patterns between spatially modulated steady states in
a simple nonlinear optical system consisting of a sodium vapor cell and a single feedback mirror. The inho-
mogeneity of the steady states leads to a locking phenomenon determining the length scale of the labyrinthine
patterns and diminishes their region of existence in favor of localized periodic patterns. Numerical simulations
confirm the experimental observations.
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Self-organized labyrinthine patterns have been observed
in a variety of pattern-forming systems, including chemical,
hydrodynamical, and superconducting ones and others �see
�1,2� and references therein�. In optics, such states have been
experimentally demonstrated only in the degenerate optical
parametric oscillator �3�, although they are theoretically pre-
dicted for some other optical systems, such as vectorial Kerr
resonators and in degenerate four-wave mixing �4,5�.

A common approach to front dynamics in such systems is
to consider a circular “droplet” of one stable state on the
background of another one �1,4,7–10�, or a straight front
between two states �4,6�. In this framework, the modula-
tional instability corresponds to a growth of circular domains
driven by the front curvature �or, equivalently, to a “finger-
ing” of a straight front�. This is complementary to the for-
mation of solitonlike structures in so far as in both cases a
domain shrinks or grows until it ends up in a stable configu-
ration formed by the diffractive locking of the fronts
�4,8–11�. Solitons formed on an inhomogeneous background
have been considered as well, with an inhomogeneity either
inherently belonging to the system �as in transverse photonic
crystals �12,13�� or formed due to a self-organization process
from an initially homogeneous background �9,8�. Such inho-
mogeneities play an active role, sufficiently modifying the
dynamics �9,12,13�. In particular, in a system analogous to
the one considered here they can stabilize otherwise unstable
higher-order transverse solitons �9�.

In contrast to solitons, the formation of labyrinthine pat-
terns on an inhomogeneous background has not been studied
before, to the best of our knowledge. In the present paper we
consider a nonlinear optical system with a single feedback
mirror, where the steady states are provided by light of op-
posite circular polarization �9,14�. The pitchfork bifurcation
giving rise to these states is followed by a subcritical Turing
pattern instability, leading to stationary spatially periodic pat-
tern formation. Here, we consider the Ising fronts connecting
two already spatially inhomogeneous states. We demonstrate

both experimentally and numerically the possibility of laby-
rinth formation on such a patterned background. We show
that the presence of spatially periodic oscillations in the
background leads to the locking of the length scale of the
labyrinthine pattern to the characteristic wavelength of the
underlying spatial oscillations. In addition, the labyrinth for-
mation does not start directly at the threshold where fronts
start to expand, but is intermediated by some parameter re-
gion in which the front dynamics is stopped by locking on
the underlying oscillations.

The experimental scheme is shown in Fig. 1. The driving
light field is a linearly polarized, spatially filtered, and colli-
mated laser beam �beam waist radius w0=1.89 mm� with a
frequency some linewidths above the sodium D1 line. The
beam is injected into a heated cell containing sodium vapor
in a nitrogen buffer gas atmosphere. The cell is placed in the
center of three orthogonal pairs of Helmholtz coils, which
compensate the earth’s magnetic field and create a dc mag-
netic field B of up to about 25 �T with arbitrary spatial
direction.

The feedback loop consists of a planar mirror �R=0.99� at
a distance d behind the medium and a � /8 retardation plate,
which represents a modification with respect to the standard
scheme �14�. Its slow principal axis is oriented parallel to the
direction of polarization of the input beam. The portion of
light transmitted by the feedback mirror is used for detection.
A second � /8 plate rotated by � /2 with respect to the first
one reestablishes the polarization state of the light field be-
hind the cell before detection. A linear polarizer �“analyzer”�
projects the polarization state onto the component parallel to
the input polarization. The lens images the exit plane of the
sodium cell onto a CCD camera.

Circularly polarized light produces optical pumping be-
tween the Zeeman sublevels of the sodium ground state, i.e.,
it induces a nonzero “orientation” of the vapor, whose sign
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FIG. 1. Schematic experimental setup. LP1 and LP2, linear po-
larizers; SC, sodium cell; � /8, phase retardation plates; M, feed-
back mirror; CCD, charge coupled device camera.
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depends on the helicity of the light. For a linearly polarized
input no net pumping should occur. However, in zero mag-
netic field the system shows spontaneous symmetry breaking
between two equivalent spatially homogeneous elliptically
polarized states of opposite helicity at a critical pump rate
�14,15�. One state is connected with a positive orientation of
the medium and a positive rotation of the main axis of po-
larization, and the other one has a negative orientation and
polarization rotation �referred to as “up” and “down” states
in the following�. This symmetry breaking is a result of a
�supercritical� pitchfork bifurcation. At much higher pump
levels both of these homogeneous branches become unstable
against a modulational instability. Both pattern formation and
the existence of polarization domain walls have been dem-
onstrated before �14�.

Above the threshold of the modulational instability, com-
plex patterns in the polarization state—like those shown in
Fig. 2—are observed. These structures appear spontaneously
in switch-on experiments and consist of complex-shaped do-
mains of the up and down states, which are connected by
fronts. A comparison with numerical simulations �see below�
with plane wave input rather than a Gaussian beam reveals
that the observed structures are small portions of extended
labyrinthine patterns, limited by the finite size of the beam.

These patterns are only observed with �B�=0 or purely
transverse or longitudinal magnetic fields. The threshold is
lowest �laser power of the input beam about 250 mW� for a
purely transverse magnetic field of 2–3 �T. It should be
noted that the pitchfork bifurcation is subcritical under these
conditions. For an oblique field, the original pitchfork bifur-
cation becomes asymmetric and one of the polarization states
is preferred. In this case, the whole beam rapidly switches to
the preferred polarization state.

The fronts are arranged at discrete distances, which de-
pend on the mirror distance d �roughly proportional to �d�.
For d=120 mm, the minimum pitch is 0.35 mm, which is
slightly larger than the typical length scale of the �hexagonal�
modulational instability mentioned above. Between two
fronts, intermediate spatial oscillations around the up or
down state without a zero crossing of the orientation are
possible �Fig. 2�d�; see also Fig. 3�. These oscillations ex-
hibit the length scale of the hexagonal pattern. Depending on
the number of intermediate oscillations between two fronts,
their distance can have only a few discrete values. A similar
behavior is known from a family of transverse solitons ob-
served in the same experimental system �9�. The observed
structures change their shape very slowly compared to the
intrinsic time scales of the system.

The theoretical description of the system is based on a
well-established microscopic model �see �16� and references
therein�. Under the conditions of the experiment, the sodium
D1 line can be modeled as a J=1 /2→J�=1 /2 transition with
the population of the excited state being negligible. The
�+ component of the light field brings atoms from the
M =−1 /2 Zeeman substate to the M = +1 /2 substate with the
rate P+, while the �− component works into the opposite
direction with the rate P−. The resulting orientation corre-
sponds to the presence of a longitudinal component mz of the
�normalized� magnetization m. If there is a transverse com-
ponent Bx of the magnetic field, the other components of m
also come into play. The behavior of m is described by

�tm = D��m − �� + PS�m + � � m + PDêz, �1�

where � is the relaxation rate of the orientation, D is the
diffusion constant, �� denotes the transverse Laplace opera-
tor, and PD= P+− P− and PS= P++ P− describe the pumping
process. 	x is the Larmor frequency produced by Bx, 	y
=0, and 	z is the Larmor frequency produced by Bz and a
light shift term �17�. Obviously the pump rates P+ and P− are
proportional to the local intensities of the polarization com-
ponents in the superposition of the transmitted and the re-
flected beams. The transmitted light field is determined by
the complex susceptibilities 
� of the sample which are re-
lated to the small signal susceptibility 
lin by 
�

=
lin�1�mz�. The polarization components E�
r of the re-

flected field, which is fed back into the cell, are related to the
components E�

t of the transmitted field by

�E+
r

E−
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2
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��E+
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E−
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Here the exponential stems from the formal integration of the
linear wave equation, the matrix describes the action of the
� /8 retardation plate and R is the reflectivity of the mirror. In
the current treatment the variation of the intensity in the
interior of the cell used in �16� is neglected. From the analy-
sis of other experiments with similar setup, however, it is
expected to have only a marginal influence here.

We performed a linear stability analysis of the transver-
sally infinite system �see below�. Moreover, we solved Eqs.
�1� and �2� numerically using a split-step algorithm with a
fourth-order Runge-Kutta method on a 256�256 point grid.
The numerical parameters are chosen to represent the experi-
mental conditions as closely as possible.

FIG. 2. Examples of labyrinthine patterns observed in the ex-
periment at various parameters. Fronts between the different polar-
ization states appear as bright lines. The slightly darker line marked
by arrows in �d� stems from an intermediate spatial modulation �see
text�.

FIG. 3. Spatial length scales in numerical simulations. �a� Light
intensity distribution behind LP2. �b� Corresponding orientation
distribution along the paths marked solid and dashed in �a�. Param-
eters: d=120 mm, P0=1.2�105 s−1, �=0, �=1.5 s−1, and D
=268 mm2 /s.
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First, we performed simulations with periodic boundary
conditions �plane wave simulations� in order to avoid the
influence of the finite size of the input beam. Figure 3�a�
shows the calculated light intensity distribution �behind the
analyzer� of a labyrinth obtained from a numerical simula-
tion with periodic boundary conditions. Cuts through the cor-
responding orientation distribution along the paths marked in
Fig. 3�a� are shown in Fig. 3�b�. The solid line reveals that
the orientation is spatially modulated along the cut perpen-
dicular to the local front path with a periodicity length of
twice the average front distance. The dashed line shows an
example for the intermediate oscillations mentioned above.
The length scales found in the simulations agree well with
those retrieved from the experiment.

In order to investigate the mechanisms leading to laby-
rinth formation, plane wave simulations with circular orien-
tation domains as initial conditions were carried out at vari-
ous pump rates. For pump rates below the threshold for
hexagonal pattern formation, the initial domain shrinks with
time as shown in the top row of Fig. 4. The contraction of
circular domains in this parameter region is known from �9�
and can be explained with a curvature-driven dynamics. The
middle row of Fig. 4 shows the temporal evolution of the
same initial domain at a pump rate slightly above threshold.
In this case, the domain keeps its size approximately and
only slightly changes the form of its boundary due to an
interaction of the front with the beginning patterning of each
of the involved states. At a pump rate well above the thresh-
old, the curvature-driven front velocity changes its sign and
the front expands in length. Small fluctuations of the local
curvature �e.g., induced by the inhomogeneous background�
increase at these parameters, leading to labyrinthine patterns
as depicted in the bottom row of Fig. 4.

Straight fronts or fronts with a slight transverse modula-
tion show a similar behavior concerning contraction or ex-
pansion in length. At low pump rates, a curved portion of a
front will move in the direction toward the center of local
curvature, which leads to an overall straightening of the
front, i.e., the front contracts. At a pump rate above thresh-
old, a front portion will move outward in the direction of the
local curvature radius. The front becomes transversely un-

stable, expands in overall length, and finally forms a labyrin-
thine pattern.

The behavior described above can also be reproduced in
simulations with a Gaussian pump profile of comparable as-
pect ratio as in the experiment. It is an obvious consequence
of the intensity distribution in a Gaussian beam that far from
the beam axis the intensity is low and the fronts are always
contracting �straightening�, while they can be expanding in
the beam center �where the pump rate is sufficiently far
above the plane-wave threshold�. Typically, after a transient
phase, the expansion in the inner part stops due to an inter-
action of neighboring fronts. Figure 5 shows results of cor-
responding simulations with various pump rates after reach-
ing such a stable state. In the bottom row experimental
pictures taken at comparable parameters are shown. In both
cases an increase of the pump rate �input intensity� enlarges
the area in which the transverse front instability occurs.

The existence of a transverse modulational instability of
the front does not necessarily lead to the formation of laby-
rinthine patterns. For low values of the transverse magnetic
field, the front will initially expand, but then stop due to

FIG. 6. Instability thresholds obtained from numerical simula-
tions: ��� hexagonal pattern formation, ��� expansion of straight
fronts, and ��� labyrinthine patterns. Shaded: locking regime �see
text�. Thresholds from linear stability analysis: solid line, hexagonal
pattern formation; hatched, Hopf instability leading to spirals. Pa-
rameters: see Fig. 3 except d=112 mm, D=200 mm2 /s.

FIG. 4. �Color online� Temporal evolution of circular domains
in numerical simulations: P0= �a� 0.4�105, �b� 1.6�105, and �c�
2.8�105 s−1. Green �within domain�, mz0; red �outside domain�,
mz�0; black, mz=0. Parameters, see Fig. 3 except d=112 mm.

FIG. 5. �Color online� Stable configurations after initial front
instability. Top row: orientation distribution from numerical simu-
lations �for the color code, see caption of Fig. 3�. Middle row:
enlarged clippings of corresponding light intensity. P0= �a� 0.90
�105, �b� 1.05�105, �c� 1.20�105, �d� 1.35�105, and �e� 1.50
�105 s−1. Other parameters, see Fig. 3. Bottom row: Experimental
pictures taken at comparable parameters. Laser power: �a� 234, �b�
255, �c� 279, �d� 310, and �e� 326 mW.
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interaction with the patterned underground for a wide range
of the input pump rate. Only for pump rates well above the
threshold of pattern formation does the front dynamics over-
come this “locking” mechanism and lead to the formation of
a labyrinth. The locking regime is marked by the shaded
region in Fig. 6 and becomes narrower for higher values of
the transverse magnetic field. On the other hand, the overall
thresholds for pattern formation and the front instability in-
crease with 	x. This results in an overall minimum of the
threshold of labyrinthine patterns for “medium” transverse
fields, which is in good qualitative agreement with our ex-
perimental findings.

In the hatched parameter region in Fig. 6, the linear sta-
bility analysis mentioned above yields a Hopf instability
starting at zero wave number. This instability results in spiral
patterns, which can be found in numerical simulations as
well as in the experiment. These spirals differ from those
reported in �18� in a very similar experimental setup in many
details, above all in a significantly different length scale.

We considered the formation of labyrinthine patterns in a
nonlinear optical system with feedback that provides two
equivalent steady states. For sufficiently high pump rate, the
curvature-driven contraction of fronts connecting the steady
states is replaced by an expansion, leading to labyrinthine
patterns. The system is also subject to Turing pattern forma-
tion, causing spatial modulations of the steady states. The
labyrinth formation is locked by these modulations, which
determine the typical length scale of the labyrinthine pattern.
It might be interesting to analyze the relations between the
system considered here and optical transverse photonic crys-
tals �TPhCs� �12,13�, where the background is also inher-
ently inhomogeneous via a variation of the refractive index
and where interaction with the inhomogeneous background
leads to a variety of new effects such as discrete diffraction
and discrete solitons, stabilization of high-order solitons, and
soliton bound states. To our knowledge the formation of
labyrinthine patterns has not yet been found in TPhCs.
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