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We present a method for describing and characterizing the state of N particles that may be distinguishable in
principle but not in practice due to experimental limitations. The technique relies upon a careful treatment of
the exchange symmetry of the state among experimentally accessible and experimentally inaccessible degrees
of freedom. The approach we present allows a formalization of the notion of indistinguishability and can be
implemented easily using currently available experimental techniques. Our work is of direct relevance to
current experiments in quantum optics, for which we provide a specific implementation.
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I. INTRODUCTION

The predominant paradigm of quantum information sci-
ence is the qubit, a quantum two-level system. This useful
notion has allowed many important concepts to be abstracted
away from particular physical implementations, revealing an
underlying structure in the way that information is manipu-
lated and measured in quantum mechanics. Qubits are usu-
ally realized in some degree of freedom of a physical system.
In many systems such as trapped ions and nuclear spins, the
physical particles are inherently separated and the quantum
statistical nature of the particles, be they bosons or fermions,
can safely be neglected. In other systems including quantum
optics, degenerage atomic gases, optically trapped atoms,
and quasiparticles such as polaritons, the quantum statistics
of the particles can often play a role in the system’s behavior.
Sometimes the quantum statistical behavior can be very use-
ful, as in the Hong-Ou-Mandel �1� effect in quantum optical
systems which is often used to postselectively implement
interactions between photons �2�.

If a quantum information experiment is set up so that each
particle is uniquely different in some observable degree of
freedom—photons occupying different arms of an interfer-
ometer, say, or ions in different locations in a trap—then the
quantum statistical properties of the particles generally do
not play a role. Characterization of the quantum state of such
systems proceeds according to the well-known procedures of
quantum state tomography �3�. The influence of external, un-
observed degrees of freedom can be accounted for in this
characterization and results in a density matrix displaying
less-than-perfect coherence.

Recently, there have been several proposals and experi-
ments involving multiple photons occupying a single spa-
tiotemporal mode and two polarization modes �4–6�. Such
systems do not fit into the qubit paradigm and quantum sta-
tistics plays an integral part in their behavior. The states of
these systems are of enormous interest �7� because they have
been shown to exhibit phase super-resolution in interferom-

etry �5,8�, to be capable of beating the diffraction limit in
lithography �8–10�, and to open up new avenues in quantum
imaging �11,12�. They have also been proposed as a conve-
nient qutrit useful in certain quantum cryptography and
quantum information applications �6,13�. While, to date,
photon systems are the only ones where such states can be
created, recent developments in optical lattices �14� and else-
where promise to open up similar opportunities in other
physical systems in the near future.

Because these states involve multiple occupancy of a
single mode, the quantum statistical nature of the particles is
crucial to understanding their behavior. Usually in consider-
ing such states the formalism of creation and annihilation
operators on the field mode is used. For example, the N00N
state �N ,0 :0 ,N� �8� can be written as

1
�2�N + 1�!

�a1
†N + a2

†N��0� , �1�

where the subscript indexes the distinct modes. When such
states are created experimentally, a central task is to recon-
struct a faithful characterization of the state from measure-
ment statistics.

Ideally one would prefer to assume nothing about the
source of the quantum states, treating it as a “black box,” and
assume only that one has a set of measurements that one is
able to accurately perform on a particular degree of freedom
such as polarization. The reconstruction of the state from the
measurements is called quantum state tomography and it has
been an essential tool in quantum state engineering, quantum
information science, and quantum computing �3�. If the
source produces an indefinite number of photons then con-
tinuous variable homodyne tomography methods can be ex-
tended to these states �15�. If the number of photons is
known, though, it is simpler to extend the quantum state
tomography techniques developed for qubits to systems of
multiply occupied modes, as was done, for example, by
Bogdanov et al. �16�.

In their procedure one creates a basis of states from cre-
ation operators for a single spatiotemporal mode and the po-
larization modes that the state can occupy. For the two-
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photon case that they studied their basis states were
�aH

† aH
† ,aH

† aV
† ,aV

†aV
†	, all taken to act on the vacuum.

There is a subtle assumption in writing the states this way
that runs counter to the purpose of quantum state tomogra-
phy. The notation for the states assumes that the raising op-
erators act on the same spatiotemporal mode, but this is not
something that can be experimentally verified from the po-
larization measurements performed in the tomography. In-
deed since the experiment in �16� involved combining differ-
ent spontaneous parametric downconversion sources into a
single spatial mode there is every reason to think that the
different phase-matching conditions in the two downconver-
sion crystals would result in the raising operators for each
source acting on a somewhat different frequency-time mode.

If the two raising operators do indeed act on different
spatiotemporal modes then there can be a direct impact on
polarization measurements since the amplitudes for different
polarizations will carry the bosonic enhancement factors that
one obtains by multiplying raising operators on the same
mode. In principle one could attempt to fully characterize the
spatial and temporal degrees of freedom to obtain the correct
raising operator for each photon. Such a full characterization
is technically very difficult, if not impossible. Moreover, full
information about the spatiotemporal modes is likely not
even desirable when it is ultimately polarization that is the
degree of freedom of interest.

What one would like is a “black box” tomography tech-
nique for reconstructing the state in terms of polarization
measurements only. The resulting description of the state
ought to somehow include the influence of all unobserved
degrees of freedom on polarization measurements. It ought
also to correctly predict the outcome of any polarization
measurement one wishes to perform so as to be considered
“tomographically complete.” This paper develops and ana-
lyzes exactly such a technique.

To our knowledge the problem of characterizing the state
of multiply occupied modes has only arisen experimentally
in photonic polarization systems �see, however, the Note
Added at the end of this manuscript�. While we will concen-
trate on this specific realization, our method is completely
general and can be applied to any of the aforementioned
physical systems in which quantum statistics play a role,
either bosonic or fermionic. In order to have the discussion
that follows reflect this generality we will define some tech-
nical language. We will call the information-carrying degree
of freedom in such systems the “visible” degree of freedom.
In the case of photonic polarization systems such as in �5,16�
this is polarization. All other degrees of freedom to which the
apparatus is not sensitive we call “hidden.” The description
of the state that results from our state tomography procedure
we label the “accessible” density matrix �acc.

While inspired by practical problems encountered in our
attempts to characterize quantum states, our approach is in-
teresting in its own right as an exploration of how adding
distinguishing information in experimentally inaccessible de-
grees of freedom affects the quantum statistical properties of
states.

The key to our approach is to separate the state explicitly
into hidden and visible parts and to examine the constraints
placed on the visible degree of freedom by the quantum sta-

tistical requirements on the whole state. For photons, the
bosonic statistics require that the whole state be invariant
under exchange of all particle labels. The exchange symme-
try is more easily studied in state notation rather than raising
operator notation, so we will use state notation throughout
this paper. This can be confusing at first because often in the
literature states are written in a way that does not make the
exchange symmetry explicit. For example, one might write
the polarization state of two photons as �HV�, which is not
obviously exchange symmetric as it must be for bosons. In
such a description the order of the two labels implies the
existence of a degree of freedom other than polarization, say
different spatial modes a and b. a and b could be, for ex-
ample, the distinguishable output angles of downconverted
photons in spontaneous parametric downconversion. The full
bosonic state needs to be symmetric under the exchange of
both spatial and polarization degrees of freedom, and would
be written as ��1�= ��HV��ab�+ �VH��ba�� /�2. Note that the
exchange of both the spatial and polarization labels leaves
the state invariant, but the state has the property that one of
the spatial modes, a, is always correlated with one polariza-
tion, H, and the other mode b is always correlated with po-
larization V. In cases where the individual photon polariza-
tions can be treated as qubits because a and b are
distinguishable paths, this notation is redundant because no
use is made of the permutation properties of the whole state.
For this reason it is usually preferable to write the state as
�HaVb� which denotes the correlation between spatial and
polarization modes without making explicit the bosonic ex-
change symmetry. It should be understood that in all circum-
stances this way of writing the state is simply a shorthand for
��1�.

We emphasize this point because we wish to discuss situ-
ations where the overall exchange symmetry of the state is
important and the notation of ��1� becomes very useful.
There are situations where the spatial modes in the above
example are hidden, that is to say they are not resolved by
the detection apparatus. This might occur if the photons were
nearly collinear, but with a small angle between them. A
multimode collection system such as a lens focusing onto a
photodetector significantly larger than the optical wavelength
would have no means of distinguishing these two slightly
different spatial modes. More generally, there could also be
unresolvable hidden time-frequency modes that can become
occupied due to uncorrected delays or dispersion. Since the
nanosecond-scale resolution of most single-photon detectors
is much longer than the femtosecond time scale of pulsed
experiments, different time-frequency modes are generally
not resolved by detectors. In nonphotonic systems there are
also myriad reasons why a given degree of freedom might be
hidden from experimental measurements. When a hidden de-
gree of freedom is different for two particles we sometimes
say that the particles are distinguishable in principle but not
in practice.

We can express our ignorance about the state of these
hidden degrees of freedom by tracing over them. This leaves
a density matrix observable only in the visible degrees of
freedom that we call the accessible density matrix,
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�acc = Trhid��� . �2�

For example, if in the state ��1� the modes a and b cannot be
resolved then we trace over them to obtain the accessible
density matrix

�acc = Trhid���1�
�1�� �3�

=
1

2
�HV�
HV� +

1

2
�VH�
VH� . �4�

This is a mixed state of polarization. If the two photons had
occupied the same spatial mode so that the state was
��HV��aa�+ �VH��aa�� /�2, then tracing over the spatial de-
gree of freedom would have yielded a pure accessible den-
sity matrix in polarization 1

2 ��HV�+ �VH���
HV�+ 
VH��.
Since these two situations yield different density matrices on
the polarization degree of freedom they can be distinguished
by polarization measurements alone. The particular feature
that distinguishes them is the antisymmetric part, expressed
as the population of the singlet state ��HV�− �VH�� /�2. The
singlet state projection makes up one element of the acces-
sible density matrix. It is a measurable quantity even when
the experimental apparatus cannot tell the two photons
apart. As we discuss extensively in �17�, for two photons the
presence of an antisymmetric component of the polarization
state implies the existence of one or more unobserved de-
grees of freedom that are different for the two particles and
correlated in just the right way to result in the correct
bosonic exchange symmetry for the whole state. This shows
that differences in the hidden degrees of freedom may be
inferred from measurements performed only on the visible
degrees of freedom.

The remainder of this paper will examine how the acces-
sible density matrix can be calculated and measured for an
arbitrary number of particles and for a visible degree of free-
dom with an arbitrary, finite number of levels. In Sec. II we
will begin by determining how many elements are contained
in a general accessible density matrix as a function of the
dimensionality of the visible degree of freedom and the num-
ber of particles. This determines both how many linearly
independent measurements can be made and how many
numbers are needed to calculate all possible expectation val-
ues on the visible degrees of freedom. Section III will put the
discussion of the Sec. II on a firm group-theoretical footing.
In Sec. IV we examine how the theory applies to the case of
three-photon polarizations. In Sec. V we discuss how the
accessible density matrix can be measured and work through
a specific numerical example with three photons. Finally, in
Sec. VI we discuss what claims can be made about the in-
distinguishability of the particles from a knowledge of the
accessible density matrix.

II. THE FORM OF THE ACCESSIBLE DENSITY MATRIX

In this section we develop the structure of the accessible
density matrix and show how many independent measure-
ments can be done on a visible degree of freedom. We will
start by assuming a two-level degree of freedom such as
photon polarization and then extend the result to a d-level

degree of freedom that could, for example, be the Laguerre-
Gauss spatial mode �13� of photons.

Our approach is to consider the Hilbert space of the pho-
tons as a tensor product of a Hilbert space describing the
visible degrees of freedom and another describing the hidden
degrees of freedom. Consider N photon polarizations. Polar-
ization transformations ei�x�x+y�y+z�z� �where ��x ,�y ,�z	 are
the Pauli matrices� give a realization of the group SU�2�.
Since SU�2� acts irreducibly on the photon polarization, we
can view the photons as spin one-half systems; that is, they
transform according to the j= 1

2 irrep of SU�2�. If all systems
are distinguishable in practice, so that each photon is in a
separate mode that can be experimentally distinguished �dif-
ferent rails of a multirail interferometer, say�, then the di-
mension of the accessible space is the full dimension 2N and
the number of accessible density matrix elements is 22N. This
is the familiar situation of quantum state tomography as ap-
plied to photon polarization �18�, trapped ions, and other
qubit systems. We would like to know the comparable num-
ber of density matrix elements when the photons are not
experimentally distinguishable because the degrees of free-
dom that might distinguish the particles cannot be resolved
experimentally. We note that in this case 22N provides an
upper bound on the number of elements in the accessible
density matrix.

The following decomposition of the N-polarization Hil-
bert space will be useful. Unitary polarization operations act-
ing on the whole state can be decomposed into “angular
momenta” j �irreducible representations of SU�2�� according
to the well-known Clebsch-Gordan series; for example,

1

2
�2 = 1 � 0,

1

2
�3 =

3

2
�

1

2
�

1

2
,

1

2
�4 = 2 � 1 � 1 � 1 � 0 � 0. �5�

Notice that if N�2, certain j values occur more than once;
they are said to have multiplicity. However the largest j al-
ways occurs only once, since there is only one way to couple
the spin-1

2 particles to maximum j= N
2 . The states in the N

2
space are always totally symmetric under permutation of the
N polarizations. If they are indistinguishable in principle,
i.e., their hidden degrees of freedom are in the same state,
then these totally symmetric visible states are the only ones
available to the whole state by the restriction that it have
bosonic symmetry. Since the dimension of a spin j space is
2j+1, in this case the dimension is 2 N

2 +1=N+1 and the
number of accessible density matrix elements is �N+1�2.
Previous tomography schemes such as the one used in �6,16�
worked under the tacit assumption that the photons were
indistinguishable in principle, and so described the polariza-
tion only in terms of these j=N /2 states.

For experimentally distinguishable particles we see that
the number of density matrix elements grows exponentially
as 22N with the number of particles. And as we have just
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shown, for particles indistinguishable in principle, the num-
ber of elements grows polynomially as �N+1�2 in the num-
ber of particles. How does the number grow when the par-
ticles are distinguishable in principle, but not in practice? In
this case, we must trace out the hidden degree of freedom in
order to express our ignorance about them, but in doing so
we are forced to erase the ordering information of the N
systems. This information is encoded both in the phase be-
tween different terms in the Clebsch-Gordan decomposition
and, when multiplicity is greater than one, in how population
is distributed among the orthogonal eigenvectors of the mul-
tiplicity space; in terms of operations, the unitary polariza-
tion transformations take states with angular momentum j to
other states with angular momentum j in the same multiplic-
ity space, while permutations take states from one multiplic-
ity space to a different multiplicity space of the same j.

Sectors of states all carrying the same value of j form
�2j+1� by �2j+1� block-diagonal submatrices along the
main diagonal of �acc. SU�2� operations rotate states within
these blocks and permutations of the polarization labels
move population from one block to another with the same
value of j:

�acc = �
� � � � SU�2� acts

� � � � within

� � � � blocks

� � � �

SN acts � �

between↗ � �

blocks↘ � �

� �

� . �6�

This explains why the highest j space is symmetric—the
space has multiplicity one, and so must be invariant under
permutations.

When we trace out the hidden degrees of freedom, coher-
ences between states of different j as well as all information
about the state within the multiplicity spaces are destroyed,
leading to a density matrix that is block diagonal. A conse-
quence is that populations in multiple copies of the same j
are averaged, yielding multiple copies of the same density
submatrix. Thus the accessible density matrix consists of
only one independent density submatrix for each j in the
Clebsch-Gordan decomposition with zero coherence between
submatrices. The number of independent accessible density
matrix elements is therefore


j=0 or 1/2

N/2

�2j + 1�2 = �N + 3

3
� . �7�

Thus the number of density matrix elements scales polyno-
mially in the number of particles, at least for two-level sys-
tems such as polarization.

When the visible degree of freedom has d distinct levels
the situation is completely analogous, with the Clebsch-
Gordan series generalized to SU�d�. The space of N d-level
systems decomposes into irreps � of SU�d� where now the

label �= ��1 ,�2 , . . . ,�d�; i�i=N, �i��i+1 is a regular parti-
tion of N �a Young diagram�. Of course, if the systems are
experimentally distinguishable then the entire dN dimen-
sional Hilbert space is accessible and the number of acces-
sible density matrix elements is d2N which gives the �expo-
nential� upper bound. The irrep �N ,0 ,0 , . . . ,0� �analogous to
highest j in the SU�2� case� occurs only once in the decom-
position of the Hilbert space and so is always symmetric
under permutations. The dimension of this �and indeed any
SU�d�� irrep is given by the Weyl character formula �19�

dim��� = �
1�i	j�d

�i − � j + j − i

j − i
. �8�

If the qudits are indistinguishable in principle, then again
they are restricted to the totally symmetric subspace with
�1=N and all other � j =0; the Weyl formula gives

�
j=2

d
N + j − 1

j − 1
= �N + d − 1

N
� �9�

for the dimension, so the number of accessible density ma-
trix elements is � N+d−1

N �2.
The unitary and permutation group actions are the same

as in the SU�2� case. SU�d� acts within irrep spaces � and SN
acts “across” multiplicities. When the distinguishing degrees
of freedom are hidden, the ordering information of the sys-
tems is lost and the permutation group action is trivialized,
leaving only one “copy” of each SU�d� irrep space for each
�. The dimension of the accessible space is therefore �20�


�

�
1�i	j�d

�i − � j + j − i

j − i
= �N + d2 − 1

N
� , �10�

and is always a polynomial in N.

III. GROUP THEORETICAL CONSTRUCTION

Here we will construct explicitly the most general totally
symmetric state of a system of particles with both visible and
hidden degrees of freedom, which we use to justify the
claims made in the last section. Let the Hilbert spaces for
these two be denoted Hvis and Hhid, respectively. Assuming
that there are N particles, the same permutation group SN acts
on both of these spaces. Decompose each space into irreps �
of SN and consider their tensor product, the space of all
available states:

H = � �
�,m

H�,m
vis � � � �

��,m�
H��,m�

hid � , �11�

where m labels the multiplicity of irrep �. Let 
 index an
orthonormal basis for each irrep space H�,m; the basis states
are labeled

��m
�vis���m�
��hid, �12�

where m=1,2 , . . . ,mult H� runs over the multiplicity of ir-
rep � in the Hilbert space, and 
=1,2 , . . . ,dim H� runs over
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the dimension of irrep �. For readers familiar with Schur-
Weyl duality, m indexes a basis for an irrep � of the unitary
group action on each particle, and 
 indexes a basis for an
irrep � of the permutation group action SN. The fact that the
same irrep label can be used for both group actions is why
they are “dual.”

Now the problem of finding totally symmetric states in H
is a coupling problem, completely analogous to coupling an-
gular momentum states to arrive at states of angular momen-
tum zero. In fact, it can be shown from the rules for tensor
products of Young diagrams that the totally symmetric irrep
�= �N� of SN only occurs in a tensor product � � �� if ��
=�, and moreover that �N� only occurs once, i.e., it has mul-
tiplicity one �21�. The analogy is that the spin zero irrep of
the rotation group only occurs in the tensor product j � j� if
j�= j, and it occurs only once, i.e., in order to couple two
angular momenta to j=0, we know the two angular momenta
must be equal. Note also that �N� is always one dimensional,
so there is one totally symmetric state for each �, unique up
to multiplicity.

Given an irrep � and two multiplicity sectors m ,m� in H,
this unique totally symmetric �unnormalized� state ��mm�� is
an equally weighted superpositon of the states of each factor
in the tensor product

��mm�� � 

=1

dim H�

��m
�vis��m�
�hid �13�

�which is a state on the combined space, not to be confused
with the uncombined visible and hidden states, despite the
fact that they both have three labels�. The most general to-
tally symmetric pure state in H is therefore an arbitrary lin-
ear combination of these,

��N� = 
�


mm�

Cmm�
� ��mm�� . �14�

The same analysis goes through for totally antisymmetric

states. The unique coupling is � � �̄, where �̄ is the irrep
conjugate to �. There is a restriction, however, given by the
dimension of the Hilbert space for each particle, which is
again encoded in the rules for Young diagrams. For example,
there is no totally antisymmetric state of three indistinguish-
able spins.

Now we can define what we mean by distinguishable and
indistinguishable. Expand ��N� in the physical basis of N
particles. Those states in the expansion where the hidden
degrees of freedom for all N particles are in the same state
are indistinguishable in principle. This hidden state is totally
symmetric by definition, and by the coupling mentioned
above it follows that the visible state must also be symmet-
ric. Since �N� is one dimensional, there is only one term in
the sum over the basis indexed by 
 above, and the total
state is separable across the hidden and visible subspaces.
Thus, tracing out the hidden space does not alter the visible
state, and since it can only lie in �N�, the accessible density
matrix is restricted to the totally symmetric subspace, as ex-
pected.

Those states in the expansion where the hidden degrees of
freedom for all N particles are in distinct orthogonal states
are distinguishable in principle. There is a large amount of
entanglement across the hidden and visible subspaces. If the
hidden modes are inaccessible in practice, then we arrive at
the accessible density matrix by tracing out the hidden
modes. Using Eq. �13�, one finds

�acc = Trhid���N�
�N�� �15�

=
���


���� 
��mm�nn�

Cmm�
� Cnn�

�� ��mm��
�nn�������hid

�16�

= 
�mm�

�mm�
� 




��m
�vis
�m�
�vis. �17�

One therefore concludes that �mm�
� =nCmn

� C
m�n

�* affords the

only freedom in the accessible density matrix, giving only
one value per irrep � and pair of multiplicity indices m ,m�.
The trace erases coherences between different � sectors on
account of those sectors being orthogonal. We also see that
the equally weighted average over 
 which was necessary
for total symmetry has destroyed any independence between
the multiplicity spaces—we obtain the same copy of the �
submatrix for all 
, and so we effectively have one subma-
trix for each �. From the point of view of accessible mea-
surements the state space has “collapsed,” although if the
particles were distinguishable in one of the hidden degrees of
freedom, then the ability to measure that degree of freedom
would restore the Hilbert space to its full size.

The measurement of the accessible density matrix ele-
ments Cmn

� allows one to infer the existence of hidden differ-
ences among the particles making up the state. To see this,
consider that the hidden and visible spaces must both trans-
form under the same permutation group SN. If we decompose
the visible and hidden spaces separately under this common
group action, we arrive at visible states labeled by SN irreps
� and hidden states labeled by SN irreps ��. Again, coupling
visible and hidden states to make totally symmetric states is
completely analogous to coupling angular momentum states
to make angular momentum j=0. It follows that �� must
equal �. Thus, if a visible state is measured to be in a state of
permutation symmetry � that is not totally symmetric, one
can infer that there existed a hidden state of permutation
symmetry � to which it was coupled, implying in turn the
presence of multiple orthogonal states for the hidden degrees
of freedom. These hidden differences serve to make the pho-
tons distinguishable and explain why the coherences between
different � �j for SU�2�� disappear when the hidden states are
traced, simply because states of different � are orthogonal.

IV. EXAMPLE: THE ACCESSIBLE DENSITY MATRIX
FOR THREE PHOTON POLARIZATIONS

To make the discussion of the previous sections more con-
crete we will focus on the particular example of three photon
polarizations. This example is experimentally relevant to pre-
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viously published work from our group on N00N states �5�,
and to ongoing work on making other states in the same
three-photon polarization Hilbert space.

The Clebsch-Gordan decomposition for three spin-1
2 par-

ticles was given in Eq. �5�. We can explicitly write out the
states of this decomposition. Each state is labeled by a pair
of angular momentum quantum numbers j and m. The j
=3 /2 states that are completely symmetric under permuta-
tions are

�3/2,3/2� = �HHH� , �18�

�3�3/2,1/2� = �HHV� + �HVH� + �VHH� , �19�

�3�3/2,− 1/2� = �VVH� + �VHV� + �HVV� , �20�

�3/2,− 3/2� = �VVV� . �21�

While the j=1 /2 space has multiplicity 2. The two spaces
are spanned by

�6�1/2,1/2�1 = �HHV� + �HVH� − 2�VHH� , �22�

�6�1/2,− 1/2�1 = �VVH� + �VHV� − 2�HVV� , �23�

and

�2�1/2,1/2�2 = �HHV� − �HVH� , �24�

�2�1/2,− 1/2�2 = �VVH� − �VHV� . �25�

�1 /2,1 /2�1 transforms into �1 /2,1 /2�2 under permutation
operations and �1 /2,−1 /2�1 transforms into �1 /2,−1 /2�2 in
exactly the same way. However, polarization measurements
cannot distinguish �1 /2,1 /2�1 from �1 /2,1 /2�2 or �1 /2,
−1 /2�1 from �1 /2,−1 /2�2. All they can do is determine the
average of the two-by-two density matrix over the space
spanned by �1 /2,1 /2�2 and �1 /2,1 /2�1 and the density ma-
trix over the space spanned by �1 /2,−1 /2�2 and �1 /2,
−1 /2�1. From the point of view of polarization measure-
ments, the information contained in the two spaces collapses
into a single effective j=1 /2 sector of �acc.

The accessible density matrix contains � 3+3
3 �=42+22=20

elements. When distinguishing information is hidden, the
best characterization of the state of three photon polariza-
tions is the determination of these 20 elements.

V. MEASURING THE ACCESSIBLE DENSITY MATRIX

We have shown that elements of the accessible density
matrix offer the most complete description of the state of N
particles when one degree of freedom of the particles is vis-
ible and others are hidden. It is not clear from our discussion
so far that it is possible to measure �acc using available ex-
perimental tools. In this section we will show that in the case
of polarization it is indeed possible to measure �acc with a
simple experimental device. This device, shown in Fig. 1,
involves four different optical elements, a quarter wave plate,
a half wave plate, a polarizing beamsplitter �PBS�, and
number-resolving photon counters �such as the one demon-

strated in �22�� at the two ports. The multiphoton polarization
state passes through the two wave plates and on to the PBS
where it is split into H and V components. The number of
photons in each port is then measured with the number-
resolving single photon detector. Such a device is completely
analogous to the Stern-Gerlach device for measuring spin
projections.

If there are N photons in the state then there are N+1
different ways that these can split between the H and V ports
of the polarizing beamsplitter. When the photons leaving
each port are counted, the measurement implemented will
be a convex sum of projectors onto all states having that
number of horizontal and vertical photons. For example,
PN= �HH¯H�
HH¯H�, PN−1= ��VH¯H�
VH¯H�
+ �HV¯H�
HV¯H�+ . . . �, and so on. In angular momentum
language PN is a pure projector onto the state j=N /2, m
=N /2. By changing the angles of the wave plates one can
“orbit” this measurement in the j=N /2 space thereby obtain-
ing all the density matrix elements lying in the j=N /2 space.
All j=N /2 matrix elements can be determined by measuring
only rotated versions of PN. PN−1 is a convex sum of projec-
tors onto all states with m=N /2−1. Since the j=N /2, m
=N /2−1 projection can be determined from rotated versions
of PN, we can subtract this part from PN−1 leaving a projector
with support only in the j=N /2−1 subspace. By changing
the waveplate angles one can use this reduced operator to
completely characterize the j=N /2−1 space. One can then
subtract the j=N /2 and j=N /2−1 terms from the m=N /2
−2 operator, and so on. In this way all the terms in the
accessible density matrix can be measured.

It should be noted that this is not the only way to measure
the accessible density matrix. In fact any set of linearly in-
dependent measurements equal in number to the number of
accessible density matrix elements as calculated from Eq. �7�
can be used to reconstruct the accessible density matrix.
Standard inversion techniques such as linear inversion, maxi-
mum likelihood fitting �18� and convex maximum likelihood
fitting �23� can be used to obtain �acc from an experimental
dataset.

In this section we work through an example of how our
techniques might be applied in a three-photon polarization
experiment. We consider an experimental situation similar to
the one used to create the state 1

�2
��3H ,0V�+ �0H ,3V�� in Ref.

�5�. There three photons were combined on a beamsplitter

FIG. 1. �Color online� Apparatus for measuring the accessible
density matrix for N photon polarizations. The state �� is sent into
a quarter wave plate �QWP� and half wave plate �HWP� followed
by a polarizing beamsplitter �PBS�. Number resolving photon
counters count the number of vertical photons NV and the number of
horizontal photons NH.
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and postselection was used to isolate those instances where
all three photons left from the same port of the beamsplitter.
If all the photons were indistinguishable, and each photon
was set to the correct polarization, then by this procedure the
entangled state �3,0 :0 ,3�= 1

�2
��3H ,0V�+ �0H ,3V�� would have

been the result. This comes about because of the state is
factorizable in raising operators through the relation:

�aH
†3

+ aV
†3

� = �aH
† + aV

†��aH
† + e2�i/3aV

†��aH
† + e4�i/3aV

†� .

�26�

Note that the right side is a product of polarization raising
operators all acting on the same spatiotemporal mode.

In that experiment, however, two of the photons were pro-
duced by a spontaneous parametric downconversion process
and the third was produced by an attenuated laser pulse. It is
to be expected that these different sources might produce
photons with hidden differences in their time-frequency
wave functions. In principle such differences can be reduced
by filtering, but let us suppose that filtering is insufficient,
resulting in the mode of the third photon having only a 50%
overlap with the mode of the other two photons, which are
identical to one another. We can model this by replacing the
raising operators in the third bracket in Eq. �26� with opera-
tors cH/V

† = 1
�2

�aH/V
† +bH/V

† �, where b† is a creation operator for
a mode b orthogonal to the mode of a for which a† is the
raising operator. The 50% overlap is chosen here to keep the
calculation simple. For a more general situation one can re-
peat the analysis using cH/V

† =cos �aH/V
† +sin �bH/V

† , where � is
an angle parametrizing the degree of overlap.

Inserting this substitution into Eq. �26� we obtain the ex-
pression

1
�11

�aH
† + aV

†��aH
† + e2�i/3aV

†��cH
† + e4�i/3cV

†�

=
1

�11
�aH

†3
+ aV

†3
� +

1
�22

�aH
†2

bH
† + aH

† aV
†bH

† �1 + e2�i/3�

+ aV
†2

bH
† e2�i/3 + aH

†2
bV

†e4�i/3 + aH
† aV

†bV
†�1

+ e4i�/3� + aV
†2

bV
†� . �27�

Our goal is to write the state as an accessible density matrix,
purely in terms of polarization measurements that can be
done without knowing anything about the differences be-
tween the hidden time-frequency degrees of freedom. To ar-
rive at such an expression we will need to trace over the
orthogonal hidden modes a and b. To do so the expression
must first be rewritten in a first-quantized notation that clari-
fies the imposed separation between the hidden and visible
degrees of freedom. The full expression is too long to write
here, but rewriting one of the terms should be enough to give
a feel for the calculation.

Consider the term aH
† aV

†bV
† . In rewriting this in first-

quantized form we need to use tensor products of state vec-
tors on the hidden and visible degrees of freedom, keeping in
mind that the indistinguishability of the particles means that
any one of the three can be in mode b. We write it as follows:

aH
† aV

†bV
† =

1
�6

���HVV� + �VHV���aab� + ��HVV� + �VVH��

��aba� + ��VHV� + �VVH���baa�� . �28�

The trace over the hidden degrees of freedom produces an
incoherent sum over the density matrices for each bracketed
polarization state since �baa�, �aab�, and �aba� are orthogo-
nal. The resulting accessible density matrix describing this
term is

�acc = �
0 0 0 0

0 0 0 0

0 0 2/3 0

0 0 0 0

0 0

0 1/6
0 0

0 1/6

� . �29�

In the same way we can obtain the accessible density matrix
for the entire state in Eq. �27�,

�acc = �
0.3636 0 0 0.3636

0 0 0 0

0.0 0 0 0

0.3636 0 0 0.3636

0.0682 − 0.0341 − 0.0590i

− 0.0341 + 0.0590i 0.0682

0.0682 − 0.0341 − 0.0590i

− 0.0341 + 0.0590i 0.0682

� . �30�
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Note that the partial distinguishability of the third photon
results in 27% of the population being in the j=1 /2 spaces
instead of the j=3 /2 spaces. The fidelity �24� of this state to
the desired state �3,0:0,3� is 0.7273. The distinguishability of
one of the photons can therefore make a significant differ-
ence in the overall quality of the state.

So far we have assumed that we know the exact behavior
of the hidden degrees of freedom for our state. Let us now
instead assume the experimental situation in which we can
do polarization measurements but do not know about the
hidden degrees of freedom making one of the three photons
different from the other two. We will use a detection appa-
ratus such as the one in Fig. 1. The quarter and half wave
plates are set to the angles listed in the first two columns of
Table I. This results in a number of detections for each mea-
surement outcome as listed in the last four columns. The
numbers were generated via Monte Carlo simulation of
Poisson-distributed data arising from the density matrix in
Eq. �30�. It was assumed that on average 10 000 three-
photon states were measured for each wave plate setting.

The set of measurement operators in Table I is overcom-
plete, as can be verified by explicit calculations of the dimen-
sion of the vector space they span. The 48 projectors span a
space of 20 linearly independent dimensions. As predicted by
Eq. �7�, this is the maximum number of independent measur-
able operators when polarization is the only visible degree of
freedom.

These twenty parameters can be arranged to form an ac-
cessible density matrix in the form of Eq. �6�, with the 20
elements broken into a 16-element symmetric j=3 /2 sub-
space and the remaining four elements representing an aver-
age over the two j=1 /2 subspaces.

Once this form is assumed for the accessible density ma-
trix, the data can be fit to it using maximum-likelihood fitting

�23�. To perform the fit we use the free convex optimization
package SeDumi �25� for Matlab. In order to measure the
likelihood that a given density matrix gave rise to the dataset
we calculate the logarithmic likelihood �23�. The density ma-
trix that maximizes this function given the outcomes listed in
Table I is

.ρacc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.3626 0.0057+0.0033i 0.0001−0.0003i 0.3597+0.0010i

0.0057−0.0033i 0.0036 −0.0006−0.0028i 0.0023−0.0040i

0.0001+0.0003i −0.0006+0.0028i 0.0023 0.0013−0.0023i

0.3597−0.0010i 0.0023+0.0040i 0.0013+0.0023i 0.3601

0.0686 −0.0322−0.0597i

−0.0322+0.0597i 0.0670

0.0686 −0.0322−0.0597i

−0.0322+0.0597i 0.0670

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�31�

This can be seen to be very close the density matrix in Eq.
�30�, with the difference accounted for by the statistical noise
in the measurements.

The measured nonzero population in the nonsymmetric

subspace indicates the presence of hidden distinguishing in-
formation. The detection of this population would allow an
experimentalist to infer the presence of a hidden degree of
freedom �in this case the time-frequency degree of freedom�

TABLE I. Simulated results of measurement of the state
�30:03�= 1

�2
��3H ,0V�+ �0H ,3V�� when the spatiotemporal wave

packet of one of the photons has a 50% overlap with that of the
other two. The first two columns give angles for the wave plates,
and the last four give the number of counts observed for each of the
four outcomes of a number-resolving measurement. These out-
comes are labeled by the value of m with the understanding that
they include contributions from all spaces with j�m. For example,
the m=1 /2 column corresponds to the measurement operator
�HHV�
HHV�+ �HVH�
HVH�+ �VHH�
VHH�.

QWP HWP 3 /2 1 /2 −1 /2 −3 /2

0° 0° 3645 1459 1385 3586

15° 0° 2201 3953 1006 2703

30° 0° 275 7699 160 1932

45° 0° 905 5260 2904 904

0° 12.25° 2078 2042 3834 1975

15° 12.25° 2759 2388 2185 2673

30° 12.25° 2105 2693 4174 1108

45° 12.25° 420 6700 1459 1272

0° 22.5° 910 2741 5163 888

15° 22.5° 892 4226 3021 1899

30° 22.5° 1337 3838 3207 1550

45° 22.5° 1914 2043 6069 0
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distinguishing one of the photons from the other two. It will
also be noted that to the extent that the photons are indistin-
guishable, they are indeed in the desired state. In other
words, the errors have arisen solely from the distinguishing
information, and not, say, from unknown polarization rota-
tions. This is all valuable information useful in diagnosing
problems with the experiment.

It should be emphasized that there is nothing special
about the particular wave plate settings used in this example.
The important thing is that the resulting measurement opera-
tors fully span the space of accessible density matrix ele-
ments. If this is the case then the maximum-likelihood prob-
lem is well defined and guaranteed to converge to the unique
solution �23�.

VI. USING THE ACCESSIBLE DENSITY MATRIX
TO INFER FUNDAMENTAL DISTINGUISHABILITY

One of the main reasons for characterizing an experimen-
tally generated polarization state is to substantiate claims that
a particular quantum state of light has been achieved. For
nearly all quantum protocols only the j=N /2 symmetric
states will be useful since all the other states involve un-
wanted correlations with the hidden degrees of freedom
which, by definition, cannot be manipulated. Usually one
makes the claim that all the photons in the state are “indis-
tinguishable” in the hidden degrees of freedom, meaning that
they all occupy the same hidden state. Our technique pro-
vides the first general method for verifying this claim.

If, when the accessible density matrix is measured, all the
population is found to be in the symmetric space then it must
be true that the hidden degrees of freedom are also in sym-
metric states. If this were not true then the overall state could
not have the requisite bosonic symmetry under permutation.

If, in addition, the purity of the visible state is unity then
the hidden degrees of freedom are unentangled with the vis-
ible degrees of freedom. This means that all measurements
on the visible degrees of freedom will be consistent with the
photons all being in the same single-particle hidden state.
This being the case, it makes sense to call the photons indis-
tinguishable in the conventional sense of the word.

This definition of indistinguishability is entirely consistent
with the one proposed by Liu and co-workers �26,27�, but is
more flexible because it is expressed in the density matrix

formalism which transforms in a predictable way under vari-
ous operations one might wish to perform on the state.

VII. CONCLUSIONS

We have outlined a procedure for measuring the state of a
system of particles spread over several experimental modes
which may be entangled with hidden degrees of freedom.
Our technique should be used to justify claims of production
of indistinguishable photons. It is the most complete descrip-
tion of the state possible when some degrees of freedom are
hidden, and in particular it gives a more complete description
of the state than previous characterization techniques such as
those employed in �16,26� or �27�. In addition to being com-
plete, this characterization also has the advantage of produc-
ing a density matrix that can be used in the usual way to
predict the outcome of all measurements. We expect this
method to become the standard means of characterizing
states of a fixed number of experimentally indistinguishable
photons just as quantum state tomography �18� has become
the standard means of characterizing distinguishable pho-
tons. Indeed since the number of accessible measurements
for experimentally indistinguishable photons only grows
polynomially with the number of photons in the state, our
technique should prove useful for much larger systems of
photons than state tomography does for distinguishable pho-
tons.

Note added. Recently it came to our attention that a simi-
lar theoretical tomographic structure has been developed for
spins �28�.
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