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Photonic crystals built with time-reversal-symmetry-breaking Faraday-effect media can exhibit chiral edge
modes that propagate unidirectionally along boundaries across which the Faraday axis reverses. These modes
are precise analogs of the electronic edge states of quantum-Hall-effect �QHE� systems, and are also immune
to backscattering and localization by disorder. The Berry curvature of the photonic bands plays a role analo-
gous to that of the magnetic field in the QHE. Explicit calculations demonstrating the existence of such
unidirectionally propagating photonic edge states are presented.
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I. INTRODUCTION

The control of the flow of light using photonic-band-gap
�PBG� materials has received considerable attention over the
past decade �1�. Moreover, the potential for using artificially
structured metamaterials, such as the recently discovered
left-handed media �2�, has shown considerable technological
promise. In the past, significant progress has been achieved
in the field of photonics by making use of analogies with
electronic systems. For instance, the idea of a PBG material,
a system with a spatially varying and periodic dielectric
function, was motivated by the well-known physics of elec-
tronic Bloch states; the dielectric scattering of light in peri-
odic media presents the same formal solutions as those for
the scattering of electrons in periodic potentials.

Previous photonic-band-structure calculations have fo-
cused on the frequency dispersion of the photon bands; it has
been usually been assumed that a knowledge of the spectrum
alone represents a complete understanding of the dynamics
of the system. A primary goal of such calculations has been
the quest for a PBG material with a complete band gap
throughout the Brillouin zone in some frequency range,
which would prevent the transmission of light with fre-
quency in the range of the band gap. Both two- and three-
dimensional band structures possessing these properties have
now been discovered �3�.

Recently, however, in the study of electronic systems, it
has become apparent that, even in the absence of interaction
effects, the dispersion relations of the energy bands do not
fully characterize the semiclassical dynamics of wave pack-
ets, unless both spatial-inversion symmetry and time-reversal
symmetry are unbroken �4�. The additional information,
which is not obtainable from knowledge of the energy bands
�n�k� alone, is the variation of the Berry curvature �5�
Fn

ab�k�=�abc�nc�k�, which is an antisymmetric tensor in k
space, where �n�k� is analogous to a magnetic field �flux
density� in k space. The Berry curvature in k space is related
to the Berry phase �6� in the same way that the Bohm-

Aharonov phase of an electronic wave packet is related to the
magnetic flux density in real space.

While the uniform propagation of wave packets in per-
fectly translationally invariant systems does not involve the
Berry curvature, the semiclassical description of the accel-
eration of wave packets in media with spatial inhomogeneity
of length scales large compared to the underlying lattice
spacing is incomplete if it is not taken into account. Recently,
Onoda et al. �7� have pointed out the role of Berry curvature
in photonic crystals without inversion symmetry; while these
authors characterize this as a “Hall effect of light,” the Hall
effect in electronic systems is associated with broken time-
reversal symmetry rather than, broken spatial-inversion sym-
metry, and we have recently discussed �8� some of the effects
at first sight surprising, that broken time-reversal symmetry
could produce in photonic systems.

In the presence of nonvanishing Berry curvature, the
usual semiclassical expression for the group velocity of the
wave packet is supplemented by an additional anomalous
contribution proportional to its acceleration and the local
Berry curvature of the Bloch band. �The semiclassical treat-
ment of electron dynamics becomes ray optics in the photo-
nic context.� This anomalous velocity has played an impor-
tant role in understanding recent experiments on the
anomalous Hall effect of ferromagnets �9�, for example.

Perhaps the most remarkable among the “exotic” effects
associated with Berry curvature, however, is the quantum
Hall effect �10�, which has been the focus of intensive ex-
perimental and theoretical study in condensed matter physics
for over two decades. The physics of the quantum Hall re-
gime and its connection with Berry curvature phenomena is
now well understood. The possibility of transcribing some of
the main features of the quantum Hall effect to photonic
systems, which brings into play new possibilities in photon-
ics, is the topic of this paper. Specifically, we shall concern
ourselves with analogs of “chiral” �unidirectional� quantum
Hall edge states in photonic systems with broken time-
reversal symmetry.

The quantum Hall effect is usually associated with two-
dimensional electron systems in semiconductor heterojunc-
tions in strong applied magnetic fields. By treating the plane
of the heterojunction as a featureless two-dimensional �2D�*sraghu@stanford.edu
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continuum, and considering the quantum mechanical motion
of electrons in the presence of a magnetic field, one obtains
the electronic Landau levels. The key feature giving rise to
the quantization of the Hall conductance is the incompress-
ibility of the electron fluid, due to the Pauli principle at either
integer Landau level fillings, with the spectral gap to the next
empty level given by the cyclotron frequency, or at fractional
fillings when a gap opens due to strong electron-electron
interactions �11�.

While in the experimentally realized systems the quantum
Hall effect derives from a strong uniform component of the
magnetic flux density normal to the 2D plane in which the
electrons move, the integer quantum Hall effect can also in
principle derive from the interplay of a periodic band struc-
ture with a magnetic field. Magnetic fields externally applied
in periodic structures give rise to the celebrated Hofstadter
model of Bloch bands with an elegant fractal spectral struc-
ture depending on the rational value of the magnetic flux
through the unit cell �12,13�. The influence of the lattice on
the quantum Hall effect was further investigated in an impor-
tant paper by Thouless, Kohmoto, Nightingale, and den Nijs
�TKNN� �14�, who discovered a topological invariant of 2D
band structures known as the “Chern number,” a quantity
that was later interpreted in terms of Berry curvature �5�.

At first sight, it seems implausible that any of the phe-
nomena associated with the quantum Hall effect can be tran-
scribed to photonics. Incompressibility and Landau level
quantization require fermions and charged particles, respec-
tively, and it is not clear how one could introduce an effect
similar to the Lorentz force due to a magnetic field on a
system of neutral bosons. However, a hint that possible ana-
logs could exist in photonics comes from the fact that a
zero-field quantum Hall effect without any net magnetic flux
density �and hence without Landau levels� could occur in
systems consisting of “simple” Bloch states with broken
time-reversal symmetry, as was shown some time ago by one
of us �15�. The explicit “graphenelike” model investigated in
Ref. �15� exploits the topological properties of Bloch states,
which motivated us to construct its photonic counterpart.
This model has also turned out to be very useful for model-
ing the anomalous Hall effect in ferromagnetic metals �16�,
and a recently proposed “quantum spin Hall effect” �17�.

While incompressibility of the fluid in the bulk quantizes
the Hall conductance, perhaps the most remarkable feature of
quantum Hall systems is the presence of zero-energy excita-
tions along the edge of a finite system. In these edge states,
electrons travel along a single direction: this one-way propa-
gation is a symptom of broken time-reversal symmetry. In
the case that the integer quantum Hall effect is exhibited by
Bloch electrons, as in the Hofstadter problem studied by
TKNN �14�, it is related to the topological Chern invariant of
the one-particle bands. The edge states necessarily occur at
the interface between bulk regions in which there is a gap at
the Fermi energy, which have different values of the sum of
the Chern invariants of the fully occupied bands below the
Fermi level. While the integer quantum Hall effect in such a
system itself involves the filling of these bands according to
the Pauli principle, and hence is essentially fermionic in na-
ture, the existence of the edge states is a property of the
one-electron band structure, without reference to the Pauli

principle, which suggests that this feature is not restricted to
fermionic systems. We have found that they indeed have a
direct photonic counterpart, and this leads to the idea that
topologically nontrivial unidirectionally propagating photon
modes can occur along domain walls separating two PBG
regions having different Chern invariants of bands below the
band gap frequency. In this paper, we present the formal
basis of such modes, along with explicit numerical examples,
simple model Hamiltonians, and semiclassical calculations
confirming the concept.

We note, finally, that while nowadays the Berry phase is
usually associated with quantum mechanical interference it
can in principle occur wherever phase interference phenom-
ena exist and are governed by Hermitian eigenvalue prob-
lems, as in the case of classical electromagnetic waves in
loss-free media. Indeed, the idea of the geometric phase was
originally proposed in the context of classical optics �18�
several decades before being introduced into quantum me-
chanics.

This paper is organized as follows. In Sec. II, we present
the basic formalism of the Maxwell normal mode problem in
periodic, loss-free media, discuss the Berry curvature of the
photonic-band-structure problem, and consider the effects of
broken time-reversal symmetry. In Sec. III, we provide ex-
plicit numerical examples of band structures containing non-
trivial topological properties, and show the occurrence of
edge states along domain wall configurations. Motivated by
the numerical results, in Sec. IV, we derive a simple Dirac
Hamiltonian from the Maxwell equations using symmetry
arguments as the guiding principle, and we show how under
certain conditions the zero modes of this Dirac Hamiltonian
exhibit anomalous currents along a single direction due to
the breaking of time-reversal symmetry. It is these zero
modes that play the role of the “gapless” edge excitations, as
we shall consider in detail. Section V contains a semiclassi-
cal analysis, and we end with a discussion and point out
possible future directions in Sec. VI.

II. BERRY CURVATURE IN THE MAXWELL
NORMAL MODE PROBLEM

In this section, we discuss the formal basis of Berry cur-
vature in the photon band problem. We begin with the basic
formulation of the photonic-band-structure problem, which is
somewhat more complicated than the electronic counterpart,
due to the frequency response of dielectric media. We then
briefly review the connection between Chern numbers, Berry
curvature, and the occurrence of gapless edge modes along
the boundary where the Chern numbers of a given band
change.

A. Basic formalism

We will be solving the source-free Maxwell equations for
propagating electromagnetic wave solutions in linear, loss-
free media, and will ignore absorption, nonlinear photon-
photon interactions, and other processes that do not conserve
photon number. We also assume that the constitutive rela-
tions, reflecting the response of the media to the electromag-
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netic waves, are given by local, but spatially varying, tensors
with generalized frequency dependence. The Berry phase,
and the associated Berry curvature, are commonly identified
with quantum mechanics, but in fact are more generally as-
sociated with the adiabatic variation of the complex eigen-
vectors of a Hermitian eigenvalue system as the Hermitian
matrix is varied.

In quantum mechanics, this Hermitian eigenvalue prob-
lem is the time-independent Schrödinger equation; in the
photonic context, it is the classical eigenvalue equation for
the normal modes of the Maxwell equations. In order to
make the correspondence with the standard quantum me-
chanical formulation of Berry curvature clearer, we will use
a somewhat unfamiliar Hamiltonian formulation of Max-
well’s equations, which is appropriate for loss-free linear me-
dia. However, we should emphasize that our results are in no
way dependent on the use of such a formalism, and are prop-
erties of the Maxwell equations, however they are written.

In such a loss-free, linear medium, the coupling of elec-
tromagnetic modes having different frequencies can be ig-
nored, and the electromagnetic fields and flux densities
X�r , t�, X� �D ,B ,E ,H�, will be of the form

X�r,t� = �X̃*�r,��ei�t + X̃�r,��e−i�t� , �1�

where the quantities X̃ are in general complex-valued func-
tions of position and frequency with the property

�X̃�r,���* = X̃�r,− �� . �2�

The dynamics of these fields are governed by the source-free
Maxwell equations

� � Ẽ = i�B̃, � � H̃ = − i�D̃ , �3�

� · D̃ = 0, � · B̃ = 0. �4�

Consider a single normal mode � propagating at fre-
quency ��. For the moment, ignore any internal polarization
or magnetization modes of the medium, and assume instan-
taneous frequency-independent response of the dielectric ma-
terial. In this limit, the permeability and permittivity tensors,
defined by the relations

B̃a�r,��� = �ab�r�H̃b�r,��� , �5�

D̃a�r,��� = �ab�r�Ẽb�r,��� , �6�

are both positive-definite Hermitian tensors and have well-
defined, positive-definite Hermitian inverses �ab

−1�r�, �ab
−1�r�.

Since we have assumed a linear, loss-free medium in which
photon number is conserved, it is convenient to work with a
Hamiltonian formalism: the time-averaged energy density of
the electromagnetic radiation field is given by

HEM�r� = ue�r� + um�r� , �7�

where

ue�r� =
1

2
„D̃

�
*,�−1�r�D̃�… , �8�

um�r� =
1

2
„B̃

�
*,�−1�r�B̃�… , �9�

and the parentheses denote contraction over the spatial com-
ponents of the normal mode fields. Then, if HEM is the spatial
integral of the energy density, the fields E and H are given
by its functional derivatives with respect to the divergence-
free flux densities D and B:

�HEM =� d3r Ea�Ba + Ha�Ba. �10�

In the local Hamiltonian formalism, the flux density fields
D�r� and B�r� are the fundamental degrees of freedom, and
they obey the following noncanonical Poisson bracket rela-
tions:

�Da�r�,Bb�r���PB = �abc�c�
3�r − r�� . �11�

This Poisson bracket generates the Faraday-Maxwell equa-
tions �3�:

dD

dt
= �D�r�,HEM�PB,

dB

dt
= �B�r�,HEM�PB. �12�

Note that these equations do not generate the Gauss law
equations �4�, but merely ensure that any divergences �aDa

and �aBa are constants of the motion; the Gauss laws are
additional constraints that are compatible with the Faraday-
Maxwell equations of motion.

If internal polarization and magnetization modes of the
medium are ignored, a discretized form of the electromag-
netic Hamiltonian is formally identical in structure to that of
a collection of real oscillator variables xi with noncanonical
Poisson brackets

�xi,xj�PB = Sij , �13�

where Sij is a real antisymmetric matrix, and the Hamiltonian
energy function is

H =
1

2�
ij

Bijxixj , �14�

where Bij is a real symmetric positive-definite matrix. It is
useful to introduce the imaginary antisymmetric Hermitian
matrix Aij = iSij. The canonical normal modes are given by

q� � ip� = �	��−1�
i

ui�
�xi, �15�

where 	� is an arbitrary scale factor, and where �ui�

 �*=ui�

−
,

=�, which obeys the generalized Hermitian eigenvalue
equation

�
j

Aijuj�
� = � ���

j

Bij
−1uj�

� �16�

with ���0, and the orthogonality condition

�
ij

�ui�

 �*Bij

−1uj��

� =

	�
2

��

�

�����. �17�

Because of the antisymmetric Hermitian property of the ma-
trix Aij and the positive-definite real symmetric property of
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the matrix Bij, this eigenproblem has real eigenvalues that
either come in pairs ���, or vanish; these equations provide
a straightforward transformation to canonical form only if
the generalized eigenvalue problem has no zero-frequency
eigenvalues, which is the case only if Aij is nonsingular.

The coefficients ui� are the analogs of the electromagnetic

fields Ẽ�r ,�� and H̃�r ,��. It is also useful to introduce the
conjugate quantities

vi�

 = �

j

Bij
−1uj�


 , �
i

�vi�

 �*ui��


� = �

�����; �18�

these are the analogs of the flux densities D̃�r ,�� and

B̃�r ,��, and Bij encodes the “constitutive relations” between
analogs of fluxes and fields.

The Hamiltonian formulation of the Maxwell equations
indeed presents the difficulty of having a null space of zero-
frequency eigenvalues: by themselves, the Faraday-Maxwell

equations have static �zero-frequency� solutions B̃�r�
=�f�r�, D̃�r�=�g�r�; the role of the additional Gauss law
constraints is precisely to eliminate these zero modes. The
zero-mode problem in the Hamiltonian formulation is the
counterpart of the gauge ambiguity of the solutions of Max-
well’s equations in the Lagrangian formulation.

In the Maxwell equations, Bij becomes the following
positive-definite 6�6 Hermitian matrix:

Bij → 	�ab
−1�r� 0

0 �ab
−1�r�


 . �19�

More precisely, this is a 6�6 block of an infinite-
dimensional “matrix” that is block diagonal in terms of the
spatial coordinate r. �The A and B matrix notation is com-
mon in the context of generalized Hermitian eigenvalue
problems, where the positive-definite character of the B ma-
trix guarantees reality of the eigenvalues; hopefully the con-
text should distinguish our use of the symbol B for such a
matrix from the symbol B�r� used for the magnetic flux den-
sity.� In this continuum limit, the antisymmetric Hermitian
matrix Aij becomes a 6�6 matrix block of differential op-
erators:

Aac = 	 0 i�abc�b

− i�abc�b 0

 . �20�

This A matrix can also be elegantly expressed using the 3
�3 spin-1 matrix representations of the angular momentum
algebra, �Lb�ac= i�abc:

A = 	 0 La�a

− La�a 0

 . �21�

From the antisymmetry of A, it again follows that its ei-
genvalues either come in � pairs, or are zero modes, corre-
sponding to static field configurations. Due to the presence of
a huge band of zero modes �one-third of the spectrum�, the A
matrix cannot be written in canonical form.

Using the Poisson brackets, we see that the equation of
motion of the electric and magnetic fields is a generalized
Hermitian eigenvalue problem of the form

	 0 La�a

− La�a 0

� Ẽ�

H̃�

� = ��	��r� 0

0 ��r�

� Ẽ�

H̃�

� .

In this formalism, the energy density of the normal mode
�time averaged over the periodic cycle� is

u�r� =
1

2
�Ẽ

�
* H̃

�
*�	��r� 0

0 ��r�

� Ẽ�

H̃�

� , �22�

and the period-averaged energy-current density �Poynting
vector� is

ja�r� =
1

2
�Ẽ

�
* H̃

�
*�	 0 − iLa

iLa 0

� Ẽ�

H̃�

� . �23�

For practical real-space-based calculations of the photonic
normal mode spectrum with inhomogeneous local constitu-
tive relations, it is very convenient to discretize the con-
tinuum Maxwell equations on a lattice �or network� in such a
way that they in fact have the matrix form �16�, where the
matrix Aij reproduces the zero-mode �null-space� structure of
the continuum equations, and Hij represents the local consti-
tutive relations at network nodes �which come in dual types,
electric and magnetic�. In such a scheme, divergence-free
electric and magnetic fluxes flow along the links of the in-
terpenetrating dual electric and magnetic networks, while
electromagnetic energy flows between electric and magnetic
nodes, along the links between nodes of the network, satis-
fying a local continuity equation �see Appendix B�. How-
ever, there is one further conceptual ingredient that needs to
be added to the formalism before we can discuss the Max-
well normal modes in “nonreciprocal” media which have
broken time-reversal symmetry.

B. Frequency dependence of the dielectric medium

The formalism discussed so far treats the constitutive re-
lations as static. In general, although we will treat them as
spatially local, we cannot also treat them as instantaneous,
and must in principle treat the local permittivity and perme-
ability tensors as frequency dependent, ��r�→��r ,��, ��r�
→��r ,��. This is because the nondissipative time-reversal-
symmetry-breaking component of these tensors is both
imaginary and antisymmetric �as opposed to real symmetric�
and is an odd function of frequency, making frequency de-
pendence inescapable in principle.

These effects can, on the one hand, be treated in a Hamil-
tonian formulation by adding extra local harmonic oscillator
modes representing local polarization and magnetization de-
grees of freedom of the medium that couple to the electro-
magnetic fields. The full description of this is again a set of
harmonic oscillator degrees of freedom described by equa-
tions of the form �16�. On the other hand, with the assump-
tion that we are treating the electromagnetic modes in a fre-
quency range that is not resonant with any internal modes of
the medium �i.e., in a frequency range where the loss-free
condition is satisfied�, we can eliminate the internal modes
to yield a purely electromagnetic description, but with
frequency-dependent constitutive relations.
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The details are given in Appendix A, but the result can be
simply stated. If all oscillator degrees of freedom are explic-
itly described, the eigenvalue problem for the normal modes
has the structure �16�, where Bij

−1 is positive definite and real
symmetric. This guarantees that the eigenvalues �� are real.
However, the normal modes in some positive frequency
range �1����2 can be treated by eliminating modes with
natural frequencies outside that range, to give a matrix-
eigenvalue-like problem of much smaller rank of the form

�
j

Aijuj�
� = � ���

j

Bij
−1����uj�

� , �24�

where Bij��� is now a frequency-dependent matrix with a
Kramers-Kronig structure. The matrix Bij��� is no longer in
general real symmetric, but provided the eliminated modes
are not resonant in the specified frequency range it instead is
generically complex Hermitian. The “eigenvalue equation” is
now a self-consistent equation:

�
j

Aijuj�
���� = � ������

j

Bij
−1���uj�

���� . �25�

This must be solved by varying � until it coincides with an
eigenvalue. Unfortunately, while Bij

−1��� is Hermitian and
nonsingular in the dissipationless frequency range �1��
��2, it is not necessarily positive definite, so a priori the
eigenvalues ����� are not guaranteed to be real, except for
the fact that we know that these equations were derived from
a standard frequency-independent eigenvalue problem which
does have real eigenvalues. As shown in Appendix A, the
Kramers-Kronig structure of Bij��� reflects the stability of
the underlying full oscillator system, giving the condition
that a modified matrix

B̃ij
−1��� =

d

d�
��Bij

−1���� �26�

is positive-definite Hermitian in the specified frequency
range, which is sufficient to guarantee reality of the eigen-
values in that range. Furthermore, the quadratic expression
for the energy of a normal mode solution is given in terms of

B̃ij
−1���� rather than Bij

−1����, reflecting the fact that the total
energy of the mode resides in both the explicitly retained
degrees of freedom �the “electromagnetic fields”� and those
that have been “integrated out” �the nonresonant polarization
and magnetization modes of the medium�:

xi�t� = Bij
−1����uj�

+ ei��t + c.c., �� � 0, �27�

H =
1

2�
ij

B̃ij
−1�����ui�

+ �*uj�
+ ,

dH

dt
= 0. �28�

If the frequency dependence of the positive-definite Her-

mitian matrix B̃ij��� is negligible in the range �1����2,

so B̃ij���
 B̃ij��0�, with �0= ��1+�2� /2, one can replace
Bij

−1��� in �24� by the positive-definite frequency-

independent Hermitian matrix B̃ij
−1��0�. This in turn allows

the eigenvalue problem to be transformed into the standard
Hermitian eigenvalue problem

Hijwj
��� = ��wi

���, �w���,w����� = ����, �29�

with scalar product

�w,w�� � �
j

w
j
*wj�, �30�

valid for positive �� in the frequency range where B̃ij���

 B̃ij��0�, with

Hij = �B̃1/2��0�AB̃1/2��0��ij , �31�

and

ui�
+ 
 �

j

B̃ij
1/2��0�wj�. �32�

This allows well-known Berry-curvature formulas from the
standard Hermitian eigenproblem �5� to be quickly translated
into the generalized problem. It turns out that, when the full
problem with frequency-dependent constitutive relations
is treated, the standard formula for the Berry connection

remains correct with the simple replacement B̃ij��0�
→ B̃ij���� �the Berry curvature and Berry phase can both be
expressed in terms of this Berry connection�.

C. Berry curvature in Hermitian eigenproblems

Let Hij�g� be a family of complex Hermitian matrices
defined on a manifold parametrized by a set g of independent
coordinates g�, �=1, . . . ,D. It is assumed that the matrix is
generic, so its eigenvalues are all distinct; as is well known,
three independent parameters must be “fine tuned” to pro-
duce an accidental degeneracy between a pair of eigenvalues.
Thus, if the parametric variation of the Hermitian matrix is
confined to a two-parameter submanifold, each eigenvalue
���g� will generically remain distinct. Under these circum-
stances, the corresponding eigenvector is fully defined by the
eigenvalue equation and normalization condition, up to mul-
tiplication by a unimodular phase factor, which can vary on
the manifold:

w�i�g� → ei��g�w�i�g� . �33�

This is the well-known “U�1� gauge ambiguity” of the com-
plex Hermitian eigenproblem. Associated with each eigen-
vector is a gauge field �vector potential in the parameter
space�, called the “Berry connection:”

A�
����g� = − i„w��g�,��w��g�…, �� �

�

�g� . �34�

This field on the manifold is gauge dependent, like the
electromagnetic vector potential A�r�, but its curvature �the
Berry curvature�, the analog of the magnetic flux density
B�r�=��A�r�, is gauge invariant and given by

F��
����g� = ��A�

����g� − ��A�
����g� . �35�

The Berry phase associated with a closed path � in param-
eter space is given �modulo 2�� by

exp�− i�������� = exp	− i�
�

A��g�dg�
 . �36�
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Ignoring frequency dependence, the oscillator system has

H�g� = B1/2�g�AB1/2�g� , �37�

where the positive-definite Hermitian matrix B�g� can con-
tinuously vary as a function of some parameters g, but A is
invariant. Then conversion to the oscillator variables gives

A�
����g� = Im	 „u���,B̃−1�g,�����u���

…

„u���,B̃−1�g,���u���
…


 . �38�

Here B−1�g� has been replaced by B̃−1�g ,��� which is the
correct result when the frequency dependence of B−1�g ,�� is
taken into account �see Appendix A�.

D. Photonic bands and Berry curvature

In the case of periodic systems, the normal modes have
discrete translational symmetry classified by a Bloch vector
k defined in the Brillouin zone, i.e., defined modulo a recip-
rocal vector g. For fixed k, the spectrum of normal mode
frequencies �n�k� is discrete, labeled by band indices n, and,
as emphasized by Sundaram and Niu �4� in the electronic
context, the Bloch vector of a wave packet plays the role of
the control-parameter vector g.

In order to compute the Berry curvature of the photon
band Bloch states, we shall find it convenient to work in a
fixed Hilbert space for all Bloch vectors k, and we do this by
performing a unitary transformation on the A matrix �which
becomes the 6�6 matrix of differential operators �20� in the
continuum formulation of the Maxwell equations� as

A�k,�� � e−ik·rA���eik·r = A�� + ik� . �39�

Note that parametric dependence on the Bloch vector k is a
little different from parametric dependence on parameters g
that control the Hamiltonian. After projection into a subspace
of fixed k, the A matrix also becomes parameter dependent,
while �if the constitutive relations are taken to be completely
local� the B matrix in the photonics case is only implicitly k
dependent through its self-consistent dependence on the fre-
quency eigenvalue. �The parameter dependence of the A ma-
trix does not affect the expression �38� for the Berry connec-
tion.�

The discrete eigenvalue spectrum �n�k� is then obtained
by solving the self-consistent matrix-differential-equation ei-
genvalue problem

A�k,��un�k,r� = �n�k�B−1
„r,�n�k�…un�k,r� , �40�

where B−1�r ,�� is the 6�6 block-diagonal permittivity-
permeablity tensor diag(��r ,�� ,��r ,��), and un�k ,r�
�exp ik ·r represents the six-component complex vector

(Ẽn�k ,r� ,H̃n�k ,r�) of electromagnetic fields of the normal
mode with Bloch vector k and frequency �n�k�. The eigen-
function satisfies the periodic boundary condition un�k ,r
+R�=un�k ,r�, where R is any lattice vector of the photonic
crystal, and B−1�r+R ,��=B−1�r ,��.

The transcription of Eq. �38� to the case of periodic media
then gives the three-component Berry connection �vector po-
tential� in k space as

A�n�
a �k� = Im	 �un�k�,B̃−1

„�n�k�…�k
aun�k��

�un�k�,B̃−1
„�n�k�…un�k��


 . �41�

The scalar products in Eq. �41� are defined by the trace over
the six components of un�k ,r�, plus integration of the spatial
coordinate r over a unit cell of the photonic crystal. By con-
struction, if a Berry gauge transformation un�k ,r�
→un�k ,r�exp i�n�k� is made, A�n�

a �k�→A�n�
a �k�+�k

a�n�k�.
In three-dimensional k space, the antisymmetric Berry

curvature tensor F�n�
ab �k�=�k

aA�n�
b �k�−�k

bA�n�
a �k� can also be

represented as the three-component “Berry flux density”
�a

�n��k�=�abc�k
bA�n�

c �k� �the k space curl of the Berry connec-
tion�, to emphasize the duality between r space and k space,
and the analogy between Berry flux in k space and magnetic
flux in r space,

If a wave packet travels adiabatically �without interband
transitions� through a region with slow spatial variation of
the properties of the medium, so the photonic normal mode
eigenvalue spectrum can be represented as a position-
dependent dispersion relation �n�k ,r�, the wave packet must
be accelerated as its mean Bloch vector k slowly changes to
keep its frequency constant. When translated into the lan-
guage of photonics, the semiclassical electronic equations of
motion then become the equations of ray optics:

n̂adka

dt
= − n̂a�a�n�k,r� , �42�

dra

dt
= �k

a�n�k,r� + Fn
ab�k,r�

dkb

dt
, �43�

where n̂
dr /dt is parallel to the ray path, �a�� /�ra and
�k

a�� /�ka �it is useful to use covariant and contravariant
indices to distinguish components of spatial coordinates ra

from the dual Bloch vector components ka�. The Bloch-space
Berry curvature Fn

ab�k ,r� controls the additional “anomalous
velocity �19�” correction in �43� to the familiar group veloc-
ity of a wave packet vn

a�k�=�k
a�n�k�, which is active only

when the wave packet is being accelerated by the inhomoge-
neity of the medium.

Before we conclude our general discussion on Berry cur-
vature in photon band systems, we must state the constraints
inversion and time-reversal symmetries place on the tensor
Fn

ab�k�. In what follows, we will use the Bloch state wn de-
fined in Eq. �32�. If inversion symmetry �I� is present, the
periodic part of the Bloch state wn�k� has the following prop-
erty: wn�k�=wn�−k� whereas if time-reversal symmetry �T� is
present, wn�k�=w

n
*�−k�. If only �I� is present, it then follows

that Fn
ab�k�=Fn

ab�−k�, whereas if only �T� is present, Fn
ab=

−Fn
ab�−k�. If both symmetries are present, then the Berry

curvature is identically zero everywhere except at isolated
points of accidental degeneracy, where it is not well defined.
When Fn

ab is nonzero, the phases of the Bloch vectors cannot
all be chosen to be real. These properties will be crucial
when we consider the effects of various symmetry-breaking
perturbations on the photon band structure.
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E. Topological structure of the photon bands

The main consequence of having bands with nonzero
Berry curvature field is that, if the path C is closed and
encloses an entire Brillouin zone, the single-valuedness of
the state wn requires that

exp	� An
adka
 = exp	� � dka ∧ dkbFn

ab
 = 1

or

� �
SC

dka ∧ dkbFn
ab = 2�Cn

�1�, �44�

where Cn
�1� is an integer, known as the Chern invariant asso-

ciated with the nth band, and have well-known consequences
in the quantum Hall effect: in the integer quantum Hall ef-
fect, where the interactions among electrons are weak, the
Hall conductance is expressed in terms of the sum of all
Chern invariants of bands below the Fermi level �14�:


H =
e2

2��
�

i,�i��f

Ci
�1�. �45�

The gauge structure of the photon band problem outlined
above is formally analogous to the local U�1� gauge invari-
ance of ordinary electromagnetism. Note that the gauge in-
variance refers to the phase of the six-component electro-
magnetic fields as a whole; adding arbitrary phase
k-dependent phase factors to each field separately will in
general not preserve the Maxwell equation constraint.

A phase convention can be specified, for instance, by ar-
bitrarily choosing real and imaginary axes of the phases; the
local gauge-dependent phase fields of the electromagnetic
Bloch states are then represented as two-component rotor
variables at each point of the Brillouin zone. In addition, a
gauge choice may be made separately for each band so long
as the spectrum remains nondegenerate �20,24�.

By representing the phase covering on the Bloch manifold
is this way, the possibility of the occurrence of topological
defects of the gauge field becomes transparent. Local gauge
transformations correspond to local smooth deformations of
the rotor variables, and the Chern invariant corresponds to
the total winding number of these rotor variables along a
closed path enclosing the entire Brillouin zone.

In the case of two-dimensional Bloch bands, the defects
of the phase field are point singularities, having a zero-
dimensional “core” region where a phase convention is not
well defined, due to quasidegeneracies with neighboring
bands. It is clear that bands can have nonzero Chern numbers
only if time-reversal symmetry is broken. Otherwise, the
Berry curvature will be an odd function of k, and its integral
over the entire 2D Brillouin zone vanishes �Fig. 1�.

In three dimensions, the defects of the phase field are line
defects or vortices and their stability requires quasidegenera-
cies to occur along isolated lines in reciprocal space.

In the photonic system of interest, even if photon bands
can have nonzero Chern numbers, there can be no Hall con-
ductance as given above due to their Bose statistics �and
hence to their finite compressibility�. However, the connec-

tion between edge modes and Chern invariants is indepen-
dent of statistics: if the Chern number of a band changes at
an interface, the net number of unidirectionally moving
modes localized at the interface is given by the difference
between the Chern numbers of the band at the interface �Fig.
2�. We shall consider the problem of how Chern numbers can
change across an interface in the next section.

Since the Chern invariant of a band is a topological num-
ber, it therefore cannot vary smoothly as we vary some pa-
rameter of the periodic eigenproblem. So long as a band
remains nondegenerate, its Chern number cannot vary. How-
ever, if we tune some parameter � of the Hamiltonian to a
critical value �c such that two bands having nonzero Chern
invariants touch at some isolated point in the Brillouin zone
when �=�c, the two bands can exchange their Chern num-
bers at these degenerate points �Fig. 3�; if we tuned � beyond
its critical value, the bands will emerge with different Chern
invariants. Since the total Berry “magnetic flux” of all bands
remains fixed always, if only two isolated bands exchange
their Chern numbers at points of degeneracy, the sum of their
Chern numbers must remain invariant �5�.

Generically, 2D bands with both time-reversal and inver-
sion symmetry touch at isolated points of accidental degen-
eracy in a linear conical fashion, forming “Dirac cones” in
the vicinity of which the spectrum is determined by a mass-
less Dirac Hamiltonian,

(a)

(b)

+

FIG. 1. A representation of the phase fields of the photonic
Bloch states in a two-dimensional Brillouin zone using two compo-
nent rotors. The entire set of six electric and magnetic fields is
associated with a single phase at each point in the Brillouin zone.
The Chern invariant simply represents the winding number of this
phase along the Brillouin zone boundary and is also given by the
integral of the Berry curvature Fxy over the two-dimensional Bril-
louin zone. The phases in �a� correspond to bands with both inver-
sion and time-reversal symmetries, and the phases of the band can
be chosen to be real everywhere in the Brillouin zone. For bands
having nonzero Chern invariants �b�, the phase around the zone
boundary winds by an integer multiple of 2� and there is a phase-
vortex-like singularity somewhere in the Brillouin zone where the
Berry connection cannot be defined, due to the occurrence of
quasidegeneracies.

CRCL
B

F

FIG. 2. The number of forward-minus the number of backward-
moving edge modes equals the difference of the Chern number of
the band across the interface.
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H � � − �D = vD��k1
1 + �k2
2� , �46�

where vD is a parameter that gives the slope of the cone close
to the accidental degeneracy.

III. BROKEN T AND I IN PHOTONICS

In this section, we shall discuss our strategy for construct-
ing photon bands with nonzero Chern invariants, and chiral
edge states, whose existence is confirmed in the following
sections.

To break time-reversal symmetry in photonics, we shall
need magneto-optic materials �i.e., a Faraday-rotation effect�.
Such materials are characterized by their ability to rotate the
plane of polarization of light, when placed in a magnetic
field, and are used in conventional optical isolators.
The amount of rotation per length is known as the Verdet
coefficient, which depends on temperature as well as on the
wavelength of light. Materials known to have large Verdet
coefficients ��100 mm−1 at wavelengths of the order of mi-
crometers� are the iron garnet crystals such as Ho3Fe5012
�21�. Due to the breaking of time-reversal symmetry in this
materials, the eigenfrequency degeneracy is lifted for light
characterized by different states of circular polarization.

While such magneto-optic devices employ magnetic fields
in the direction of travel of the light beam, we shall be inter-
ested in two-dimensional photonic crystals with the magnetic
fields placed perpendicular to the plane of propagation of
light, as shown in Fig. 4. We shall call the axis perpendicular
to the 2D photon bands the Faraday axis, and the setup here
is reminiscent of a 2D electron gas �2DEG� placed in a per-
pendicular magnetic field.

Although we now have a means of introducing broken
time-reversal symmetry, we still need a strategy for the
nucleation of equal and opposite pairs of Chern invariants on
bands near points of accidental degeneracy. To do this, we
choose hexagonal lattice geometry. The threefold rotational
symmetry of such a system guarantees the existence of Dirac
points in the Brillouin zone corners when both inversion and
time-reversal symmetry are present; in this case the only
irreducible representations of the space group of threefold
rotations correspond to nondegenerate singlets and degener-
ate doublets. As a simple example consider the case of free
photon “bands” with dispersion �=c�k� in the first Brillouin
zone of a triangular lattice. The eigenfrequencies of the pho-
tons are sixfold degenerate at the zone corners. Adding a
weak periodic perturbation in the constitutive relations will
lift the degeneracy and the bands will now either be nonde-
generate or will form degenerate doublets, as demanded by
the symmetry of the perturbation. Due to the sixfold rotation
symmetry, the doublets are allowed to have a linear disper-
sion close to the zone corners and will be our Dirac points of
interest, whereas the nondegenerate singlet bands disperse
quadratically. We shall provide explicit examples of hexago-
nal photonic band structures having Dirac points in Sec. V.

While the existence of such Dirac points are virtually
guaranteed in triangular lattice systems, their stability has
little to do with lattice geometry. Such points are stable in
two dimensions only because of the presence of time-
reversal symmetry and inversion symmetry, when the eigen-
value problem is a real symmetric one: in this case it is
possible to find accidental degeneracies by varying just two
parameters, according to the Wigner–von Neumann theorem.
Thus, if the perfect hexagonal geometry of the constitutive
relations is slightly distorted, the Dirac points will simply
move elsewhere in the two-dimensional Brillouin zone. Pro-
vided that such distortions are not too strong such that an
axis of twofold rotations is introduced, in which case the
linear dispersion characteristic of a Dirac point is no longer
allowed, or if the distortion is so great that the Dirac points
meet and annihilate at a point of inversion symmetry, Dirac
points will still exist in the system.

If, however, inversion or time-reversal symmetry is bro-
ken in the system, the eigenvalue problem becomes complex
Hermitian, and, according to the Wigner–von Neumann theo-
rem, three parameters are required to ensure stability of the
Dirac points—in this case, the Dirac point degeneracy of the
2D band structure is immediately lifted. In both cases, the
two bands that split apart each acquire a nonzero Berry cur-
vature field Fxy�k�.

If inversion symmetry alone is broken, Fxy�k� is an odd
function of k, as discussed above. While the bands do have
interesting semiclassical dynamics due to their anomalous
velocity, they do not have any interesting topological prop-
erties since their Chern invariants are identically zero. On the
other hand, if time-reversal symmetry alone is broken, via
the Faraday coupling, the Berry curvature field will be an
even function of k, and each band which splits apart due to
the Faraday coupling will have equal and opposite nonzero
Chern invariants.

Finally, if we can slowly tune the Faraday coupling in
space, from a positive value, across the critical value of zero,

C(1) =− −1

C(1)
+ = 1 C(1)

+

kx

ky

ω
D

ω

λ λc

= −1

C(1) =− 1

FIG. 3. As we tune some parameter � of the Hamiltonian across
a critical point where accidental degeneracies occur, and two bands
touch in a linear fashion forming a Dirac point, Chern numbers of
bands may be exchanged.

r)(

H

H

ε

(b)(a)

FIG. 4. In the conventional Faraday effect used in optical isola-
tors �a�, light travels in the same direction as the applied magnetic
field, resulting in the rotation of its polarization plane. However, in
the photonic analog of a 2DEG heterojunction proposed here �b�,
light travels in a direction perpendicular to the applied field.
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where the local band-structure problem would permit Dirac
spectra, to a negative value, we would generate a system of
photonic bands with nonzero Chern numbers, that get ex-
changed at the region of space corresponding to the critical
zero Faraday coupling. It then follows, that modes with exact
correspondence to the integer-quantum-Hall edge states
would arise in such a system. In the following section, we
shall display this explicitly using an example band-structure.

IV. EXPLICIT REALIZATION OF EDGE MODES

An example of a photonic band structure with the desired
properties is shown in Fig. 5. It consists of a triangular lattice
of dielectric rods ��a=14� placed in a background of air
��=1� with an area filling ratio of f =0.431. The authors of
Ref. �23�, in a quest for optimal photonic-band-gap materi-
als, first studied this system. They computed the TE mode
spectrum and found a full band gap in the TE spectrum. We
have reproduced numerically their calculation and have also
computed the spectrum for the TM modes.

The key feature of this particular system which is of im-
portance to us is the presence of a pair of Dirac points in the
spectrum of the TE modes which are well isolated from both
the remaining TE and TM modes. Each of the six zone cor-
ners contains the Dirac cone spectrum, but there are only two
distinct Dirac points, the others being related by reciprocal
lattice translations of these points. In this particular system,
the two Dirac points are related by inversion in k space.

As we have discussed, a gap immediately opens when
either inversion or time-reversal symmetries are broken in
this system. We break inversion symmetry in the simplest
possible way by introducing a slight imbalance in the value
of the dielectric tensor in the rods at opposite ends of the unit
cell, and we parametrize the inversion breaking by defining
the quantity

MI = ln	 �+

�−

 , �47�

where �+ ��−� is the value of the permittivity inside the rods
in the upper �lower� half of the unit cell depicted in Fig. 5.

To break time-reversal symmetry, we add a Faraday-effect
term in the region outside the rods. This is done by giving
the dielectric tensor a slight imaginary component without
varying the constitutive relations inside the rods:

�ij
−1�x� = 	 �b

−1 i�

− i� �b
−1 
 �outside rods� , �48�

�ij
−1�x� = 	�a

−1 0

0 �a
−1 
 �inside rods� . �49�

We also define a parameter

MT = � �50�

to define the strength of the time-reversal-symmetry-
breaking perturbation.

We first determined the phase diagram of the system in
the �mI ,mT� plane by breaking both inversion and time-
reversal symmetry, and locating special values of the
symmetry-breaking parameters that result in the closing of
the band gap at one or more Dirac points �Fig. 6�. The phase
diagram separates regions characterized by bands just below
the band gap having a nonzero Chern number from regions
with all bands having zero Chern numbers. The boundaries
between these phases are where the gap at one or more of the
Dirac points vanishes, as shown in Fig. 6. Since there are
two Dirac points, each phase boundary corresponds to the
locus of parameters for which the gap at one of the Dirac
points closes. Thus, both Dirac points close only when the
two lines intersect, namely, at the point �mI=0, mT=0�,
where both inversion and time-reversal symmetries are si-
multaneously present. When inversion symmetry alone is
broken, the Berry curvature field of Dirac point 1 is equal in
magnitude and opposite in sign to the Berry curvature at the
second Dirac point. When time-reversal symmetry is broken,
on the other hand, each Dirac point has an identical �in both
magnitude and sign� Berry curvature field. In this case, the
photon bands which split apart at the Dirac point each have
nonzero Chern number, which depends only on the direction
of the Faraday axis ��ẑ�.

FIG. 5. Photon bands in the kz=0 plane of a 2D hexagonal
lattice of cylindrical dielectric rods. Electromagnetic waves are
propagating only in the x-y plane �Brillouin zone shown in the
lower right�. As in Ref. �23�, the rods have a filling fraction f
=0.431, �=14, and the background has �=1. The band structure
contains a pair of Dirac points at the zone corners �J�.

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

M
T

MI

I

II

III

IV

FIG. 6. Phase diagram of the photonic system as a function of
inversion- and time-reversal-symmetry breaking. In regions I and
III, the gap openings of both Dirac points are primarily due to
inversion-symmetry breaking, whereas in regions II and IV, the
breaking of time-reversal symmetry lifts the degeneracy of the
bands that formed the Dirac point. In all four regions, the two bands
of interest have nonzero Berry curvature, but only in regions II and
IV do they contain nonzero Chern numbers.
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We have also studied numerically the frequency gap as a
function of the time-reversal-breaking perturbation above
and found that, so long as the dielectric tensor remains posi-
tive definite, the gap increases linearly with �xy �Fig. 7�. This
will be important when we consider effective Dirac Hamil-
tonians for this problem: as we shall see, the fact that exactly
at the zone corner the gap rises linearly with MT is consistent
with the spectrum of a massive Dirac Hamiltonian with mass
MT. Thus, we have shown an example of a band structure
which contains Dirac points whose gaps can be tuned using
time-reversal- and inversion-symmetry-breaking perturba-
tions. We can now show the existence of chiral edge states in
this system.

To study edge states in this system, we introduce a “do-
main wall” configuration across which the Faraday axis re-
verses. As we shall now show numerically �and justify ana-
lytically in the following section�, the edge modes that occur
along the domain wall are bound states that decay exponen-
tially away from the wall while propagating freely in the
direction parallel to the interface. In order to study the expo-
nential decay of these modes, we glue together N copies of a
single hexagonal unit cell along a single lattice translation
direction R�, which will be the direction perpendicular to the
domain wall. We treat this composite cell as a unit cell with
periodic boundary conditions. Since a domain corresponds to
a certain direction of the Faraday axis, we study a configu-
ration here in which the axis changes direction abruptly
across the domain wall from the +ẑ to the −ẑ direction.

When we consider the spectrum on a torus, there are nec-
essarily two domain walls. Furthermore, since many unit
cells are copied in this system, there are as many duplicates
of the bands in the enlarged system under consideration. We
study the band gap precisely at the Dirac point as a function
of the fractional distance between the two domain walls on
the torus x �Fig. 8� for a composite unit cell consisting of
N=30 unit cells copied along the R� direction. When x=0 or
1, the two domain walls are at the same point, and this cor-
responds to a single domain with a single Faraday coupling
�. For all other values of x, the “unit cell” comprises a
two-domain system with nonequivalent lengths. In Fig. 9, the
gap between the two bands closest to the Dirac frequency
decays exponentially as a function of the distance between
the two domain walls. We shall show that the exponential
decay in the gap corresponds to the localization of the edge
modes along each domain wall. The small gap at intermedi-

ate values of x when the two walls are far apart corresponds
to the fact that each edge mode has a small amplitude, and
therefore hardly mix with each other at those length scales.

When the domain wall is introduced, translational sym-
metry is still preserved along the direction parallel to the
wall, and the states of the composite system of 30 unit cells
can be labeled by k�, the Bloch vectors in the direction par-
allel to the wall. Figures 10–12 consist of a spectral series of
a system without any broken time-reversal symmetry �Fig.
10�, with uniformly broken time-reversal symmetry �Fig.
11�, and a domain wall configuration �Fig. 12� for the 30-
unit-cell composite system. The bands are plotted along a
trajectory in k space in the k� direction which contains the
two distinct Brillouin zone corners. It is clear that in the
domain wall there are two additional modes formed in the
band gap that arose from the Faraday coupling. Since the
domain walls are duplicated on the torus, the spectrum of
edge modes will also be doubled; in Fig. 12, only the two
nonequivalent modes are shown. Each mode in the band gap
has a free photon linear dispersion along the direction of the
wall; moreover, both have positive group velocities, and
therefore propagate unidirectionally.

To be certain, however, that these chiral modes are indeed
localized near the interface, we have numerically computed
�u�r��B−1�u�r��, the electromagnetic energy density �the B
matrix, defined in Sec. II, is not to be confused with the
magnetic flux density� or the photon probability density in
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FIG. 7. The band gap �in units �a /2�c� opened by time-
reversal-symmetry breaking as a function of the strength of the
Faraday coupling � �same units as �b

−1� showing that the gap is
linearly proportional to �.
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FIG. 8. In a system with periodic boundary conditions, there are
necessarily two domain walls separating regions with different Far-
aday axes. We study the gap of the spectrum at the �now nondegen-
erate� Dirac points as a function of the distance x between the two
walls.
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FIG. 9. The spectral gap �in units of �a /2�c� between the two
bands which split apart due to the breaking of time-reversal sym-
metry. The spectrum is computed on a torus for the extended system
consisting of 30 copies of the hexagonal unit cell. Furthermore,
domain walls, across which the sign of the Faraday axis flips, are
introduced, and the spectrum is plotted as a function of the separa-
tion x between the walls �see also Fig. 8�.
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real space. We have computed this quantity along with all the
spectra of the composite system using the real-space band-
structure algorithms described in Appendix B. As shown in
Fig. 13, the energy density is a Gaussian function, peaked at
the position of the domain wall, and decaying exponentially
away from the wall. From this calculation, we extract a lo-
calization also approximately five unit translations in the di-
rection perpendicular to the interface.

We have therefore shown here using explicit numerical
examples that photonic analogs of the chiral edge states of
the integer quantum Hall effect can exist along domain walls
of hexagonal photonic systems with broken time-reversal
symmetry. We have studied the unphysical case in which
such domain walls are abrupt changes in the axis of the Far-
aday coupling. However, due to the topological nature of
these modes, a smoother domain wall in which the Faraday
axis slowly reverses over a length scale much larger than a

unit cell dimension would also produce such modes. The
most important requirement for the existence of these modes
is that at some spatial location the Faraday coupling is tuned
across its critical value. How this particular tuning is effected
is irrelevant. In the following section, after deriving the ef-
fective Hamiltonians for these modes, we shall consider a
smoothly varying Faraday coupling, which corresponds to an
exactly soluble system, and shall show the evolution of these
modes as the smoothness of the Faraday coupling is varied
toward the step function limit considered here.

V. MODEL HAMILTONIAN APPROACH

The crucial feature exploited in the previous sections was
the possibility of tuning band gaps at Dirac points by adding
time-reversal-symmetry-breaking perturbations. Before add-
ing these perturbations, the linear conical spectra at these
Dirac points are governed by two dimensional massless
Dirac Hamiltonians, and time-reversal- or inversion-
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FIG. 10. The spectrum of the composite system consisting of 30
copies of a single hexagonal unit cell duplicated along the direction
R�. Both inversion and time-reversal symmetries are present, and
the Dirac points are clearly visible. While the composite system has
a spectrum containing many bands, only two bands touch at the
Dirac point. The dispersion is computed in k space along the direc-
tion parallel to the wall. The units of the horizontal axis are arbi-
trary: here we have discretized the points in k space along a line in
the Kparallel direction which contains both Dirac points and present
the photon spectrum at each point.
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FIG. 11. The same system as above, but with broken time-
reversal symmetry without a domain wall. There is a single Faraday
axis in the rods of the entire system.
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FIG. 12. Same system in Fig. 11, but with a domain wall intro-
duced corresponding to maximum separation of the walls on the
torus. The two additional modes present in the gap correspond to
edge modes with a “free photon” linear dispersion along the wall.
There are two modes, since across the domain wall the Chern num-
ber of the band just below the band gap changes by 2.
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FIG. 13. The normalized real-space electromagnetic energy den-
sity profile associated with the edge modes in Fig. 12 plotted as a
function of the direction perpendicular to the domain wall �and
“integrated” over the direction parallel to the interface� and fitted to
a Gaussian profile. The integrated energy density depicted here
plays the role of the photon probability density, which confirms that
light is confined to the interface.
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symmetry-breaking perturbations contribute mass terms to
the Hamiltonian. In this section, we shall construct these
Dirac Hamiltonians starting from the Maxwell equations for
two-dimensional photonic systems with hexagonal symme-
try.

To motivate Dirac Hamiltonians in photonic systems, we
begin this section by considering a “nearly-free-photon” ap-
proach in which a two-dimensional free photon spectrum
consisting of plane waves is perturbed by a weak periodic
and hexagonal modulation of ��r�. Due to the underlying
symmetry of the perturbation, the plane waves mix in such a
manner as to generate Dirac points in the zone corners of this
system. We then consider the effect of adding time-reversal-
and inversion-symmetry-breaking perturbations in this sys-
tem and derive an expression for the Dirac mass. Having
motivated the Dirac points, we revert to our photon band
problem and derive expressions for the Dirac mass in these
systems.

In analogy with the nearly-free-electron approximation,
we consider the photon propagation problem in the weak-
coupling regime, in which the dielectric properties of the
medium act as a weak perturbation. We solve the Maxwell
normal mode problem for Bloch state solutions, and work
out corrections to the free photon dispersion relations in the
Brillouin zone boundaries. We shall assume continuous
translational invariance in the z direction, and study the
propagation of electromagnetic waves in the x-y plane.

The free photon constitutive relations are isotropic and
uniform in the plane:

B0 = 	�0 0

0 �0

 . �51�

We consider the free photon bands in the first hexagonal
Brillouin zone depicted in Fig. 14. Let Gi, i=1,2 ,3, be the
three equal-length reciprocal lattice vectors each rotated 120°
with respect to one another. The hexagonal zone corners cor-
respond to the points �Ki, where K1= �G2−G3� /3, etc., and
�K�= �G� /�3. At each of the zone corners, the free photon
spectrum is sixfold degenerate with �0=c0K. In two dimen-

sions, the modes decouple into TE �Ex ,Ey ,Hz� and TM
�Hx ,Hy ,Ez� sets, and we shall focus only on the TE modes
and consider the threefold TE mode symmetry at the zone
corners �the TE and TM modes do not mix in two dimen-
sions�. The eigenvalue equation for the free photon plane
wave modes at the zone corners is A�u0�=�0B0

−1�u0�, or
equivalently B0

1/2AB0
1/2�z0�=�0�z0� and the states �z0�

=B0
−1/2�u0� satisfy �z0

��� �z0
�����=����.

Next, keeping the uniform isotropic permeability fixed,
we add a weak periodic perturbation to the permittivity of
the form

�B1
−1 = 	�0�VG�r� 0

0 0

 �52�

with

VG�r� = 2�
n=1

3

cos�Gn · r� . �53�

After this perturbation is added, the TE and TM modes no
longer remain degenerate; while the TM modes remain three-
fold degenerate at the zone corners at the frequency �
=c0�K�, the TE modes split apart into a singlet and a degen-
erate doublet as shown in Fig. 15. We now determine the
splitting to leading order in � within a weak-coupling nearly-
free-photon approach.

With the periodic perturbation, the eigenvalue problem is

A�u� = ��B0
−1 + �B1

−1��u� �54�

which is equivalent to

B0
1/2�A − ��B1

−1�B0
1/2�z� = ��0 + ����z� . �55�

The energy splittings are worked out in degenerate perturba-
tion theory �see Appendix C� as

1G

2G

K2

K1

K3

G3

FIG. 14. In the weak-coupling approach, the free photon TE
mode plane waves are perturbed by a periodic modulation in the
permittivity. The plane wave frequency at the three equivalent zone
corners �Ki, i=1,2 ,3� is lifted by the permittivity in k ·p perturba-
tion theory into a nondegenerate singlet and a degenerate doublet.
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FIG. 15. Spectrum of photon dispersion in the vicinity of the
zone corners. Here, the range of the horizontal axis is much smaller
than a reciprocal lattice vector; we are showing the spectrum very
close to the zone corner J where the nearly free approximation is
valid. We have arbitrarily set ��0 so that the singlet band has a
lower frequency than the doublet. Free photon spectra are given by
dashed lines. Away from the zone corners, the free spectrum is not
affected to leading order in �.
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��n

�0
= − ��z̃n�B0

1/2B1
−1B0

1/2�z̃n� = − ��ũn�B1
−1�ũn� ,

where �z̃n� are appropriate combinations of the three free
photon plane-plane waves that diagonalize the periodic po-
tential. These states are obtained by requiring them to be
invariant under threefold rotations in the plane. Instead of
writing the fields in the coordinate basis, it is convenient to
use a redundant basis of the three vectors �eiK1·r ,eiK2·r ,eiK3·r�,
with �nKn=0, and Ki ·K j =−K2 /2, i� j. In this basis, the
magnetic field of the TE modes is written as ��=e2�i/3�

H1
z = �1,1,1� , �56�

H2
z = �1,�*,�� , �57�

and

H3
z = �1,�,�*� . �58�

The corresponding electric flux densities are easily obtained:

D1
� =

1

�
�ẑ � K1, ẑ � K2, ẑ � K3� , �59�

D2
� =

1

�
�ẑ � K1,�*ẑ � K2,�ẑ � K3� , �60�

D3
� =

1

�
�ẑ � K1,�ẑ � K2,�*ẑ � K3� , �61�

and

�z̃i� = 	Ei
�

Hi
z 
 . �62�

Clearly, these are the plane wave solutions that satisfy
Maxwell equations and transform appropriately under three-
fold rotations in the plane. We are therefore led to the simple
result that the splitting at the zone corners due to the mixing
of the three plane waves is related to the integral over the
unit cell of the electric fields and the periodic potential,
which is a traceless, real symmetric 3�3 problem. It is easy
to see that the problem is traceless because diagonal terms of
the form �ui�B1�ui� vanish identically since ui are plane
waves.

To leading order in �, the three photon bands split to form
a singlet band at frequency �0=c0�K��1+� /2+O��2�� and a
degenerate doublet at frequency

�D = c0�K��1 − �/4 + O��2�� . �63�

Exactly at the zone corners, the singlet and doublet states
above diagonalize the perturbation in Eq. �52�. To leading
order in � and �k�k−Ki, the deviation in the Bloch vector
from the zone corners, the states �z̃2��k�� and �z̃3��k�� �where
�z̃i��k��=exp�i�k ·r��z̃i��, which are degenerate at �k=0, mix
and split apart linearly as a function of ��k�, forming a Dirac
point. To leading order, the Dirac point doublet does not mix
with the singlet state �z̃1��k��. The effective Hamiltonian
governing the spectrum of the doublet, to leading order in
�k, is a 2D massless Dirac equation:

����k� = �D � vD��kx

x + �ky


y� , �64�

where vD=c0 /2+O���, and 
i are the Pauli matrices written
in the subspace of the doublet states. The linear dispersion of
the doublet in the neighborhood of the zone corners is im-
mediately obtained by solving Eq. �64�:

� = �D � vD��k� . �65�

The singlet band’s frequency remains unchanged to lead-
ing order in �k: �0��k�=�0+O���k�2�. Thus, we have shown
that the periodic modulation of the permittivity having three-
fold rotational symmetry gives rise to a quadratically dis-
persing singlet band and a Dirac point with linear dispersion.

Next, we add a Faraday term, with its axis normal to the
xy plane, to the permittivity tensor �xy =−�yx= i�0��r ,��,
where

��r,�� = �0��� + �1���VG�r� . �66�

Both �0��� and �1��� are odd functions of �. In the limit
that the Faraday coupling is much weaker in strength than
the periodic modulation, ��0� , ��1�� ����1, the mixing be-
tween the nondegenerate singlet state and the doublet re-
mains negligible, and the energy of the singlet state is unaf-
fected by the Faraday perturbation. However, the doublet
states split apart at the Dirac point. Using the expression for
the Dirac point splitting, derived in Appendix C, we find that
the splitting of the doublet at the zone corner is given by

�� − �D = � vD�,� = �K�	3

2
�1��D� − 3��0��D�
 .

�67�

Away from the Dirac point �but still close enough to the zone
corners so that the nearly-free-photon approximation for the
three plane wave states remains valid�, the doublet bands
acquire a dispersion

� = �D � vD���k�2 + �2�1/2, �68�

which is the spectrum of a 2D massive Dirac Hamiltonian:

����k� = �D � vD��kx

x + �ky


y + �
z� . �69�

The Dirac points that occur in the nearly-free-photon ap-
proximation are not isolated points of degeneracy, since,
away from the zone corners, the two bands which formed the
Dirac point merge together to resume their original free pho-
ton form. Consequently, the type of modes studied in the
previous section cannot be reproduced using this type of
weak-coupling expansion.

However, we can gain understanding by supposing that
we have the exact solutions of the electromagnetic Bloch
states and eigenfrequencies of a system containing isolated
Dirac points, such as the one studied numerically in Sec. IV.
We can use precisely the same weak-Faraday-coupling ap-
proximation to work out the splitting of the Dirac point with
a Faraday term. Assuming we are given example photonic
band structures of long hexagonal systems with kz=0, which
contain only isolated Dirac points, a weak Faraday coupling
will split apart the bands that formed the Dirac point, and the
splitting is identical to that in �68�. Suppose that the two
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bands having a Dirac point otherwise form a PBG with a gap
��vD� �as in the case of the numerical example given in
the previous section�. In this case, since the Faraday term
removes all points of degeneracy, the now nondegenerate
bands have a well-defined Berry curvature field

F���k� = �
1

2
����k�2 + �2�−3/2, �70�

which decays rapidly away from the Dirac point, and con-
tributes a total integrated Berry curvature of ��. Since there
are two nonequivalent Dirac points in the hexagonal geom-
etry under consideration, the net Berry curvature of the sys-
tem is the sum of the contributions from each Dirac point. If,
as in the case under consideration, spatial inversion symme-
try is preserved but time-reversal symmetry is broken, the
Berry curvature fields at each Dirac point of a given band
add, giving total Chern numbers �1 for each of the split
bands. However, if time-reversal symmetry is preserved, and
inversion-symmetry breaking causes the gap to open, the
Berry curvature fields of each Dirac point for a given band
are equal in magnitude but opposite in sign, and the Chern
number vanishes.

As before, to get unidirectional edge modes of light in this
system, the Faraday coupling must be tuned across its critical
value ��r ,��=0. To do this, we consider a Faraday coupling
that varies slowly and adiabatically in space, we assume neg-
ligible frequency dependence of the Faraday coupling, and
we parametrize the local value of the Faraday coupling by a
smoothly varying function ��r�, which is positive in some
regions and negative in other regions of the 2D plane per-
pendicular to the cylindrical axis of the hexagonal array of
rods. Due to the adiabatic variation of ��r�, each point in
space is characterized by a local band-structure problem, and
the splitting at the Dirac point is given again by the expres-
sion in �68�, but with the local value of �. In this limit, the
smooth variation of ��r� leads to a 2D Dirac Hamiltonian
with an adiabatically spatially varying mass gap. At all
points where ��r�=0, the local band structure in the vicinity
of the Dirac point is the massless 2D Dirac Hamiltonian;
provided that ���r����, the PBG, the spectrum far away
from the Dirac points is unaffected by ��r�. In what follows,
we assume that, when �=0, our band structure contains
Dirac points which are formed by two isolated bands in a
PBG region having no other points of degeneracy.

We neglect the mixing between modes at different Dirac
points, and consider the situation in which ��r� vanishes
along a single line �x=0 for instance�, and we assume trans-
lational invariance along the direction parallel to the inter-
face �y direction�. As before, we consider the degenerate per-
turbation problem of the normal modes close to the Dirac
point. Now, however, the coefficients of the degenerate solu-
tions of the Maxwell equations are spatially varying quanti-
ties. Let �u
��kD��, 
=�, be the degenerate solutions �i.e.,
the periodic parts of the photon Bloch state wave functions�
at a pair of Dirac points when �=0. With the local variation,
we take a spatially varying linear combination of these Bloch
states,

u�kD,r� = �

,�

�
�r�exp��ikD · r�u
��kD,r� , �71�

and arrive at the fact that the local value of the splitting of
the two bands at kD is

�+�kD� − �−�kD� = 2��r� . �72�

In the neighborhood of the Dirac point, the degenerate
perturbation problem gives us a 2D massive Dirac Hamil-
tonian, with �kx replaced by the operator −i�x in the position
representation, since translation symmetry in the x direction
is broken by ��x�. We thus obtain an expression of the form

vDK̂���=�����, and

K̂ = − i�x�x + �k��
y + ��x��z. �73�

The Bloch vector in the y direction, which remains con-
served due to the preservation of translation invariance along
this direction, is kDy +�k�.

For the particular choice of ��x�=�� tanh�x /��, ��0
�where �� is the asymptotic value of the Dirac point splitting
at distances �� from the interface�, the problem is exactly

solvable, since the Dirac Hamiltonian K̂, when squared, be-

comes a 1D Schrödinger Hamiltonian K̂2 corresponding to
the integrable Pöschl-Teller Hamiltonian �22�.

To see how this comes about, we explicitly work out the

operator K̂2, making use of the anticommuting property of
the Pauli matrices �
a ,
b�=2�ab:

K̂2 − �k�
2 = − �x

2 + ��x�2 − �y��. �74�

The spatially varying Dirac mass term that changed sign
across the interface becomes a “potential well” with bound
states given by �22�

�0��k�� = �D + s�vD�k�, s� = sgn����

�n� = �D � vD��k�
2 + �n

2�1/2, n � 0, �75�

where ��n�=2n���� /�, n� ����� /2. Figure 16 shows the nor-
mal mode spectrum of the Pöschl-Teller model. In the n=0
mode, light propagates unidirectionally, with velocity vD, in
the direction parallel to the wall. All other bound modes are
bidirectional modes. The numerical example of a Dirac mass
studied in the previous section that changed sign abruptly, as
a step function, has the 1D Schrödinger problem in an attrac-
tive � function potential as its square. Consequently, as we
have seen, the model permitted only a single bound state,
corresponding to the unidirectional mode.

For the generic case, the second-order differential equa-
tion for the n�0 bound states cannot be solved analytically.
However, a formal solution for the zero-mode eigenfre-
quency can be obtained, as it is obtained by solving a first-
order equation, as we now discuss. Starting from the Dirac
equation for the more general case

vD�− i�x�x + − i�y�y + ��x��z����� = ������ , �76�

by definition, the “zero mode” has free photon dispersion
along the direction parallel to the wall, which implies that the
function ���
exp�i�k�y�. We are thus left with the equation
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�− i�x�x + ��x��z����� = 0. �77�

Multiplying both sides with �x, we arrive at the following
first-order differential equation:

��x + ��x��y� = 0, �78�

which has as its formal solution

���� = exp	i�k�y + ��x

dx���x��
������� , �79�

where �y�������=��������. Although there are formally
two solutions for the zero mode, corresponding to �= �1,
only one can occur; the other is not normalizable and thus
cannot represent a physically observable state.

VI. SEMICLASSICAL ANALYSIS

Now let the Dirac mass term that opens the photonic band
gap be a slowly varying function ��x� that changes mono-
tonically �and analytically� from −k0 at x=−� to k0 at x=
+�. The photonic spectrum of modes with wave numbers
k=kD+�k near the Dirac point kD, and which become dou-
bly degenerate at kD, is an adiabatic function of x:

��x,�kx,�ky� = �D � vD��ky
2 + k�x,�kx�2�1/2,

k�x,�kx�2 = �kx
2 + ��x�2, �80�

where vD�0 is the Dirac speed. For k�x ,�kx�2�k0
2, the

modes are evanescent as x→ �� and so are localized on the
wall. In the x-�kx plane, the contours of constant k�x ,�kx�2

�k0
2 are simple closed curves, enclosing a finite dimension-

less area ��k2�, given by

��k2� = 2�
x−

x+

dx�k2 − ��x�2�1/2, �81�

where x−�k2��x+�k2� are the two “turning point” solutions of
��x��2=k2. Since ��x� is assumed to be monotonic, this can
be written as

��k2� = 2�
0

�k�

dy�k2 − y2�1/2	 1

�+��y2�
+

1

�−��y2�
 ,

��� �k2� � �d�

dx
�

x��k2�
. �82�

Note that this transformation has turned ��k2� into a signed
area, where sgn���=sgn�k0�, which is indeed the correct
form �the function ��k2� vanishes as k0→0, when its domain
k2�k0

2 shrinks to zero�. In the limit k2→0, x��k2�→x0, the
formal location of the interface. Then ��� �k2�→���x0�, and
��k2� vanishes as

��k2� →
�k2

���x0�
, �k/k0�2 → 0. �83�

It is very instructive to examine the special case

��x� = k0 tanh���x − x0�� , �84�

which is integrable. In this case,

���x� = �k0 sech2���x − x0�� , �85�

k0 sech2���x��k2� − x0�� =
k0

2 − k2

k0
. �86�

Thus the explicit dependence on x��k2� can be eliminated,
and

��� �k2� = �	 k0
2 − k2

k0

 . �87�

This make the integral for ��k2� trivial �it becomes express-
ible in terms of a simple Hilbert transform�, and the
asymptotic small-k2 form �83� remains valid for all values of
k2 in the domain of the function

��k2� =
�k2

�k0
, k2 � k0

2. �88�

Then the frequency of the interface mode with wave number
�ky =�k� along the interface can be expressed as

���k�,�� = �D � vD��k�
2 + ��

2 ����1/2,

��
2 ��� � ��k0��/� . �89�

A standard semiclassical analysis of interference effects on a
light ray trapped in a waveguide at an interface would con-
clude that the quantized values of � corresponding to inter-
face modes were

�n = 2�n + 	 , �90�

where 	 is a Maslov phase, usually �. In this case, compari-
son with the exact solution of the integrable problem con-

ω

δk||

FIG. 16. Spectrum of the integrable Pöschl-Teller model, Eq.
�75�. The horizontal line corresponds to �=�D. �k� =0 when the
zero-energy mode crosses this line. At �k� =0, the first excited state
has a frequency �=2vD���� /� and corresponds to bidirectional
propagation. With the exception of the zero mode, all bound states
correspond to bidirectionally propagating modes localized at the
interface where the function ��r�=0. The zero mode, on the other
hand, is unbalanced, and furthermore it corresponds to unidirec-
tional propagation.
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firms that this problem instead has a vanishing Maslov phase
	=0. This can be attributed to an underlying Z2 Berry phase
factor of −1 �Berry phase of �� for orbiting around the de-
generacy point at �x−x0 ,kx�= �0,0�.

We then conclude that the interface modes at a slowly
varying interface are in general given �for small �k�� by

�0��k�� = �D + vD sgn�k0��k� ,

�n���k�� = �D � vD��k�
2 + kn

2�1/2, n � 1,

��kn
2� = 2�n, kn

2 � k0
2. �91�

The unidirectional zero mode persists, however sharp the
interface is; the bidirectional modes with n�1 must obey
2�n���k0

2�, which has fewer and fewer �and eventually no�
solutions as the width of the interface region shrinks. In the
special case of the integrable model �84�, this spectrum is
exact for small �k� without any condition that the wall is
slowly varying.

VII. DISCUSSION

The occurrence of zero-energy modes in the 2D Dirac
Hamiltonian is well known and represents the simplest ex-
ample of a phenomenon known as the chiral anomaly. The
crucial feature, namely, the occurrence of interfaces where
the Dirac mass gap changes sign, corresponds to tuning our
photon band problem across a critical point using the Fara-
day effect.

We have shown that analogs of quantum-Hall-effect edge
modes can exist in photonic crystals whose band gaps can be
tuned by a Faraday coupling. The crucial new feature we
present here is that photonic systems can have bands with
nontrivial topological properties including nonzero Chern in-
variants. These in turn can be varied in a controlled manner
to yield unidirectional �chiral� edge modes. The edge modes
are robust against elastic backscattering since they are states
that are protected by the underlying 2D band-structure topol-
ogy. However, they are not robust against photon-number-
nonconserving processes, such as absorption and other non-
linear effects. We believe that this could be an entirely new
direction in photonic-band-structure engineering due to the
absence of scattering at bends and imperfections in the chan-
nel.

While such unidirectional edge modes are usually associ-
ated with an incompressible liquid of charged fermions, we
have managed to construct a means by which they also occur
in photonic systems. The photonic bands will certainly not
have an analog of the bulk physics associated with the quan-
tum Hall effect �QHE�, since there is no meaning to the
notion of “filling� a photon band. Nevertheless, the topologi-
cal properties of the Bloch bands which give rise to the chiral
behavior of the edge modes due to the breaking of time-
reversal symmetry do persist in the photonic system. While
the QHE describes a ground-state property of a fermionic
system, in the photonic system, the analogs of the QHE edge
modes are observable when a light beam, tuned to a fre-
quency within the bandwidth of the gap opened by the Far-

aday effect, is applied to the metamaterial, forming a one-
way waveguide. The basic physical picture is summarized in
Fig. 17.

A practical realization of such one-way transmission
channels in photonics will necessarily have to deal with the
problem of finding a magneto-optic material with a strong
enough Faraday effect to confine the light close to the inter-
face. Furthermore, in a practical design, the problem of
TE-TM mode mixing when light is confined in the direction
perpendicular to the 2D system will have to be addressed. A
practical design could, for instance, make use of PBG mate-
rials to confine light in the z direction. We note that magnetic
field effects are but one path toward a realization; the break-
ing of time-reversal symmetry, independent of the detailed
mechanism, is the more fundamental requirement. Although
there are many obstacles to the realization of such interesting
effects in photonics, none of them are fundamental, and we
believe that these unidirectional channels could have poten-
tially useful technological applications which could in prin-
ciple be realized someday through band-structure engineer-
ing.
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APPENDIX A: FREQUENCY DEPENDENCE
OF THE DIELECTRIC MEDIA

In this appendix, we will provide the details of the gener-
alization of the normal mode problem to include the
frequency-dependent response of the media outlined in Sec.
II. We shall couple the electromagnetic fields to harmonic

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

Ef

C = +1

C = −1
E ω

C = −1

PBG

C = +1

D.O.S
(b)

D.O.S
(a)

FIG. 17. Although the photon bands �b� cannot be filled as in the
electronic case �a�, they can have no analog of the bulk quantum
Hall effect. However, the Chern number is a topological invariant of
Bloch states independent of the constituents. With the Faraday term,
we are able to tune the system such that the total Chern number
below a photonic band gap changes across the interface, which
gives rise to unidirectionally propagating edge modes of photons
localized at the interface. These modes are direct analogues of the
chiral edge modes of electronic systems which occur at interfaces
between two regions having different total Chern invariants below
the Fermi level �i.e., with different Hall conductances�.
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oscillator degrees of freedom of the medium. Defining �i

and �i
 �i=1, ¯ ,N, 
=� ,�� to be a set of N independent
canonically conjugate oscillator coordinates and momenta,
respectively, which represent internal polarization and mag-
netization modes, we consider the total Hamiltonian

H = HEM + �



H
 �
 = �,�� , �A1�

where, for instance,

H� = �
i

Da��i��r�a�i��r� +  i�
a �r��i��r��

+
1

2�
i

�i���i��r�2 + �i��r�2� .

The first term above represents the local coupling between
the electric fluxes and the polarization modes, whereas the
second term represents the energy of the oscillators them-
selves. A similar equation exists for the magnetization de-
grees of freedom coupled with the magnetic fluxes. The
Hamiltonian, as stated in Eq. �A1�, is real symmetric and
positive definite, and therefore its eigenvalues are real. The
electric and magnetic fields are obtained by varying the
Hamiltonian with respect to the associated flux densities
Ea�r�=�H /�Da�r�, Ha�r�=�H /�Ba�r�,

Ea�r� = �ab
−1�r�Db�r� + �

n

��n�
a �r��n��r� +  n�

a �r��n��r�� ,

�A2�

and similarly for the field Ha. The time evolution of the
oscillator modes is obtained from the Hamilton equations of
motion �letting �t�n
=−i��n
, etc.�,

− i��n��r� =
�H

��n��r�
= �n��n�r� +  n

a�r�Da�r� , �A3�

i��n��r� =
�H

��n��r�
= �n��n��r� + �n�

a �r�Da�r� . �A4�

We invert this equation to solve for the oscillator coordi-
nates and momenta in terms of the fluxes:

	�n��r�
�n��r�


 =
1

�2 − �n
2	 �n i�

− i� �n

	�n�

a �r�
 n�

a �r�

Da�r� . �A5�

By substituting Eq. �A5� into the expression for the electric
field �A2�, we obtain a correction ��ab

−1�r ,�� to the permittiv-
ity tensor coming from the oscillator modes:

��ab
−1�r,�� = �

n
	�ab

� �r��� + �n� − �
ab
*��r��� − �n�

�2 − �n
2 
 ,

�A6�

where

��
ab�r� = ��n�

a �r� − i n�
a �r����n�

b �r� + i n�
b �r�� . �A7�

Finally, the correction term above to the permittivity is ex-
pressed in Kramers-Kronig form as

��ab
−1�r,�� = �

n

	 �ab
� �r�

� − �n
−

�
ab

�*�r�

� + �n

 . �A8�

The same formal manipulations occur in the frequency
dependence of the magnetization modes; in the end, the con-
stitutive relations are given by a tensor B�r ,�� defined by

B�r,�� = 	�−1�r,�� 0

0 �−1�r,��

 , �A9�

which is written in Kramers-Kronig form as

Bab�r,�� = Sab�r� + �
n
	 �ab�r�

� − �n
−

�
ab
* �r�

� + �n

 . �A10�

The first term Sab�r�=lim�→� B�r ,�� is the same tensor de-
fining the Hamiltonian in Eq. �14�. In the zero-frequency
limit,

Bab�r,0� = Sab�r� − �
n
	�ab�r� + �

ab
* �r�

�n

 . �A11�

The stability of the medium imposes the following impor-
tant constraint:

B�r,0� � 0. �A12�

Eliminating Sab in Eq. �A10� using Eq. �A11�, we get

�B��� = �
n
��	 �

�n�� − �n�
 + �*	 �

�n�� + �n�
� ,

where �B���=B���−B�0�. Whereas B��� is not a positive-
definite matrix, the quantity that is guaranteed to be positive
definite in lossless frequency ranges is

B̃��� = B��� − �
�

��
B��� � 0, �A13�

because

B̃��� = B�0� + �
n

1

�n
��n	 �

� − �n

2

+ �
n
*	 �

� + �n

2� ,

�A14�

and �n, �
n
*, and B�0� are all positive-definite tensors.

Although B��� is not positive definite, we will be inter-
ested in cases where

Det�B���� = 0. �A15�

When this condition is satisfied and B��� has no zero modes
corresponding to metallic conditions, there is a well-defined
inverse tensor B−1���,

B−1�r,�� = 	��r,�� 0

0 ��r,��

 . �A16�

From the stability condition stated for B���, there exists a
similar condition for B−1���:
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B − �
�

��
B = B	B−1 + �

�

��
B−1
B � 0,

where we have made use of B−1B=1 and � /���B−1B�=0.
Supplementing the inequality above with the condition in Eq.
�A15�, we obtain

B̃−1��� �
�

��
��B−1���� � 0. �A17�

The eigenvalue problem is solved for each value of the
Bloch vector k in the first Brillouin zone, and the formal
strategy for obtaining the energy eigenvalues is to solve
A�un�k��=�n�k�B−1(��k�)�un�k��, and then to vary � until it
coincides with a frequency of an eigenmode. The stability
condition �see Eq. �A7�� guarantees that such a prescription
enables us to find the entire spectrum in a lossless range of

real frequencies, where B̃−1 is Hermitian.
Indeed, if we consider for the moment the Hermitian

problem

�A − �B−1�����un� = �n����un� , �A18�

and vary � to find the zero modes

�n��� = 0, �A19�

the stability of such a prescription is guaranteed only if

��n

��
� 0, �A20�

so that the eigenvalues are monotonically decreasing func-
tions of �. But from first-order perturbation theory we know
that the requirement above is satisfied only if

�un�
d

d�
��B−1�����un� � 0, �A21�

which is precisely equivalent to the condition in Eq. �A17�.
When we eliminate the internal oscillator �polariton�

modes and explicitly substitute the expressions in Eq. �A5�
into the total Hamiltonian Eq. �A1�, we obtain the following
quadratic form that involves only the electromagnetic flux
densities:

H =
1

2�
ij

B̃ij
−1����ui�*uj . �A22�

Our result can be summarized as follows. We begin with our
total Hamiltonian Eq. �A1�, which can be written as a
positive-definite real symmetric matrix whose states exist in
an enlarged Hilbert space containing electromagnetic flux
densities and internal oscillator modes. When we integrate
out the nonresonant internal oscillator modes of the media,
we are left with a set of effective constitutive relations of the
form

vi� = �
j

Bij����uj�
+ ei��t + c.c., �A23�

and an effective Hamiltonian �which represents the con-
served time-averaged energy density of the electromagnetic
fields as well as the oscillator modes� that involves a differ-

ent tensor B̃ij��� given in �A22�. Using the relation in Eq.
�A13�, we can equivalently write the Hamiltonian as

H =
1

2�
ij

B̃ij�vi�*v j . �A24�

For the case of generalized frequency dependence consid-
ered here, the normalization of the electromagnetic fields is
given �up to a scale factor� in terms of the time-averaged
energy density Eq. �A22�:

�
��

„�u��*,B̃−1����u�… =
1

��

���. �A25�

Finally, the matrix B̃−1 and not B−1 enters the expression for
the Berry connection, since it also defines the normalization
of our states.

APPENDIX B: NUMERICAL ALGORITHMS
FOR BAND-STRUCTURE CALCULATIONS

In this appendix, we shall describe our formulation of the
photonic-band-structure problem, which has been used in the
computations of the edge mode spectra. Since we always
neglect absorption and emission and other nonlinear pro-
cesses of light �i.e., we work within an approximation of
photon number conservation�, we seek a real-space Hamil-
tonian formulation of the band-structure problem. A real-
space method is desirable over existing Fourier-space meth-
ods for our purposes; the modes we are particularly
interested in are obtained in domain wall configurations of
the Faraday mass term as a function of position, and it is
most simple and suitable to work within a real-space formu-
lation.

In the numerical implementation of a Hamiltonian formu-
lation, we shall treat the continuum flux densities �y�
= �D ,B� rather than �r�= �E ,H� as our fundamental dynami-
cal variables. The former set obey the source-free Gauss re-
lations

� · �y� = 0. �B1�

The Hamiltonian of our system is given by the following
quadratic form:

H =
1

2
�D,�−1D� +

1

2
�B,�−1B� . �B2�

Furthermore, the propagating solutions of Maxwell’s equa-
tions require the fields to be coupled in noncanonical Poisson
bracket relations:

�Da�x�,Bb�x��� = �abc�c�
3�x − x�� . �B3�

The two sets of fields are related by �y�=B�r�, where B is
the matrix of constitutive relations introduced in Sec. II. The
source-free Maxwell equations are slight variants of the ones
described in Sec. II, written as a generalized eigenmode
problem of the form
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AB̃�y� = ��y� . �B4�

The matrix A is the imaginary antisymmetric matrix intro-

duced in Sec. II, and B̃=B−1 is a positive-definite Hermitian
matrix. The eigenmode problem here is formally analogous
to the problem of a noncanonical harmonic oscillator with
Hamiltonian

H =
1

2�
ij

B̃ijyiyj , �B5�

and Poisson brackets

�yi,yj� = Aij . �B6�

Since A is imaginary and antisymmetric, its eigenvalues
are either zero or come in pairs with opposite sign. It is the
presence of zero modes which prevents a canonical treatment
of the problem. In the Maxwell problem, one-third of the A
matrix eigenvalues are zero modes.

In the spatial discretization of this problem, we divide
space into polyhedral cells, whose vertices contain the local
electrical energy density as well as the inverse permittivity
tensor �ij

−1�r�. The electrical fluxes !D are defined on the
edges of the polyhedron, while the magnetic fluxes !B are
associated with the faces of each cell. Finally, the magnetic
energy and the local inverse permeability tensor �ij

−1�r� are
defined on the centers of each polyhedron �Fig. 18�.

This discretization scheme preserves the self-duality of
the source-free Maxwell equations in three dimensions. For
each such electric polyhedron described above, there is a
dual magnetic polyhedron whose faces correspond to the
edges of the electric polyhedron, and whose center corre-
sponds to the vertices of the electric polyhedron.

The discretized form of the A matrix couples electric
fluxes to magnetic ones, and vice versa. The coupling is �see
Fig. 19�

Aij
DB = �!i

D,! j
B� = 0, � i . �B7�

The B matrix couples fluxes of the same type, and de-
pends on the geometry of the polyhedra used to discretize
space. For the case of a simple cubic discretization, and for
the electric fluxes �see Fig. 20�,

Bii =
1

2
��ii

−1�r1� + �ii
−1�r2�� , �B8�

Bij =
1

4
� ji

−1�r2� . �B9�

Identical relations involving the inverse permeability ten-
sor are constructed for the magnetic fluxes. With the present
formulation, the complete Hamiltonian of the system is ex-
pressed as a sum of local terms, H=�nh�rn�, with

Φ

ΦD

B

FIG. 18. The generic discretization scheme for the photon-band-
structure problem. Space is broken up into polyhedra. The local
electric energy density is defined at the vertices of each polyhedron,
and the electric fluxes, defined on the edges of the polyhedron,
connect two electric energy sites. The volume of the polyhedron is
associated with local magnetic energy density, and magnetic fluxes
exist on the faces of the polyhedron. The scheme here has electric-
magnetic duality in that a dual polyhedron can be defined, on the
vertices of which the magnetic energy density is defined, etc. The
scheme here is inspired by lattice QED, which ensures the correct
long-wavelength photon dispersion; the only difference here is the
absence of sources.

ΦB

ΦD
ΦB

ΦD

ΦB

ΦD

FIG. 19. The discretized form of A, which contains the Poisson
bracket relations of the fluxes. Shown here are example configura-
tions of �!i

D ,! j
B�= + i �top�, −i �middle�, and 0 �bottom�.

i
j

x

x

1

2

FIG. 20. The discretized form of B, which contains the geomet-
ric as well as the dynamics information. It couples fluxes of the
same type only, and allows for anisotropy in the constitutive
relations.
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h�rn� = �
ij

Bij�rn�yiyj . �B10�

Using this method, we can handle the case where the consti-
tutive relations have generalized anisotropy, and vary in
space.

We have made use of a simple cubic discretization of this
general algorithm �although similar implementations using
bcc and fcc lattices have given the correct count of the long-
wavelength photon modes� to compute photonic band struc-
tures. The fluxes !D and !B are made to obey the general-
ized Bloch boundary conditions

!
�x + R� = eik·R!
�x�, 
 = D,B , �B11�

where R is a lattice translation of the particular photonic
crystal under consideration, and k is a Bloch vector in the
first Brillouin zone. We compute the band structure of the
system by varying the Bloch vector in the boundary condi-
tions, which introduces Bloch phase factors into a few off-
diagonal elements of the A and B matrices and gives rise to
the band dispersions.

Both the A and B matrices are sufficiently sparse and
are stored as matrix-vector multipliers and treated using a
Lanczos algorithm. However, due to the significantly large
number of zero modes, a conventional Lanczos treatment of
Eq. �B4� would not converge. The Lanczos adaptation for the
photonic problem is done by modifying the A matrix to

A → A� = ABA − 2�0A , �B12�

A�B�y� = ��� − 2�0��y� . �B13�

Here, �0 is the lowest eigenvalue, and the low-lying �nega-
tive� eigenvalues of the modified problem are now the physi-
cally relevant ones, which are easily found with the Lanczos
implementation. The dimensions of the matrices are d=6N,
where N is the number of points used to discretize the con-
stitutive relations. We have found system sizes up to 106 to
be accessible within this approach. Furthermore, local polar-
ization and magnetization modes can be added to the algo-
rithm.

APPENDIX C: DERIVATION OF THE DIRAC
POINT SPLITTING

In this appendix, we derive a general expression for the
frequency splitting at the Dirac point caused by inversion- or
time-reversal-symmetry-breaking perturbations. We will use
braket notation to represent our eigenvectors instead of writ-

ing equations for each component. We suppose that we know
the exact eigenstates of the problem,

A�u0� = �DB0
−1�u0� , �C1�

and that the solutions are twofold degenerate at the Dirac
point, as for example, in the numerical examples we have
considered. Now add a perturbation in the constitutive rela-
tions:

B−1 = B0
−1 + �B1

−1. �C2�

This term represents our inversion- or time-reversal-
symmetry-breaking perturbation. To find the splitting of the
Dirac point �our “Dirac mass”�, we solve the modified prob-
lem

A�u� = ��B0
−1 + �B1

−1��u� . �C3�

Since the B0
−1 matrix is positive definite, it has a well-

defined positive-definite inverse square root matrix B0
1/2, and

we can rewrite the unperturbed problem in the form of a
conventional Hermitian eigenvalue problem,

B0
1/2AB0

1/2�z0� = �D�z0� , �C4�

where

�z0� = B0
−1/2�u0� . �C5�

The new eigenvalue problem with the symmetry-breaking
terms is

A�u� = ��B0
−1 + �B1

−1��u�

= �B0
−1/2�1 + �B0

1/2B1
−1B0

1/2�B0
−1/2�u� ,

which subsequently is rewritten in the canonical form as

B0
1/2�A − ��B1

−1�B0
1/2�z� = ��z� , �C6�

where �z�=B0
−1/2�u�. The correction to the spectrum to first

order in perturbation theory in the eigenvalue problem above
is then

�� = − �D��z0�B0
1/2B1

−1B0
1/2�z0� = − �D�

�u0�B1
−1�u0�

�u0�B0
−1�u0�

.

We have restored the normalization factor for the state �u0� in
the last line above. Thus, our main result here is a general
expression for the splitting of the Dirac point frequency
spectrum, given by the dimensionless quantity

��

�D
= − �

�u0�B1
−1�u0�

�u0�B0
−1�u0�

. �C7�
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