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Spin collective modes of two-species Fermi liquids: *He and atomic gases
near the Feshbach resonance
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We present theoretical findings on the spin collective modes of a two-species Fermi liquid, prepared alter-
natively in a polarized equilibrium or a polarized nonequilibrium state. We explore the effects on these modes
of a diverging s-wave scattering length, as occurs near a Feshbach resonance in a fermionic atomic gas. We
compare these atomic gas modes with those of the conventional He system, and we find that they differ from

the conventional systems, and that the gap and spin stiffness are tunable via the Feshbach resonance.
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While the BCS and Bose-Einstein condensation (BEC)
states in atomic gases garner wide interest across many fields
[1-4], investigations into the normal state of atomic gases,
i.e., above the superfluid phase transition, can also provide
interesting results and important insights into the properties
of these gases and other related systems. For instance, theo-
retical studies directed toward the density excitations of
atomic gases in the hydrodynamic, collisionless, and inter-
mediate regimes [5-7] paved the way for experimental in-
vestigations into the excitation spectra [8,9] and the discov-
ery of surprising features. Application of Fermi liquid theory
to density fluctuations of atomic gases has also led to inter-
esting predictions and results [10,11].

Using Fermi liquid theory (FLT) we study qualitatively
the collective transverse spin modes, also known as Silin
modes [12], of an atomic gas in the normal state near the
Feshbach resonance (FBR), for a polarized equilibrium
(PEQ) system and a polarized nonequilibrium (PNEQ) sys-
tem (we define these systems below). PEQ modes have been
studied in other systems, most notably in helium gases, but
we report here that the specific application of the theory to
atomic gases near a FBR provides unique possibilities for the
tuning of PEQ and PNEQ modes and for the exploration of
these modes across a wide range of interaction strengths.

A chief characteristic of the FBR is the divergence of the
bare s-wave scattering length as the external magnetic field is
tuned toward the resonance. At low enough temperatures,
only the s-wave scattering process is allowed, thus the char-
acteristic scattering length is effectively determined by the
s-wave scattering length alone. Through the induced interac-
tion model we calculate and plot the quantitative relationship
between the s-wave scattering length and the Fermi liquid
interaction parameters. From this relationship we show the
consequences of such a diverging scattering length on the
spin modes of Fermi liquid theory. We find that the gaps of
particular modes are tunable near the FBR, as is the qua-
dratic dependence (spin stiffness) on the wave vector.

The inherent inhomogeneity of a three-dimensional con-
fined atomic gas is not expected to affect the Fermi liquid
results significantly [13]. In very anisotropic traps approach-
ing lower dimensions, however, the confining potential re-
stricts the motion of the atoms in certain directions, thus
Fermi liquid excitations have been shown to change signifi-
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cantly [14]. In this paper we are not interested in quasi-one-
dimensional or quasi-bidimensional effects, thus all of the
following calculations are done for the three-dimensional
homogeneous case.

We begin by defining the FLT parameters that are used
throughout this paper. For a complete reference, we refer the
reader to the literature [15-17], which we will follow closely
in form and notation. In FLT the variation of the energy oF
due to a variation of the quasiparticle (QP) distribution func-
tion ény,, from its ground state can be written as
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where 830_ is the single-particle excitation spectrum, and the
QP interaction energy f is a second functional derivative of

the total energy
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which can be separated into symmetric and antisymmetric
parts, fppr= j;p,+ pp,cro", where o denotes the spin state of
the QP, which are in turn related in a two-spin-component
system to f'1 and f!'. Furthermore, f can be written in the
usual way in terms of the Legendre expansion of the angle 6
between p and p’, f;;,:E;iuff’“Pl(cos(G)). The dimension-
less Landau parameters (LP) are obtained by the relation

T4=N(0)f7“, where N(0) is the QP density of states at the
Fermi surface. The definition of the spin polarization density
m in a two-component Fermi system is m=én,—on,.

A PEQ system is a spin-polarized system that has a net
polarization that arises from, and is in equilibrium with, a
polarizing external magnetic field. Furthermore, the polariza-
tion is simply related to the external magnetic field strength
and the LP, and is given by mgy=dn;—dn =H[N(0)/(1
+F()], where H is the magnitude of the applied external
magnetic field, and #,y=1.

A PNEQ system is one in which the system is polarized,
but is not in equilibrium with an external magnetic field. The
system 1is instead kept in the polarized state by external
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means other than a magnetic field, for instance, by constantly
pumping a certain spin species into the system in order to
maintain a finite polarization, or by using laser-induced tran-
sitions to convert one spin species to the other. We will de-
note the PNEQ polarization density by m’.

With the parameters of the system suitably defined, we
now briefly review the transverse spin collective mode cal-
culation as derived in [16] and then discuss the behavior of
the modes in *He and in an atomic gas near a FBR. We begin
with the familiar Landau kinetic equation (LKE), which gov-
erns the temporal and spatial evolution of a local spin polar-
ization density,
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where mPEmp(r,t)=%Zlaa,Taa,[nd (,r,t)]a,a is the local spin
o o 5p . .
polarization, and h,=—3Hy+2 [ @ f; p'Tp’ 18 the effective

internal field. Equation (3) describes the evolution of a spin
perturbation in an interacting Fermi system. From this equa-
tion the expression for the evolution of a transverse spin
perturbation can be derived. The right-hand side contains
two terms, the precession term and the collision term. For the
case of cold atomic gases we assume that the collision term
can be taken to be zero, and we retain the precession term. A
solution to this equation is achieved through a Fourier trans-
form and spherical harmonic expansion of the Fermi surface
deformation. We truncate the harmonic expansion at [=1,
since the /=2 term gives a small correction and does not
change the structure of the solution in the limit ¢—0
[17,18]. From [17], the two PNEQ solutions are
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The PEQ dispersion is given by the addition of the Larmor
frequency w; to the PNEQ results (note that an accompany-
ing change of notation m’ — my is also required),
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FIG. 1. Dimensionless Landau parameters in the *He system at
varying pressures (See Ref. [19]). Notice the small change in abso-
lute value F in 3He as compared with the large change in F{ in an
atomic gas near a Feshbach resonance (see Fig. 3). We also note
here that in *He, F and F{ have the same sign, whereas we have
calculated that they have different signs in an atomic gas.
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The particle-hole continuum dispersion is given by the
relation

* 0
. pPNEQ = * N(0) +q-v, (®)
+ 2m0F8
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It is instructive to apply these solutions first to the *He
system, since this system has been studied extensively (e.g.,
see [16] and references therein). In *He, the antisymmetric
Landau parameters at zero pressure are Fy=-0.7,
F{=-0.55[19], and the LP for different pressures are shown
in Fig. 1. As seen in the figure, large changes in pressure in
the *He system lead to only small variation in the antisym-
metric LP (it is the symmetric LP that vary greatly with
pressure in *He).

Theoretical calculations for the transverse spin wave dis-
persion for *He at P=3 bar is shown in Fig. 2. These modes
were theoretically predicted by Abrikosov and Dzyaloshinski
[20] in 1959, and the modes have been experimentally ob-
served in *He and *He-*He mixtures [21-24].

In order to evaluate the collective mode solutions for an
atomic gas near a FBR, values for the pertinent LP must be
calculated. We calculate the LP using the induced interaction
model [25,26], which provides a formal relation between the
scattering length and the LP, and our results are shown in
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FIG. 2. Theoretically calculated PEQ spin collective mode dis-
persion (w vs ¢) for *He at a pressure of 3 bar. The nonzero F{
brings the current mode out of the particle-hole continuum for very
small values of ¢. The vertical axis, o (frequency), has been scaled
by the Fermi energy e, with Zi=1, and the horizontal axis, g (wave
vector) has been scaled by the Fermi wave vector kg, rendering both
axes dimensionless.

Fig. 3. The figure shows the parameter F{j diverging toward
+cc as the Feshbach resonance is approached from the attrac-
tive side (a,<0). The parameter F{ is less than zero and
remains small in magnitude near the resonance.

With the behavior of the LP near the FBR determined, the
dispersion relations can be evaluated for the atomic gas sys-
tem. The spin modes in the PNEQ system are characterized
by a gapless spin precessional mode and a gapped spin cur-
rent mode. The gap in the current mode is given by
o} pypg(q=0)=2m'F§/N(0)=2m'F{/3N(0). The first part
arises from the effective internal field produced by the QPs,
equal to 2m'F/N(0), and the second part from the modifi-
cation of the field due to the Fermi surface distortion, equal
to —2m’'F{/3N(0) [16]. The qualitative behavior of the
PNEQ modes far from the FBR in an atomic gas is shown in
Fig. 4(a). The current mode gap could be tuned by manipu-
lating the polarization m’ of the system. For instance, in-
creased injection of spin “up” SLi atoms (F=1/2,
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FIG. 3. Calculated Landau parameters, Fj and F{, for a gas of
®Li atoms in the appropriate high-field seeking spin states near the
834-gauss Feshbach resonance. The horizontal axis is the inverse of
the bare scattering length a; times the Fermi wave vector kz. The
quantities plotted are dimensionless.
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FIG. 4. The qualitative dispersion, o (s~') vs ¢ (cm™'), behavior
of the atomic gas: (a) precessional mode w(;—iPNEQ(q) and current
mode wf pnieo(q) far from the FBR, ie., in a weakly interacting
fermionic atomic gas; (b) current mode w; pyi(q). The label g,
indicates the wave vector value at which the mode exits the
particle-hole continuum, which varies directly with the nonequilib-
rium magnetization m’; (c) precessional mode w& PEQ(q) and cur-
rent mode wﬁPEQ(q) far from the FBR; (d) precessional mode
@y pro(q) and current mode wy pro(g) near the FBR, where the spin
current mode lies beneath the spin precessional mode, and is nearly
gapless. In all plots, the solid line indicates the precessional mode,
the dashed line indicates the current mode, and the shaded region
indicates the particle-hole continuum.

mp=+1/2) would result in an increase in the gap of the
current mode.

The spin stiffness of the PNEQ modes can be seen to be
inversely proportional to the polarization density m’. Thus
for small polarization, the spin stiffness is very large. There-
fore, the emergence of the current mode from the particle-
hole continuum, as indicated in Fig. 4(b) by g,,,,,, could be
tuned to occur at low values of the wave number g by ma-
nipulation of the polarization density.

In Fig. 4(c) we plot the qualitative behavior of the PEQ
modes far from the FBR. The gap of the PEQ spin preces-
sional mode is given simply by the Larmor frequency. How-
ever, the gap of the PEQ spin current mode is inversely pro-
portional to Fj, as can be seen in the expression for the gap

after substitution for the equilibrium value of the polariza-
1+F{/3

1+F
the LP are correct, this mod(é could be made nearly gapless
near a FBR due to the divergence of F, and thus be brought
below the spin precessional mode. This scenario is shown in
Fig. 4(d).

Due to the equilibrium relation my=H,N(0)/(1+F(), the
spin stiffness in a PEQ system behaves differently than in a
PNEQ. In the limit of F3> 1, the spin stiffness D is approxi-
mately proportional to D~ 1/my, and my~1/F;. Thus the
spin stiffness increases linearly with increasing Fj. This
would mean that as the FBR is approached from the attrac-
tive side, the spin stiffness would increase, and the current
mode would exit the particle-hole continuum at lower and
lower values of g.

These collective spin mode effects are unique to the
atomic gas system near a FBR above the superfluid transi-
tion. No other Fermi liquid system offers such easily tunable

tion, @y ppo(q=0)=+wy . Thus if our calculations for
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effects. An experimental investigation into these collective
mode effects could yield the observation of a variety of
physical phenomena, and lead to a better understanding of
collective mode phenomena in other systems and tempera-
ture regimes, as well.

In conclusion, we have presented our findings on the col-
lective spin modes of a three-dimensional homogeneous fer-
mionic atomic gas in the normal phase. We have discussed
the general mode behavior for PEQ and PNEQ systems, as
well as specific behavior for *He and atomic gases. In con-
trast to “He, we have shown that the gap and spin stiffness of
the atomic gas modes can be tuned near the Feshbach reso-
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nance by manipulation of the s-wave scattering length. We
postulate that these modes and effects could be experimen-
tally detected and confirmed in atomic gases, and thus lead to
a better understanding of dilute atomic gases near the Fesh-
bach resonance, as well as the collective spin modes of a
variety of Fermi liquid systems. We are currently investigat-
ing further theoretical implications of the results presented
above, including the thermodynamic repercussions of cou-
pling the density and spin excitations.

This work received additional support from Boston
College.
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