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Jahn-Teller systems and the Jahn-Teller effect are discussed in terms of cavity QED models. By expressing
the field modes in a quadrature representation, it is shown that certain setups of a two-level system interacting
with a bimodal cavity are described by the Jahn-Teller E�� Hamiltonian. We identify the corresponding
adiabatic potential surfaces and the conical intersection. The effects of a nonzero geometrical Berry phase,
governed by encircling the conical intersection, are studied in detail both theoretically and numerically. The
numerical analysis is carried out by applying a wave packet propagation method, more commonly used in
molecular or chemical physics, and analytic expressions for the characteristic time scales are presented. It is
found that the collapse-revival structure is greatly influenced by the geometrical phase and as a consequence,
the field intensities contain direct information about this phase. We also mention the link between the Jahn-
Teller effect and the Dicke phase transition in cavity QED.
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I. INTRODUCTION

The Jahn-Teller �JT� effect, due to Hermann Jahn and
Edward Teller �1�, states that a symmetry-breaking is likely
�only exceptions are linear molecules or molecules possess-
ing Kramers degeneracy points �2�� to occur whenever there
is an isolated degeneracy of electronic states in a molecule, a
so-called conical intersection �CI� �3,4�. Over the years, the
JT effect has gained enormous attention, mainly in molecular
and condensed matter physics �2,5,6�. A simple model sys-
tem Hamiltonian possessing a CI, later termed E��, was
presented by Longuet-Higgens et al. �7�. The main result of
this work states that the angular momentum quantum number
is half integer valued rather than an integer. This phenom-
enon arises from a geometric phase, on top of the dynamical
one, obtained while encircling the CI. The additional phase
must be introduced in order to have a single valued total
�electronic and vibrational� wave function. This was further
analyzed in Ref. �8�, where it was shown that the double
valuedness of the electronic wave function can indeed be
removed by introducing a “vector potential” term in the
Hamiltonian. For CI models, this resembles the Aharanov-
Bohm effect �9�, and gave rise to the molecular Aharanov-
Bohm effect and molecular gauge theory �10,11�. A deeper
understanding of this phase effect was gained with the semi-
nal paper of Berry �12�, which presents a general formalism
for the geometrical phase factors that an adiabatic change in
the Hamiltonian brings about. In the spring from this work
came several papers on the geometrical phase related to CIs,
see Refs. �10,11�.

The effect of the geometrical phase on physical observ-
ables has since then been discussed and experimentally veri-
fied in several reports �13,14�. The modulation, caused by the
geometrical phase, of the wave function has been addressed
in Ref. �15�, where a dynamical wave packet approach, simi-
lar to the one used in this article, is applied to the E�� JT
model. Inclucion of spin-orbit couplings has been investi-
gated in terms of the JT effect �16� and of wave packets �17�.
Recently, other properties of JT models, not only the E��,
have been considered, for example, quantum chaos �19� and
ground state entanglement �18,20�.

Although the JT effect has not, to the best of my knowl-
edge, been discussed within cavity quantum electrodynamics
�QED�, the geometrical Berry phase has been analyzed in the
framework of cavity QED �21–23�. These references study
the effects induced by the vacuum field on the geometrical
phase. In other words, the treatment of the two-level particle
in the time-varying field is then considered on a fully quan-
tum mechanical footing. The degeneracy point is not, how-
ever, identified as a CI in these works, and the rotating wave
approximation �RWA� has been applied which is not the case
in the present article. In addition, in the situation studied
here, the geometrical phase is said to be of dynamical char-
acter as it originates from the intrinsic evolution of the sys-
tem �11� rather than from “external� changing of the Hamil-
tonian �21–23�. Thus, the circumstances and approaches are
notably different between this work and the ones of Refs.
�21–23�. Among others, we examine the cavity QED system
in a conjugate representation in which the intracavity fields
are expressed in their quadrature operators rather than the
standard used creation and annihilation ladder operators. In
this picture, the link to JT systems and to CIs is revealed and,
in fact, the Dicke normal-superradiant phase transition in
cavity QED is seen to be related to the JT effect.

The model system is a two-level quantum-dot embedded
in a cavity and interacting with two degenerate field modes.
The numerical analysis is carried out using wave packet
propagation methods; an initial state of the system is let to
evolve under the corresponding Hamiltonian. The full
Hamiltonian dynamics is considered and compared to results
obtained from a second Hamiltonian which shares the same
adiabatic potential surfaces �APS� but lacks a geometrical
phase. We give analytical expressions for the characteristic
time scales, collapse and revivals, for both systems and it is
found that the revival time is in a sense twice as long in the
case where the geometrical phase is excluded. A conse-
quence of this is reflected in the intracavity field intensities.
Thus, measurements of the field intensities of the two modes
give a direct indication of the geometrical phase.

The outline of the paper is as follows. In Sec. II we re-
view some basics of JT models and CIs. Especially, in Sec.
II A we introduce the E�� Hamiltonian and discuss its
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APSs, while Sec. II B derives the geometrical phase accumu-
lated by encircling the CI, and Sec. II C considers the JT
effect in general and in the E�� Hamiltonian in particular.
The next Sec. III is devoted to our cavity QED model and it
is shown how the E�� model occurs for a two-level system
interacting with degenerate bimodal fields. A discussion of
the corresponding JT effect in cavity QED is outlined in Sec.
III B, where a parallel with the Dicke normal-superradiant
phase transition is drawn. Our numerical results of the cavity
JT system are presented in Sec. IV, both analyzing the short
and long term behavior and how the geometrical phase
comes into play. Finally we summarize in Sec. V.

II. THE JAHN-TELLER MODEL

Jahn-Teller systems are characterized by a degeneracy
point of coupled potential surfaces, a CI. In one dimension,
the simplest example is the E�� model, also called Rabi or
spin-boson model �24�. It describes a spin 1 /2 particle
coupled to a single boson mode �25�. In certain parameter
regimes, a RWA can be applied in which this model relaxes
to the one of Jaynes and Cummings �26�. In one dimension,
the wave packet �state of the system� cannot encircle the CI
without passing through it, and therefore there is no corre-
sponding dynamical geometric phase �12�. In two dimen-
sions, generalization of the E�� model leads in certain situ-
ations to the E�� model which will be the subject of this
section.

A. The EÃε Hamiltonian

The simplest Jahn-Teller Hamiltonian with two vibra-
tional degrees of freedom is the so-called E�� one, given by
�7�

HJT =
p̂x

2

2m
+

p̂y
2

2m
+

m�2

2
�x̂2 + ŷ2� + �x̂�̂x + �ŷ�̂y . �1�

Here p̂i and x̂i are momentum and position in the i direction
of the “particle” with mass m. The �̂ operators are the stan-
dard Pauli matrices obeying the commutation relations

��̂i,�̂ j� = 2�ijk�̂k �2�

and with the z eigenstates �̂z�� �= � �� � and � the coupling
constant. Clearly, at the origin x̂= ŷ=0, the two potential sur-
faces are degenerate. In the presence of either spin-orbit cou-
pling �17,27� or an external magnetic field �20,28�, an addi-
tional detuning term ��̂z /2 is added to the Hamiltonian,
where � is the spin-orbit splitting or the magnetic strength.
With this term present, the degeneracy is lifted and the inter-
section becomes avoided.

The form of the Hamiltonian �1� defines the diabatic basis
and diabatic potentials, namely; a diabatic state is written as
	�x ,y�= f��x ,y��� � for some normalized function f��x ,y�,
and the diabatic potentials, once the detuning � is included,
are m�2�x2+y2� /2�� /2. Before defining the APSs, we ex-
press the Hamiltonian in polar coordinates

x � iy = 
e�i� �3�

giving �15,17,27�

HJT = −
�2

2m
� �2

�
̂2 +
1


̂

�

�
̂
+

1


̂2

�2

��̂2� +
m�2

2

̂2

+ 	
�

2
�
̂ei�̂

�
̂e−i�̂ −
�

2

 . �4�

Let us introduce the unitary operator �8,15�

U = � sin�� cos��
− cos��ei� sin��ei�� , �5�

where

tan�2� =
2�
̂

�
�6�

and �= �̂, which diagonalizes the last term of Eq. �4�. How-
ever, U does not commute with the kinetic term in Eq. �4�
and, consequently, the transformed Hamiltonian H̃JT
=U−1HJTU is nondiagonal. The off-diagonal terms are the
nonadiabatic couplings, which are usually small far from the
crossing. Omitting these terms defines the adiabatic Hamil-
tonian

HJT
ad = T + V�

ad + Vcent + Vgauge, �7�

where �8,15�

T = −
�2

2m
� �2

�
̂2 +
1


̂

�

�
̂
+

1


̂2

�2

��̂2� ,

V�
ad = +

m�2

2

̂2 + �̂z��

2
�2

+ �2
̂2,

Vcent =
�2�2�

2��2 + 4�2
̂2�2 ,

Vgauge =
�

2
̂2�1 +
�

�2 + 4�2
̂2��1

2
−

�

��̂
� . �8�

We will assume that the evolution takes place mainly upon
the lower APS, i.e., �̂z=−1, but in the numerical simulations
we consider full dynamics without any approximations.
Close to the crossing, the nonadiabatic couplings may have a
significant impact on the dynamics �4,29�. The term V�

ad de-
fines the APSs, while Vcent and Vgauge, arising from the com-
mutator between U and the kinetic energy operator, are cen-
trifugal corrections �30�. The last term has been labeled
gauge for reasons that will become clear later on. We display
two examples, �=0 and ��0, of the APSs V�

ad in Fig. 1. For
a nonzero detuning, as pointed out, the crossing at the CI
becomes avoided, with splitting amplitude �. The lower sur-
face has the familiar sombrero shape, while the upper pos-
sesses a single global minimum at x=y=0. For large detun-
ings �, the Mexican hat structure is lost, and the minimum of
the lower APS is at the origin. Especially, the radius giving
the potential minima is given by �17�
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min = �� �

�
�2

− ��

�
�2

, ���� � �2,

0, ���� � �2.
� �9�

B. Berrys geometrical phase in the EÃε model

The adiabatic states, defined by U, are arbitrary up to an
overall phase. The phase choice in Eq. �5� is chosen such that
the states are singled valued as � is varied by 2�. For ex-
ample, the alternative obtained by multiplying U by
exp�−i� /2� implies double-valued adiabatic states. Unitary
transformation of the Hamiltonian in this second case leads
to an adiabatic Hamiltonian lacking the term proportional to
i� /��̂. The very last term of Eq. �7�, containing the differen-
tial operator � /��̂, can be viewed as a vector potential. In-
deed, this term can be combined with the canonical momenta
to define a kinetic momenta. Thus, the two options of overall
phase of the adiabatic states given above result in either
single-valued states with a vector potential present in the
Hamiltonian or no such vector potential term but double-
valued states �31,5�. The source of a vector potential term is
the cause for having a nonzero geometric phase as the system
encircles the CI analogous to the Aharanov-Bohm effect
�17�.

For the system evolving along a closed loop C in param-
eter space, the geometrical phase can be calculated according
to �12�

�n�C� = �
C

�n�R���Rn�R��dR . �10�

Here, �n�R�� is the nth adiabatic eigenstate and R the set of
parameters. In particular, in our case �n�R��
= �sin��� ,−cos���ei�� and as we consider a time-independent
dynamical problem, the varying parameters R are the coor-
dinates 
 and �. Especially, we consider a wave packet lo-
cated at the minima of the sombrero potential, such that
�
̂��
min, and � is changed from 0 to 2�. For a general
radius R we find the E�� geometric phase �17�

�JT�R� = − ��1 +
�

�2 + �2R2� , �11�

which for R=
min becomes

�JT�
min� = − ��1 +
��

�2 � . �12�

For �=0 we obtain the well known sign change of the wave
function when encircling a CI, causing half integer angular
momentum quantum numbers.

C. The Jahn-Teller effect

Using group theoretical arguments, Jahn and Teller
proved that for almost any degeneracy �CIs� among elec-
tronic states in a molecule, a symmetry-breaking is “al-
lowed” which removes the degeneracy and lowers the total
energy of the model system ground state �1�. It turns out that
this symmetry breaking indeed takes place in the majority of
cases with some exceptions �2,6�. Hence, the molecule fa-
vors a distortion of its most symmetrical state. This effect is
quenched when spin-orbit coupling is taken into account, but
may still exist �16�. Returning to the APSs of the E��
Hamiltonian �7�, the state with highest symmetrical is a wave
packet centered around the origin �x=y=0�. Loosely speak-
ing, for vanishing detuning �, is it intuitive to expect the
wave packet to slide down the potential surfaces towards the
minima of the sombrero. Semiclassically, the wave packet
experiences a nonzero force F=−�V�x ,y�. For large detun-
ings however, we saw from Eq. �9� that the potential surfaces
may possess a single global minimum which will prevent the
JT distortion. On the other hand, for small but nonzero de-
tuning, the sombrero structure is present for the lower APS
and here quantum fluctuations will permit a symmetry break-
ing. Naturally, the above arguments are semiclassical and the
full evolution is quantum mechanical and described by the
coupled system. Nonetheless, it gives some insight and intu-
ition of the dynamics.

III. JAHN-TELLER MODELS IN CAVITY QED

Spin boson models naturally occur in cavity QED. Here
the boson subsystem represents a single or several quantized
modes of an intracavity field, while the spin degrees of free-
dom describes either two-level atom �atoms� �32� or solid
state quantum-dot �dots� �33�. Contrary to standard formula-
tions of Jahn-Teller models, here the bosons are the photons
of the field rather than vibrational phonons, and the internal
structure corresponds to two discrete energy levels of the
atom or quantum dot. In the single mode case, a microscopic
derivation gives the E�� Hamiltonian �35� in the assump-
tion of dipole approximation and neglecting the self-energy
�see below�. In most cavity QED experiments involving at-
oms, the application of the RWA is justified, in which the
Hamiltonian identifies the analytically solvable Jaynes-
Cummings one �26�. The APSs �or rather adiabatic potential
curves� of the Jaynes-Cummings model contain the differen-
tial momentum operator �24�, and they are therefore said to
be of nonpotential form. Nonetheless, even if the picture of
potential surfaces is less intuitive due to the momentum de-
pendence, the JC model renders a sort of generalized CI
�curve crossing�. To go beyond the RWA regime, the cou-
pling to the field must be substantially increased compared to
atomic cavity QED setups. This is indeed the case for solid
state quantum dots coupled to a cavity. In fact, the crucial
parameter, coupling divided by the two-level transition fre-
quency, can be made several orders of magnitude larger in
condensed matter systems �33� compared to atom-cavity
ones. Another possibility to achieve ultrastrong atom-field
couplings is to consider Bose-Einstein condensates coupled
to an intracavity field �34�.

FIG. 1. Two examples of the adiabatic surfaces in the E��
Jahn-Teller model with detuning �=0 �a� and ��0 �b�.
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A. The model system Hamiltonian

To obtain CIs rather than curve crossings, multimode
cavities must be considered �36�. For simplicity we will as-
sume two degenerate cavity modes such that they share the

same frequency �̃ and also same coupling amplitude �̃ to the
quantum dot. The Hamiltonian in the dipole approximation
reads �37,38�

Hcav = ��̃�â†â + b̂†b̂� + �
�̃

2
�̂z + �

�̃

2
��â† + â���̂+e−i�

+ �̂−ei�� + �b̂† + b̂���̂+e−i� + �̂−ei��� . �13�

Here â† and b̂† �â and b̂� are creation �annihilation� operators

for the two field modes, � and � field phases, �̃ the quantum
dot transition frequency, and 2�̂�= �̂x� i�̂y. In the following
we will label the two cavity modes by a and b. Before pro-
ceeding, for brevity we introduce a characteristic energy ��̃
and time scale �̃−1, such that we consider dimensionless
variables

� =
�̃

�̃
, � =

�̃

�̃
, � = �̃t , �14�

where t is the unscaled time. In a conjugate variable repre-
sentation defined by the operator relations

p̂x = i
1
2

�â† − â�, x̂ =
1
2

�â† + â� ,

p̂y = i
1
2

�b̂† − b̂�, ŷ =
1
2

�b̂† + b̂� , �15�

where �x̂ , p̂x�= �ŷ , p̂y�= i, the Hamiltonian �13� takes the form

Hcav =
p̂x

2

2
+

p̂y
2

2
+

x̂2

2
+

ŷ2

2
+

�

2
�̂z + 2�x̂�cos����̂x + sin����̂y�

+ 2�ŷ�cos����̂x + sin����̂y� . �16�

For the simple example of �=0 and �=� /2 we recover the
cylindically symmetric E�� Hamiltonian �1�. In fact, for

�� − �� = �j + 1/2��, j integer, �17�

Hcav is unitarilly equivalent with the E�� Hamiltonian HJT
by identifying � with �. In some special cases of the phases,
the last two terms of Eq. �16� can be written as

2��x̂ + ŷ�� 0 e−i�

ei� 0
�, for � − � = 2j� ,

2��x̂ − ŷ�� 0 e−i�

ei� 0
�, for � − � = �2j + 1�� , �18�

for some integer j. For these situations the CI is replaced by
an intersecting curve in the directions of �=3� /4, 7� /4 or
�=� /4, 5� /4, respectively. Here, it is clear that by a unitary
rotation, the adiabatic states can be made real, indicating that
the geometrical phase becomes identically zero as the wave
packet is encircling the CI. This is indeed seen in Fig. 2

displaying the geometric phases of the Hamiltonian �16�. The
general form of the APSs, in polar coordinates, reads

V�
ad�
,�� =


2

2
���

2
�2

+ 4�2
2�1 + cos�� − ��sin�2��� .

�19�

The lower APS has two minima for angels �=� /4, 3� /4. It
is known that the “quadratic” E�� Hamiltonian has three
local minima in the sambrero shaped potential �15,17�. This
derives from a term of the form sin�3�� in the APSs. Here
we have a sin�2�� dependence instead and hence the double
minima structure.

The single valued adiabatic states can again be written

	u�
,�� = � sin��
− cos��ei��, 	l�
,�� = � cos��

sin��ei�� ,

�20�

but with

tan�2� =
4�


�
1 + sin�2��cos�� − �� ,

(b)

(a)

FIG. 2. The geometric phase �22� as a function of coupling �
and field phase �. The radius R=
min, where 
min=4�2− �� /4��2

is the adiabatic potential minima of the sombrero when �−�
=� /2 �the cylindrically symmetric case�. The other dimensionless
parameters are �=0 and �=1 �a� and �=1 /2 and �=1 �b�.
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� = tan� cos���sin��� + sin���sin���
cos���cos��� + sin���cos���� . �21�

Encircling the CI at a radius R we find the geometric phase
�12�

�cav�R� = − ��
0

2�

cos2���
��

��
d��


=R

. �22�

The phase �22� is depicted in Fig. 2 as a function of � and �
for fixed �=0 and �=1 �a� and �=1 /2 and �=1 �b�. The
asymptotic value for large couplings � is either −� or 0
�modulo 2��. The radius R is taken to be the minimum of the
cylindrically symmetric case ��=� /2�. For �=0, the great-
est effect generated by the geometrical phase is seen to be in
the symmetric case of �=� /2, while for ��0 the situation
becomes more complex. Note that, according to Eq. �9�, and
identifying � with �, ��0 in order to have a sombrero
structure of the lower APS, which is the reason why � is not
approaching 0.

B. The Jahn-Teller effect in cavity QED

The Jahn-Teller effect states that, in the presence of a CI,
lowering the symmetry may be energetically favorable in
various systems, typically for molecules and crystals. In
terms of the E�� Hamiltonian this is intuitive, since a wave
packet centered at the origin �the CI� will have a larger “po-
tential energy” than a wave packet located at 
min. The cor-
responding symmetry breaking in cavity QED implies that
the system ground state consists of nonzero fields in the two
modes. At the same time, the quantum dot is not entirely in
its lower state but in a superposition of its two internal states.
This is related to a well known phenomenon in quantum
optics, namely, superradiance �39�. This, of course, comes
about due to the strong interaction between the quantum dot
and the cavity fields. For multi-quantum-dot systems and in
the thermodynamic limit, where the number of two-level
quantum dots and the volume tend to infinity while the den-
sity is kept fixed, this results in a second order quantum
phase transition between a normal �the field in its vacuum�
and a superradiant phase �a macroscopic nonzero field� �40�.
The critical coupling of this phase transition is given by �c

=���� �40�, which indeed follows from Eq. �9�.
However, it can be shown that for a quantum dot in which

the lower state is its ground state, the normal-superradiant
phase transition is an artifact from neglecting the self-energy
term from the Hamiltonian �41�. For a single mode, and in
unscaled units, this term is given by

HSE =
e2

2m

��

V�
x̂2, �23�

where e is the electron charge, m its mass, and V the effec-
tive mode volume. This should be compared with the matter-
field coupling

� = �d2��

V�
, �24�

where d is the dipole moment of the transition of interest in
the quantum dot. It is clear that the self-energy term HSE

tends to quench the sombrero structure, and further that �
and HSC are not fully independent. Indeed, in Ref. �41� it is
demonstrated, either using the Thomas-Reiche-Kuhn sum
rule or simple thermodynamical and gauge invariance argu-
ments, that the sombrero shape cannot be obtained for any
set of physical parameters.

To circumvent this obstacle one may use a two-photon
Raman type of interaction, where three levels of the quantum
dot are coupled through the cavity mode and an external
classical laser field �42,43�. In the large detuning limit of one
of the internal levels it can be adiabatically eliminated �44�
and one arrives at an effective model very similar to the one
above. In such a procedure one introduces an additional in-
dependent parameter, the detuning � of the eliminated level
�45�. As the detuning enters in the effective matter-field cou-
pling parameter, but not in the self-energy term, these two
become in principle independent, and in particular � can be
made large in comparison with HSE. The effective model,
once the detuned level has been eliminated, contains some
Stark shift terms that will modify the potential surfaces, but
the CI and sombrero structure are still present. The external
laser fields have the advantage of being easily controllable in
terms of system parameters such as amplitude and phase. A
system Hamiltonian suitable for realizing the Jahn-Teller
model can be found in Ref. �22�. It should be noted though,
that the effective Hamiltonian is in general time dependent,
which is prevailed by imposing a RWA. This, however, in-
duces a “momentum-dependent” potential surface, but none-
theless, the JT symmetry breaking is still present in this ap-
proximation �40�.

Another possibility to surmount the problem with the self-
energy, which is assumed in this paper, is to use the fact that
the two internal levels that couple to the cavity modes are
normally highly excited meta stable �Rydberg� states. For
these states, neither the Thomas-Reiche-Kuhn sum rule nor
the thermodynamical arguments apply, and the symmetry
breaking may still occur. We therefore discard the self-
energy terms as they would only modify the frequencies of
the harmonic potentials. In general, also for the Raman
coupled model, the states involved are highly excited meta-
stable states and the sum rule cannot be applied in those
cases either. A benefit of the Raman model, compared to a
one photon model, is the higher controllability of the system
parameters; especially the diagonal element is a detuning
parameter �and not a transition frequency �� that can be
made small compared to the matter-field coupling. The draw-
back of an effective Raman model is that the analysis is
considerably less intuitive due to the RWA. Here, we there-
fore choose the simpler model of the two as the physical
phenomena may be more easily extracted from it.

IV. NUMERICAL RESULTS

Contrary to molecular or solid state systems, properties of
the cavity fields are in comparison easily measured, for ex-
ample, field intensity �46�, field quadratures �47� and, in fact,
the whole phase space distribution using quantum tomogra-
phy �48�. Using wave packet propagation methods, the dy-
namics of such quantities will be studied in this section with
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emphasizes on the effects emerging from the geometrical
phase. As an initial state we take a disentangled one, given in
Cartesian coordinates by

	�x,y,0� = ��x,y,0�
1
2
� 1

− 1
� , �25�

where

��x,y,0� =
1

�
e−�Im x0�2−�Im y0�2

e−�x − x0�2/2−�y − y0�2/2. �26�

The initial quantum dot is a linear combination of its two
internal states with equal amplitudes, and the two field
modes are in Gaussian states corresponding to coherent field
states; �x0 /2� and �y0 /2�, respectively �50�. Such initial
states are readily prepared experimentally. We will further
pick y0=0 and x0=2� such that the initial wave packet is
approximately centered at the minima of the sombrero. Note
that the initial average momentum is zero, and that 	�x ,y ,0�
is different from the adiabatic states �20�. A consequence of
this is that the wave packet evolution will not be restricted to
a single APS. However, the upper adiabatic state is only
marginally populated for our particular choice of initial state
and the main phenomena studied here, the effects of the geo-
metrical phase on the field properties, is indeed seen even
though slight interference between the two adiabatic states
occurs. Hence, we emphasize that the dynamics take place
mainly on the lower adiabatic surface. Properties of the up-
per APS have been studied in Ref. �49�.

We restrict the analysis to the cylindrically symmetric
case, where the time evolved state

	�x,y,�� =
1
2

��e�x,y,���1

0
� + �g�x,y,���0

1
�� , �27�

will predominantly spread along the minima of the sombrero
potential. As the wave packet broadens it will, after a certain
time, start to self-interfere. We may estimate the characteris-
tic time for this process by approximate the inherent spread-
ing by free evolution along the minima of the sombrero po-
tential to get

Tin � 4�2�2 − 1 � 2�� . �28�

Within this time, the wave packet width has expanded over a
distance 2�
min.

From the full system state �27�, we can derive the reduced
density operators for the separate constitutes


i��� = Trj,k�
���� , �29�

where the subscripts represent, either the two modes a and b
or the quantum dot, and 
���=	*�x ,y ,��	�x ,y ,��. Using
the reduced density operators we will especially study the
photon statistics and the Husimi Q distribution �50,51�

Pi�n� = �n�
i����n� ,

�n̂i� = �
n

nPi�n� ,

Qi��� =
1

�
���
i������ . �30�

Here, �n� is the nth-photon Fock state, ��� a coherent state
with amplitude � and the subscript i=a ,b for the respective
modes.

A. Dynamics on the Tin time scale

Discussed in Sec. II, it is the term Vgauge that gives rise to
a geometric phase. To correctly describe the adiabatic evolu-
tion each term of HJT

ad in Eq. �7� must be taken into account,
and it is not enough to study dynamics upon the potentials
V�

ad. In this subsection we study the full dynamics using
Hamiltonian �16�, and we hence go beyond any adiabatic
approximation. However, in order to identify the effects of
the geometrical phase we compare the results with the ones
obtained by propagating the same initial state using the
“semiadiabatic” Hamiltonian defined as

H̃JT
ad = T + V−

ad, �31�

where T and V−
ad are both given in Eq. �8�. Accordingly, a

wave packet evolving via the Hamiltonian H̃JT
ad around the

origin will not accumulate any geometrical phase.
The characteristic time scale Tin determines how long it

takes for the particular initial state �26� to inherently spread
out across the CI and start to self-interfere. It is therefore a
measure of the collapse time. The effect of the geometrical
phase on the probability wave functions �	�x ,y ,���2
= ��e�x ,y ,���2 /2+ ��g�x ,y ,���2 /2 has been discussed in Refs.
�15,17�. Initially we choose x0�0 while y0=0 such that in-
terference of the evolved wave packet sets off at −x0 where
the two tails of the packet first join. Destructive and con-
structive interference cause nodes �vanishing probability dis-
tribution� and antinodes �nonvanishing probability distribu-
tion� in �	�x ,y , t��2, and the ring-shaped wave packet splits

up in localized blobs. In the case of H̃JT
ad, in which the geo-

metric phase is zero, an antinode builds up at x=−x0, while
for �JT�
min�=−� �as is the case of zero detuning in the E
�� model� a node is formed at x=−x0. The location of the
corresponding node or antinode depends on the value of
�JT�
min�, and in all our examples ��� such that �JT�
min�
�−� giving a node at x�−x0. These features are visible in
Fig. 3 showing the numerical results of the propagated dis-
tributions �	�x ,y ,���2 for three different times �. Full dy-
namics governed by Hamiltonian �16�, with �=0 and �
=� /2 �cylindrically symmetric case� are shown in the left
plots, while the right ones reproduce the results from propa-
gation using the semiadiabatic Hamiltonian �31�. The effect
of the geometrical phase becomes clear once the wave packet
starts to self-interfere. The number of localized blobs de-
pends on time � and system parameters and then especially

min. Note that very similar results where presented in Refs.
�15,17�. However, the Hamiltonians used for the simulations

in Refs. �15,17� are in general different from the one H̃JT
ad

utilized here; a single surface approximation �14,52� is ap-
plied in most examples of Refs. �15,17� while here it is only
considered for the nongeometrical phase case.
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As the initial wave packet starts to spread, a nonzero field
will begin to build up in the vacuum b mode, on the cost of
decreasing field intensity of mode a. However, without the
RWA, the total number of excitations is not conserved. In
Fig. 4 we display the individual photon distributions Pi�n� at
a quarter of the interference time Tin. Already at this instant
has the initially empty mode a nonzero field intensity, and its
photon distribution consists mostly of even number of pho-
ton states. This is a typical characteristic of Schrödinger cat
states �32�, and in the next subsection we will indeed show
that such a state is created in the system at certain times. The
small but nonzero population of odd photon numbers in the b
mode is caused by nonadiabaticity; for the semiadiabatic
Hamiltonian �31� the odd photon numbers are never popu-
lated for the given initial state �25� with y0=0.

B. Dynamics beyond the Tin time scale

Seen in the previous subsection, for an initial localized
state mainly located at the minima of the Sombrero potential

and with zero average momentum, the time scale Tin deter-
mines the collapse time; the time it takes for the localized
wave packet to spread out over its accessible phase space
region. Over longer periods, a revival structure in physical
quantities is expected �53�, where localized bumps are
formed in phase space signalizing fractional or full revivals
�54�. It has been pointed out however, that the collapse-
revival characteristics are rather different in models where
the RWA has been applied �24,55�. Typically, in the RWA
regime the various time scales become long. In this work we
are outside such a regime, and we will in particular find that
the revival time is given by a multiple of �Tin and that phase
space evolution is significantly different for the two Hamil-
tonians �16� and �31� due to the geometrical phase.

From Fig. 3 we see that after a time Tin, the initial wave
packet is spread throughout the minima of the Sombrero po-
tential and the self-interference causes nodes in the probabil-
ity distribution. The number of localized bumps depends on

min �9�, but also on the time �; at first, when the self-
interference sets off, the number of bumps increases to a
maximum value and then the number begins to decrease and
eventually form a single localized wave packet. Full revival
occurs when a single localized bump is formed at the same
position as the initial wave packet. To study the field dynam-
ics we use the Q function for the two modes a and b of Eq.
�30�. We will present the two functions Qa and Qb in the
same plots for brevity, but mark them with letters a and b,
respectively. At the initial time �=0, Qa and Qb are Gauss-
ians centered at �= �2� ,0� and �= �0,0�, respectively. As
time evolves, the b mode builds up its intensity and the Q
function moves away from the origin, while Qa at first de-
creases its intensity by tending towards the origin. However,
over longer time scales, ��Tin, a swapping of energy be-
tween the two modes will take place. This phenomenon has
been discussed in our model, but only when the RWA has
been imposed �38�. As our analysis concerns a regime far
from the RWA one, this exchange of energy between the
modes occurs at very different time scales than in Ref. �38�,
similar to what was found for the inversion in the JC model
�24�. Namely, the characteristic time scales in the parameter
regimes of the RWA and without the RWA in the JC model
can differ by orders of magnitude.

From our numerical simulations we have found that local-
ization of the phase space distributions comes about at mul-
tiples of time Tfrac=�Tin, which hence are the characteristic
scales for fractional revivals �53,54�. The larger the radius

min, the better resolved wave packet localizations. In Fig. 5
we display examples of the Q functions Qa and Qb �indicated
in the figures by a and b� obtained either from the full system
Hamiltonian �16� �left� or from the semiadiabatic Hamil-
tonian �31� �right�. The times are here, �=�Tin, 2�Tin, 3�Tin,
4�Tin. A clear discrepancy is seen between the two models.
For example, at �=2�Tin �c� and �d�, mode a in the left plot
�with geometrical phase� is approximately in vacuum, while
for the semiadiabatic system �without geometrical phase�,
mode b is roughly empty. At this instant, the nonempty mode
is in a Schrödinger cat state. For �=4�Tin the full system has
revived; the Q functions have evolved into approximate rep-
licas of their initial states. This is true up to an overall phase
for the semiadiabatic case, which is typical for a half-revival
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FIG. 3. Snapshots of the wave packet distributions �	�x ,y ,���2
at times �=Tin /4 �a� and �b�, �=Tin /2 �c� and �d�, and �=Tin �e� and
�f� for the cases with �left� and without geometrical phase �right�. In
the last two plots, the difference between the interference structures
is clearly visible. See Refs. �15,17� for similar results. The dimen-
sionless parameters are �=0.5 and �=3.
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after a time �=Tin /4. The dimensionless parameters are the same as
in Fig. 3.
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�53�. From this figure we find the revival time for a wave
packet encircling the CI in the E�� model to be

Trev = 4�Tin � 8��2. �32�

For the semiadiabatic model, exact revivals �in terms of re-
storing also the overall phase� occur at twice this time. It
should be pointed out that formula �32� has been verified for
a large set of different parameters.

Even though the phase space distribution of a cavity mode
is in principle measurable �48�, the field intensity is directly
regained from the cavity output field using a photon-counter
detector. Already Fig. 5 indicates that the average number of
photons �ni� differ considerably between the full model and
the semiadiabatic one. This is verified in Fig. 6 showing the
time evolution of �na� and �nb� for both models. Judging
from the field intensities in this figure, the revival time of the
semiadiabatic model seems to be half the one of the full
model, but here the a mode is indeed not in a coherent state
but in a Schrödinger cat.

V. CONCLUSIONS

In this paper we have shown how a system of a two-level
“particle” interacting with the fields of a bimodal cavity may
fall in the category of JT models. By representing the model
Hamiltonian in terms of field quadrature operators, rather
than boson ladder operators, we identified its APSs and a CI.
In this nomeclature, and in particular for the multiparticle
analog �Dicke model�, the JT effect of cavity QED was iden-
tified with the normal-superradiant phase transition. The sys-
tem studied here was described by the well-known E��

Hamiltonian. Knowledge from earlier research on this
model, almost exclusively in molecular or chemical and con-
densed matter physics, has been applied on this cavity QED
counterpart. Our main interest concerned the geometrical
Berry phase reign from encircling the CI. The effect of the
geometrical phase was studied by comparing physical quan-
tities, such as the field phase space distributions and the field
intensities, obtained from the evolution of either the E��
Hamiltonian or the semiadiabatic one in which no geometri-
cal phase occurs. Clear distinctions between the two models
were found when the system is let to evolve over longer time
periods. Energy is swapped between the two field modes,
and this exchange is highly affected by the geometrical
phase. From our numerical results we could as well present
analytical expressions for the collapse-revival times for a
wave packet encircling the CI in the E�� model.

In addition, by introducing the notion of a wave packet
evolving on two coupled potential surfaces, a deeper under-
standing of cavity QED models is obtained. This work, ana-
lyzing the geometrical phase, serves as an alternative view-
point of the phenomenon in comparison to previous studies
such as Refs. �21,22�. It is indeed believed that the wave
packet method used here will give even more thorough in-
sight into cavity QED problems, or even trapped ion systems
where related CI models are expect to occur �55�. We plan to
study, using the current approach, the dynamics of the Dicke
normal-superradiant phase transition. Another project under-
way is to investigate the “molecular Aharanov-Bohm effect”
and “molecular gauge theory” in terms of cavity QED mod-
els.
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FIG. 5. Snapshots of the Husime Q functions at times �=�Tin

�a� and �b�, �=2�Tin �c� and �d�, �=3�Tin �e� and �f�, and �
=4�Tin �g� and �h�. The left plots are the results with geometric
phase, using Hamiltonian �16�, and the nongeometric phase results,
obtained by the Hamiltonian in Eq. �31�, are displayed in the right
figures. The Q function of the a mode is labeled by a in the plots,
while b labels the second mode Q function. The dimensionless pa-
rameters are �=6 and �=0.5.
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FIG. 6. The average photon numbers �n̂i� for both modes a
�black� and b �gray� as a function of scaled time � /Tin. The upper
plot presents the results from using the full Hamiltonian �16�, which
includes a geometrical phase, while the lower plot shows the results
from using Hamiltonian �31�. The effect of the geometrical phase is
remarkably reflected in the two field intensities. The dimensionless
parameters are the same as in Fig. 5.
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