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We classify the completely positive maps acting on two d-dimensional systems which commute with all
U® U unitaries, where U e SU(d). This set of operations map Werner states to Werner states. We find a simple
condition for a map to be implementable by stochastic local operations and classical communication (SLOCC).
We show that all positive partial transpose (PPT) preserving maps can be implemented by SLOCC. This can be
used to prove that the entanglement of Werner states cannot be stochastically increased, even if we allow PPT
entanglement for free, which provides a necessary result for proving the result of Masanes [Phys. Rev. Lett.
96, 150501 (2006)], one of the central results in the theory of entanglement.
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I. INTRODUCTION

Entanglement plays a crucial role in the applications of
quantum-information science, such as quantum key distribu-
tion [1], superdense coding [2], quantum teleportation [3],
and quantum error correction [4], etc. Among several bipar-
tite entangled states, Werner states [5] provide the simplest
example of mixed states possessing entanglement and they
play an important role in entanglement purification [6], non-
locality [5], entanglement measures [7], etc. Werner states
are a useful family of states depending on a single parameter;
more theoretical investigations of Werner states can be seen
in [8].

It is often of interest in quantum-information processing
to determine if a given state can be transformed to some
other desired state by local operations [9]. Indeed, convert-
ibility between two (entangled) states using local quantum
operations assisted by classical communication (LOCC) is
closely related to the problem of quantifying the entangle-
ment associated with each quantum system. Intuitively, one
expects that a (single copy) entangled state can be locally
and deterministically transformed to a less entangled one but
not the other way round. In this paper we consider transfor-
mations whose success probability can be smaller than 1, but
of course it has to be strictly larger than zero. This set of
transformations is called stochastic local operations and
classical communication (SLOCC), then in general it is pos-
sible to transform the state the other way around, i.e., trans-
form a less entangled state to a more entangled state with
some success probability. However, in this paper, by study-
ing the depolarized maps that transform Werner states into
Werner states, we show that the entanglement of Werner
states cannot increase under these maps even though they
can be stochastic local operations and classical communica-
tion. This is necessary for proving the result in [10], which is
one of the central results in the theory of entanglement.

The remainder of the paper is organized as following: in
the next two sections, we give a brief introduction on the
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Werner states and separable maps. We then give our classi-
fication of the separable maps that preserve the set of Werner
states, which is, by the Jamiolkowsky theorem, equivalent to
the classification of a class of symmetric states. In Sec. V we
present an application of this classification.

II. WERNER STATES

Consider a tensor-product Hilbert space H, ® Hp, where
Ha=Hp=C" The swap unitary matrix F is defined as F|i)
®|py=|d) @ |4 for all |14),|p) € H,. The symmetric and an-
tisymmetric projectors are, respectively,

I+F

S=——, 1
5 (1)
I-F

A=—, 2
5 (2)

where [ is the identity matrix acting on H,. Analogously, the
symmetric and antisymmetric normalized states are S

=S/trS and A=A/trA.

Werner states, denoted w,, are the ones that commute with
all unitaries of the form U® U [5,11], where U acts on CY,
and can be written as

w,=vA+(1-1)S, (3)
where v e[0,1]. We define the depolarization map as
Alpl=A trpA + S trpS, (4)

which is just projection to the Werner states. This map can be
physically implemented by LOCC in the following way:

Alp]= f dU U ® Up(U® U)", (5)

where dU is the Haar measure over SU(d). It is known that
w, is separable for ve[0,1/2] and entangled for v
e(1/2,1][5,11].
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III. SEPARABLE MAPS AND SLOCC

In this section, we give a brief introduction of the sepa-
rable maps and SLOCC, we follow the treatment in [9]. To
begin with, a separable complete positive map (CPM), de-
noted by &; takes the following form [12,13]:

n

Eip— 2 (A;® B)p(A] ® BY), (6)

i=1

where p acts on H 4 ®Hp, , A; acts on H 4, and B; acts on
ngm. If, moreover,

E (A;®B)"(A;® B) =1, (7)

the map is trace preserving, i.e., if p is normalized, so is the
output of the map &,(p). Equivalently, the trace-preserving
condition demands that the transformation from p to &,(p)
can always be achieved with certainty. It is well known that
all LOCC transformations are of the form Eq. (6) but the
converse is not true [14].

However, if we allow the map p— E(p) to fail with some
probability p <1, the transformation from p to £,(p) can al-
ways be implemented probabilistically via LOCC. In other
words, if we do not impose Eq. (7), then Eq. (6) represents,
up to some normalization constant, the most general LOCC
possible on a bipartite quantum system. These are the
SLOCC transformations [15].

Let us also recall the Choi-Jamiotkowski isomorphism
[16] between CPMs and quantum states: for every (not nec-
essarily separable) CPM E:H 4 @Hp —H,y ®Hp, there
is a unique—again, up to some positive constant
a—quantum state pg corresponding to &:

pe=al® I(|¢+>Ain<q>+| ® |(I)+>Bin<cp+ )\ (®)

where | D) AmEEgin i)®|i) is the unnormalized maximally
entangled state of dimension d 4 (likewise for |q)+>3m)' In
Eq. (8), it is understood that & acts on only half of |®*) A,
and half of |(D+)B_n. Clearly, the state pg acts on a Hilbert
space of dimension d A4, X d Ay X d B, X d B, where d A
Xdp s the dimension of H, ®@Hp .

Conversely, given a state pg acting on H Aoul®H60ul
®@H Am®HBm’ the corresponding action of the CPM & on
some p acting on H 4 ®Hp reads

5. ®pHl )

out™ out

1
Elp) = ;trAinBin[PE(]IA

where p” denotes transposition of p in some local bases of
Ha, ©Hp, . For a trace-preserving CPM, it then follows that
we must have try 5 (pg)=aly s . A point that should be
emphasized now is that £ is a separable map [cf. Eq. (6)] if
and only if the corresponding pg given by Eq. (8) is sepa-
rable across Hy ®H, —and Hg ®Hp [17,18]. More-
over, at the risk of repeating ourselves, the map p— E(p)
derived from a separable pg can always be implemented lo-
cally, although it may only succeed with some (nonzero)
probability. Hence, if we are only interested in transforma-
tions that can be performed locally, and not the probability of
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success in mapping p— &(p), the normalization constant « as
well as the normalization of pg become irrelevant.

IV. SYMMETRIC MAPS

Let us consider depolarized maps that transform Werner
states into Werner states in H,4 ® Hg. By using the Jami-
olkowsky theorem [16], each of these maps £ has associated
a state pg acting on Hy ® Hp® H,r @ Hpr, where also H,,
="Hp =C" The action of the map & associated with pg is the
following:

Ep)=tryglpellyrp ® p")]. (10)

Because of this rule, we refer to H, ® Hp as the input space,
and to H,» ® Hp: as the output space. One can see that the
states pg associated with these maps commute with all uni-
taries of the form [5,11]

UU®VQRYV, (11)

where U and V act on C%. From the Jamiolkowsky theorem
we know that a map & is separable if, and only if, its asso-
ciated state pg is separable across H,® Hyr and Hy® Hp:
[17]. In the following we classify all separable states of this
kind.

The states that commute with the group (11) are of the
form [5,11]

E=NA®A+MA®S+HMS@A+NS®S,  (12)

with ;=0 and X;\;=1, where the tensor is across subspace
AB and A'B’. In the following we specify states with four-

dimensional vectors \. Let us see that the following five
states are separable:

21=(0,0,0,1), (13)

N = (o,%,o,%), (14)

NG = (o,o,%,%), (15)

e

g<s>=<l_i,0,0’l+i)' (17)
2 242 2d

The states ):(1), ,X<4) are separable because they are prod-
ucts of the two separable Werner states w, and w,,,. The state

NG s separable because it is the output of the LOCC map
A[p]:dedeU@ UVeVpUeUe Ve V),

(18)
when the input is the product state S¢ _ [ks),p® |ks)arpr/d.

The map E associated with the state NG s precisely the
depolarization map (4) and (5).
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Let us denote by P the convex polytope generated by

):1, ,):5. Clearly, all points in P correspond to separable
states. Let us see that only these states are the separable ones.
The set P can be characterized by a finite number of linear
inequalities of the form

N-i@=0. (19)

We can choose the constant in the right-hand side of the
inequalities to be zero because all the points in P are inside
the normalization hyperplane. Some of the inequalities @

correspond to the positivity conditions of \; the rest (the
relevant ones) are

aV=(1,-1,-1,1), (20)
AP =(—d-1,d+1,~d+1,d-1), 21
i¥=(—d=1,~d+1,d+1,d-1). (22)

The vectors 2 are the extreme points of the dual polytope
of P. In general one can find them with standard software,
but this case is simple enough to do it by hand.

The Hermitian matrices corresponding to the vectors
are

Wﬁ=/.L1A®A+M2A®S+M3S®A+M4S®S (23)
Notice that in order to make
W=\ i (24)

we must write projectors A and S instead of normalized

states A and S. Up to an unimportant proportionality factor,
we can write the Hermitian matrices associated with (23) as

wh=FeF, (25)
WP=dI® F-FQF, (26)
W) =dF®I-F®F. (27)

In what follows, we prove that these three operators are en-
tanglement witnesses, that is, their expected values with
product states are non-negative:

(o ® (BW|a) ® |B) =0 (28)

for all |a) e Hy®Hyr,|B) € Hp® Hpr. For doing this the
following identities are useful:

(aanr B/ |1 ® Flagy Beg) =tr(a’aBip),

(augnr B! |F © I|layy Bppr) = tr(ea BBY),

(g B! |F @ Flaya

where the matrix a;; is defined as [a ) =2 0,04 ®[j)ar,
and analogously for B. From the last equality, one can
straightforwardly see that W) is a witness. To prove that
W@ is also a witness we define the matrix y=a/" and write
the expectation arbitrary product state as
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(aBW?|ap)=d wy'y-|ty* = 0. (29)

The inequality comes from the Cauchy-Schwarz inequality
as we can write d as tr/'] and try as trly. Similarly, one can
prove that W® is an entanglement witness.

The fact that W, W, and W® are witnesses implies
that all points outside the polytope P are nonseparable. In
conclusion, P is the set of separable symmetric states.

Remark 1. One can see that the partial transpositions of S
and A are

I+do
S'= S (30)
I—dod

where @ stands for the projector onto the maximally en-
tangled state |®)==4_, |kk). If one performs the partial trans-
position on the generic state (12), and imposes the require-
ment that the result is positive semidefinite, one obtains the
three inequalities associated with @'”, @'?, and z®, in (20).
This means that the set of symmetric positive partial trans-
pose (PPT) states is also P, which means the set of PPT-
preserving maps that preserve Werner states coincide with
the set of separable maps that preserve the Werner states. So
we actually also classified the PPT-preserving maps that pre-
serve Werner states.

V. APPLICATIONS

We can use our classification of depolarized maps to
prove that the entanglement of Werner states cannot increase
under stochastic local operations and classical communica-
tion. It is known that all separable maps can be physically
implemented with SLOCC, and, obviously, all SLOCC are
separable maps. Then, what we want to prove is that, if

ElvA+(1-)S]=v'A+(1-1)S, (32)

where v=1/2 and E is a separable map, then v’ <.
By using the Jamiolkowsky isomorphism we have that

E[vA +(1-v)S]=2

d(d )()\A+)\25)

1-
2~ @ )(MA +24S).

The new value of the parameter is

v 1-v

2 A +2 A3
o dd-1) d(d+ 1) C33)

d(d 1)()\1 +\,y) +2d(d )()\’5+)\4)

Now, let us assume v’ > v. After some algebra we transform
v' > v into
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(d= 1) (= 7PN3) + (d+ D)\ = 7\) <0, (34)

where 7=(1-v)/v. Because 0<7<1 then —y\3<—-77\3
and 7\, < \;. Therefore, if the above inequality is true we
have

(d=1Ng=N3) +(d+ 1)\, —Np) <O, (35)

which is precisely X 4 <0. This is in contradiction with
the fact that = is separable; therefore »’ < v must hold.

VI. CONCLUSIONS

In summary, we have explicitly characterized the com-
plete positive maps acting on two d-dimensional systems
which commute with all U® U unitaries. A simple condition
is also given on those maps which can be implemented by
SLOCC. We achieved this by using the Jamiolkowsky theo-
rem: instead of characterizing the completely positive maps
directly, we equivalently characterized the states of four
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d-dimensional systems which commute with all UQU® V
® V unitaries, where U,V e SU(d). This enabled us to give
conditions on the separable and PPT-preserving maps that
preserve the Werner states. With these conditions, we
showed that the entanglement of Werner states cannot be
increased under SLOCC.

The fact that the entanglement of Werner states cannot be
increased under SLOCC has been the key to proving that
each bipartite entangled state can increase the teleportation
power of another state [10]. This establishes that all en-
tangled states are useful for quantum-information processing.
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