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We show that entanglement of two superposed coherent states produces sub-Planck structures in phase
space. The origin of these structures depends entirely on entanglement, unlike those in Zurek �Nature �London�
412, 712 �2001��, where the effect of entanglement was not considered. The constituent states are sensitive
enough to carry out the Heisenberg sensitive measurements. However, their usefulness is limited in providing
high sensitivity in either the position �x� direction or in the momentum �p� direction of the phase-space.
Interestingly, the entanglement causes the proposed states to be sensitive in both x and p directions. This state
offers a better sensitivity compared to the single partite compass state in Zurek �Nature �London� 412, 712
�2001�� in carrying out precision measurements. It is also argued that such states are easy to create and are
better suited for carrying out precision measurements.
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Recently, it has been demonstrated that the quantum states
obtained from superposition of coherent states can be useful
in quantum metrology, especially in carrying out Heisenberg-
limited measurements and quantum parameter estimation
�1,2�. Zurek showed that nonlocal superposition of coherent
quantum states can have well-defined oscillatory structures
in the phase space, at scales smaller than the Planck constant
�. More surprisingly, contrary to the commonly held belief,
these structures can be physically important. The Wigner dis-
tribution function for a compass state ���+ �−��+ �i��+ �
−i�� has a checkerboard type of structure in phase space due
to quantum interference. Here � is a complex parameter used
for characterizing the coherent states and its magnitude sig-
nifies a distance from the origin in the phase space. The
typical area a of the fundamental tile of the checkerboard is
a=�� /A, where A is the area of the accessible phase space,
which can be estimated from the total energy. The sub-
Planck structures arise because, for a compass state with su-
perposition of well-separated coherent states in phase space,
� /A�1 and thus a��. The locations of the coherent states
in the phase space of the compass state can be denoted by the
intuitively obvious geographical notations, namely, north
�N�, south �S�, east �E�, and west �W�, to denote their relative
positions in phase space. It can be shown that the interfer-
ence between the NS��i��+ �−i��� and EW��−��+ ���� combi-
nations produces the checkerboard type of pattern �1�. If an
act of measurement or any other process displaces the origi-
nal compass state by a distance �a in phase space, the sub-
Planck structures allow the resultant state to be distinguished
from the old one. These states are useful in carrying out
Heisenberg-limited sensitive measurements �2�. It ought to
be noted here that a simpler state involving just two super-
posed coherent states can also be used for this purpose. How-
ever, such states offer sensitivity only along the direction
perpendicular to the line joining the two coherent states �2�.
In comparison Zurek’s compass state �1� can offer sensitivity

in all directions of phase space albeit with half the accuracy
for the same value of �.

The sub-Planck structures have been studied by various
researchers to further investigate their properties and test
some of the assumptions made. The issue of sensitivity to
external perturbation of these structures, as the system
evolves with time, was studied using Loschmidt echoes �3�.
However, the results of this work remain inconclusive. Re-
cently it has been demonstrated that the above compass
states, due to their Heisenberg-limited sensitivity to external
perturbation, can be utilized for quantum parameter estima-
tion �2�. In this work, the state was entangled with a two-
level atomic system for carrying out the measurements. Gen-
eration of the compass state in cavity QED and its
decoherence characteristics were studied in Ref. �4�. Such
states can also be generated during the fractional revival pro-
cess of molecular wave packets �5�. A classical analog of
these states was found in Ref. �6�. It was shown that two
pulses displaced by a small sub-Fourier shift of the carrier
frequency become mutually orthogonal. The single-particle
compass state used in Ref. �1� is composed of four coher-
ently superposed localized Gaussians. These states are rather
difficult to produce. It was shown in Ref. �4� that the inter-
ference pattern �sub-Planckian structures� arising due to the
superposition of all four Gaussians �NS and EW combina-
tions� can disappear faster than the interference pattern be-
tween any two Gaussians due to decoherence. In this work,
we aim to study the sub-Planck structures in the phase space
of a bipartite system and analyze the role of entanglement in
it. For this goal, we propose a new compass state ���c:

���c =
1
�2

�A� � ��1� � ���2 + B� � ���1� � ��2� , �1�

where A=A1+ iA2 and B=B1+ iB2 are complex parameters
that control the entanglement. The states in Eq. �1� are given
by

� � �� =
1
�2

���� + �− ��� . �2�

The choice of the compass state ���c is such that, when
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one considers the Wigner function for a constituent particle
state �i.e., for state like in Eq. �1��, it does not show any
checkerboard pattern. But the Wigner function for the entire
���c shows these structures. It can be demonstrated that they
arise solely due to entanglement. Since the degree of en-
tanglement in the state given by Eq. �1� is determined by A
and B only and does not depend on �, there are two different
decoherence characteristics for the superposition and the en-
tanglement. Superposition of the coherent state is strongly
affected by noise processes, say absorption of photons, while
it can have no effect on the entanglement �7�. The entangled
coherent states are more robust against the decoherence aris-
ing due to photon absorption noise. Thus, keeping in mind
the results of Refs. �4,7�, the state proposed by us might be
more suitable for carrying out Heisenberg-limited measure-
ments. Since the proposed entangled states give sub-Planck
structures in the Wigner function, they offer sensitivity in all
directions in phase space.

We represent these states by localized coherent Gaussian
states, to construct the normalized coordinate ����→��x�
and the momentum even states �� i��→��x�:

��x� =
e−�x + x0�2/2�2

+ e−�x − x0�2/2�2

�2	1/4�1/2�1 + e−x0
2/�2

�1/2
�3�

and

��x� =
e−x2/2�2+�p0x/� + e−x2/2�2−�p0x/�

�2	1/4�1/2�1 + e−p0
2�2/�2

�1/2
, �4�

where x0, p0, and � are taken to be real quantities. Superpo-
sition of the states given by Eqs. �3� and �4� can give the
representation of the single-particle compass state considered
in Zurek �1�. The compass state proposed here is given by


�x1,x2� = N�A��x1���x2� + B��x1���x2�� , �5�

where N is the normalization constant. It should be men-
tioned that the nonseparability condition for the wave func-
tions of continuous variables is not fully established. The
state in Eq. �5� does not satisfy the separability criterion
based on the variance approach �8,9�.

From Eq. �5� the correlation function is obtained,

c�x1,a1,x2,a2� = 
†�x1 +
a

2
,x2 +

b

2
	
�x1 −

a

2
,x2 −

b

2
	 .

�6�

The Wigner function, in four-dimensional phase space,
can then be defined as

W�x1,p1;x2,p2�

=
1

�2	��2

−�

� 

−�

�

c�x1,a1,x2,a2�ei�p1a+p2b�/�da db . �7�

A lengthy calculation yields

W�x1,p1;x2,p2� =
2�2c�N�2

	�2 e−�x1
2+x2

2�/�2−�p1
2+p2

2��2/�2
�WD1 + WD2

+ e−x0
2/2�2−p0

2�2/2�2
�WC1 + WC2�� , �8�

where, WD1 ,WD2 and WC1 ,WC2 are, respectively, the diago-
nal and off-diagonal components of the Wigner function. The
first diagonal terms can be written as

WD1 = 2�A�2�e−x0
2/�2−p0

2�2/�2
cosh�2p0p2�2

�2 	cosh�2x0x1

�2 	
+ e−x0

2/�2
cosh�2x0x1

�2 	cos�2p0x2

�
	

+ e−p0
2�2/�2

cos�2x0p1

�
	cosh�2p0p2�2

�2 	
+ 2 cos�2p0x2

�
	cos�2x0p1

�
	� . �9�

It can be seen from above that the first three terms containing
hyperbolic functions are multiplied by constant Gaussian
factors which are bound to be small, in the present mesos-
copic context concerned with relatively larger values of x0
and p0. Thus only the last term in Eq. �9� becomes dominant
in the region between the Gaussians. This term is a purely
oscillating term, which can produce a significant amount of
interference. The zeros of this term occur at x2= �	� /4p0
and p1= �	� /4x0 from which one can calculate the funda-
mental area of the tile as �2	��2 /4x0p0. It should be noted
that Eq. �9� has an �A�2 factor and the above calculation does
not require any information about entanglement. Indeed one
can see sub-Planck structure in this plane even when �B�=0.
Since this plane has mixed coordinates, i.e., momentum p1 of
particle 1 and position x2 of particle 2, the structures ob-
served here may not be physically important. The other di-
agonal term with coefficient �B�2 has similar structure. It
ought to be noted that, though WC1 and WC2 have purely
oscillatory terms, they are greatly suppressed as compared to
WD1 and WD2, for large values of x0 and p0. From the dis-
cussion so far, one may wonder if it is possible at all to see
checkerboard type sub-Planck structures in the x1p1 or x2p2
plane. The answer to this question can be found by adding
the oscillatory terms from WD1 and WD2,

4�A�2 cos�2p0x2

�
	cos�2x0p1

�
	

+ 4�B�2 cos�2p0x1

�
	cos�2x0p2

�
	 . �10�

From the above, the distance between two zeros in the x1
direction is again �	� /4p0 while it is �	� /4x0 in the p1
direction. This gives the area of the fundamental tile a
= �2	��2 /4x0p0 in the x1p1 plane of particle 1. Similarly, one
can find zeros in the x2 and p2 directions and obtain the same
value of the fundamental area. It should be noted that the
fundamental area a, though, does not depend upon A or B.
However, both A and B must be simultaneously nonzero in
order to have sub-Planck structures in the physical x1p1 or
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x2p2 plane. It is clear that the visibility of the interference
patterns depends upon the relative magnitudes of A and B. In
Figs. 1 and 2 we have shown plots of the Wigner function
�Eq. �8�� in x1p1 and x2p2 planes. Figure 1 depicts the cross-
sectional view of the Wigner function in the x1p1 and x2p2
planes while A and B are both nonzero. It clearly shows the
checkerboard-type pattern with a��. The area of the funda-
mental tile matches a that we have calculated above. These
plots look very similar to that in �1�, but no oblique side-
bands, as seen in �1�, are visible in our figure. The oblique
sidebands in our case come from the off-diagonal terms WC1
and WC2. As seen in Eq. �9� they are multiplied by constant
Gaussian factors and their contribution to the Wigner func-
tion is strongly suppressed for sufficiently large values of x0
and p0. In this sense, we observe a cleaner checkerboard-type
pattern using the bipartite compass state.

Figure 2 depicts the case when B=0 and all the other
parameters are the same as in Fig. 1. No sub-Planck structure
is seen here, which confirms our assertion that both A and B
must be simultaneously nonzero to have these phase-space

structures in the x1p1 and x2p2 planes. We have chosen
x0 , p0=5, in units of �=1 and �=1 in plotting Figs. 1 and 2.
The circles indicate the positions of the Gaussians. For the
B=0 case, only two Gaussians are visible.

The sensitivity of the entangled compass state in Eq. �3�
can be studied as follows. Let D1��� and D2�
� denote two
displacement operators causing the displacement of particle
states 1 and 2, by amounts � and 
, respectively, to create a
perturbed state ��per�=D1���D2�
���c�. The overlap function

��c ��per�
2 can be found to be


��c��per�
2 = 16�N�4��A�4 cos2�x0�
 + 
*��cosh2�x0��* − ���

+ �B�4 cos2�x0�
 + 
*��cosh2�x0��* − ���

+ 2�A�2�B�2 cos�x0�
 + 
*��cosh�x0��* − ���

�cos�x0�
 + 
*��cosh�x0��* − ���� . �11�

It is particularly of interest to consider the case when there is
an equal shift of both particles, i.e., �=
= isx0 / �x0�; the over-
lap function can then be written as

(a)

(b)

FIG. 1. �Color online� Cross-sectional view of the Wigner func-
tion of an entangled wave function with A1=A2=1 /�2 and
B1=−B2=1 /�2 in �a� the �x1p1� plane, with x2=0, p2=0 and �b� the
�x2p2� plane with x1=0, p1=0.

(a)

(b)

FIG. 2. �Color online� Cross-sectional view of the Wigner func-
tion with parameter values as in Fig. 1 except the entanglement has
been turned off by setting the parameter B=0.

BRIEF REPORTS PHYSICAL REVIEW A 78, 034101 �2008�

034101-3




��c��per�
2 = 8�N�4��A�2 + �B�2�2�1 + cos�4x0s�� . �12�

Clearly the overlap function becomes minimum, for distin-
guishable displacement, if s�	 / �4x0�. It must be noted that
the states described by Eq. �2� also give the same value of s.
For instance, when the particles are untangled, i.e., when
either A or B is zero, the value of the minimum distinguish-
able displacement does not change. However, these kinds of
states do not have the checkerboard kind of pattern �as
shown in Fig. 2�, and consequently they do not provide sen-
sitivity in the precision measurement in all directions of
phase space. Thus the entangled state given by Eq. �1� does
not improve upon the accuracy provided by the constituent
states �Eq. �2��, but it rather provides a sensitivity in all the
directions of phase space during a precision measurement.

Next consider the displacement of the compass state given
in Refs. �1,2�, by amount s1, the overlap function can be
written as

1

4
�3 + 4 cos�2x0s1� + cos�4x0s1�� . �13�

This function becomes minimum for s1�	 / �2x0�. Since x0
is a parameter that can be fixed by an experiment, both ���c
and the state given in Refs. �1,2� can be used for Heisenberg-
limited precision measurements. What we have shown here
is that the distinguishable displacement coming from the en-
tangled state is a factor of 1 /2 less than the one found in Ref.
�2� when x0 remains the same. This implies that the same
level of accuracy as in a nonentangled compass state can be
obtained with ���c if x0 is reduced by a factor of 1 /2. Al-
though the entanglement has not increased, the sensitivity of
states in Eq. �2�, it has given us sensitivity in all directions in

phase space. More precision is gained because the states in
Eq. �2� are more sensitive than the compass state in Ref. �1�.
This is perhaps the most intriguing feature that entanglement
brings into the problem. Interestingly, this can also help in
increasing the decoherence time of ���c. In a practical situa-
tion the interaction time T during which the compass state
undergoes perturbation must be much smaller than its life-
time td. For example, for a cavity QED system td� tc /2x0

2, tc
is the lifetime of the cavity field �4�. Thus, when x0→x0 /2,
the lifetime td of ���c increases by four times compared to the
nonentangled compass state �2�, keeping x0 the same. This
would certainly help in satisfying the important condition
T� td. With regard to the possibility of experimental realiza-
tion of the proposed continuous-variable entangled states, we
would like to point out two different scenarios, involving
cavity QED and its fractional rival in molecular wave pack-
ets. In the case of cavity QED, one can start with superposed
states after which a 50:50 beam splitter can be applied to
achieve entanglement. It needs to be mentioned that super-
posed cat states have been experimentally realized in cavity
QED �10�. In the case of molecular wave packets, generation
of cat and superposed cat states has been demonstrated in
fractional revival �5�. The procedure to produce entangled
states from the above type of state has been recently
explained �11�

In conclusion, we have studied the phase-space structures
in a bipartite system of entangled superposed coherent states.
These structures are shown to originate from entanglement.
They are argued to be more robust against decoherence. Fur-
thermore, these structures are cleaner in this case due to the
suppression of the sidebands. We have also shown that this
kind of compass state may be useful in carrying out precision
quantum measurements.
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