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We rigorously prove that when a bounded light beam is incident on an interface, a part of its plane wave
components propagate according to the reverse mode of the ordinary reflection and transmission. Based on the
two propagation modes, we propose the definition of the generalized reflection and transmission. With this
definition, we solve the controversy about the Goos-Hänchen shift approaching the grazing incidence limit, and
release the angular expansion method from the precondition which requires that the beam spread angle should
not exceed the complement of the incident angle. Then the spectrum superposition effect is investigated for the
incidence circumstance whose beam spread angle exceeds the complement of the incident angle.
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I. INTRODUCTION

The reflection of a bounded light beam has been the sub-
ject of numerous studies in the past, and people’s interests
about it are always focused on the nonspecular phenomena in
the reflection. The nonspecular phenomena, namely, the dif-
ferences between actual reflected beams and those predicted
by geometrical optics, generally include four effects: the lat-
eral shift, the focal shift, the angular shift, and the beam
waist modification effect �1�. The four nonspecular effects
have been comprehensively investigated for various multi-
layered structures �2–8�, and for many special incident
angles �such as the Brewster angle �9�, the critical angle
�2,10�, and the resonant angle �11,12��. As much attention
has been directed to light propagation rules in various novel
media recently: beam reflections in negative permittivity me-
dia, negatively refractive media, and left-handed materials
have also been discussed in detail �13–17�.

A method prevalently utilized in these studies is the an-
gular expansion method: the incident beam is regarded as a
collection of plane waves with different propagation direc-
tions by the Fourier transform. These component waves un-
dergo different phase and amplitude changes after the reflec-
tion, and then sum to form the reflected beam. However, a
precondition of utilizing the angular expansion method to
study the beam reflection is that the spread angle of the in-
cident beam should not exceed the complement of the inci-
dent angle �18�. We can examine this precondition in Fig. 1,
which depicts the incidence of a one-dimensional �uniform
in y direction� TE polarized Gaussian beam on an interface
between two media. The incident field is assumed to be
monochromatic with an angular frequency of �1. The media
on both sides of the interface are nonmagnetic, transparent,
homogeneous, and isotropic; their refractive indexes are n1
and n2. The field distribution of the incident beam on the
launch plane z=0 is exp�−x2 /w2� �the time dependence
exp�−i�1t� is suppressed here�, then the spatial frequency
spectrum of the incident beam is f�kx�=��w exp�−w2kx

2 /4�.

Here w and kx are the waist width of the Gaussian beam and
the transverse wave vector, respectively. As shown in Fig. 1,
the symbols � and �0 denote the beam spread angle and the
complement of the incident angle, respectively. Since the
plane wave components whose transverse wave vectors ex-
ceed k0n1 sin �0 do not propagate toward the interface �k0 is
the wave vector in vacuum�, we cannot directly apply
Fresnel’s laws to describing the interactions between these
wave components and the interface. To avoid this problem,
the precondition ���0 is required to be satisfied. Under this
precondition the inequality f�k0n1 sin �0�� f�k0n1 sin ��
� f�0� /e stands, which implies that the plane wave compo-
nents with kx�k0n1 sin �0 are insignificant. However, setting
the precondition of ���0 does not solve the problem radi-
cally.

In fact, the unawareness of the interaction manner be-
tween a part of plane waves and the interface has caused
some problems. A typical one is Lloyd’s mirror. Generally
the precondition ���0 is not satisfied for Lloyd’s mirror, so
people cannot deduce the exact distribution of its output
field. Any investigations about it only rely on ray optics to
determine the propagation directions of the fringes �19,20�.
Another problem is the controversy about the Goos-Hänchen
�GH� shift in the limit of grazing incidence, which has not
received a final result so far. In this paper, we solve these
problems radically by proposing the definition of the gener-
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FIG. 1. Schematic diagram of the incidence of a one-
dimensional Gaussian beam.
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alized reflection and transmission. The paper is organized in
the following manner. First, in Sec. II we indicate that the
plane wave components with kx�k0n1 sin �0 propagate ac-
cording to the reverse mode of the ordinary reflection and
transmission. Then, in Sec. III, we prove this point rigor-
ously, and ultimately derive the expression of the output field
which holds true for the incidence circumstance ���0 �Eq.
�28� in Sec. III�. In Sec. IV, we discuss the GH shift in the
limit of grazing incidence based on the definition of the gen-
eralized reflection. Besides the generalized reflection and
transmission manner, another remarkable characteristic of
the incidence circumstance ���0 is its spectrum superposi-
tion effect. This effect is also investigated in Sec. IV.

II. GENERALIZED REFLECTION AND TRANSMISSION

The ordinary reflection and transmission of the plane
wave are depicted in Fig. 1, where r and t denote the reflec-
tion and the transmission coefficients determined by
Fresnel’s laws, respectively. According to the principle of
reversibility, the reverse mode of the ordinary reflection and
transmission also satisfies Maxwell’s equations and the
boundary conditions on the interface. The reverse mode is
also presented in Fig. 1, where the asterisk denotes complex
conjugate. For a long time no actual physical process has
been found to correspond to it except in the deduction of the
Stokes relation �21�. In fact, the reverse mode is just the
manner in which the interface acts on the plane wave com-
ponents with kx�k0n1 sin �0. We will prove this point in Sec.
III. The ordinary mode plus the reverse mode cover the
propagation behaviors of all plane wave components. There-
fore they form the manner of the generalized reflection and
transmission together. The expressions of the generalized re-
flection and transmission coefficients for the interface in Fig.
1 are

Rg�kx�

= �
n1 cos �1 − �n2

2 − �n1 sin �1�2

n1 cos �1 + �n2
2 − �n1 sin �1�2

, kx � k0n1 sin �0

�n1 cos �1 − �n2
2 − �n1 sin �1�2

n1 cos �1 + �n2
2 − �n1 sin �1�2	*

, kx � k0n1 sin �0,

�1�

Tg�kx�

=�
2n1 cos �1

n1 cos �1 + �n2
2 − �n1 sin �1�2

, kx � k0n1 sin �0

� 2n1 cos �1

n1 cos �1 + �n2
2 − �n1 sin �1�2	*

, kx � k0n1 sin �0,

�2�

where �1�kx� is the generalized incidence angle of the plane
wave component,

�1�kx� = �� − arccos
kx

k0n1
− �0, kx � k0n1 sin �0

arccos
kx

k0n1
+ �0, kx � k0n1 sin �0.
 �3�

Amplitude and phase distributions of Rg�kx� are plotted in
Fig. 2 for several different values of �0. Here the negative
value of �0 means that the interface inclines to the left as
shown in Fig. 1, and then the incident beam axis intersects
with the interface in its inverse extension line. In Fig. 2, the
generalized reflection coefficient Rg�kx� is a bandpass filter-
ing function whose center frequency is located at k0n1 sin �0.
Its amplitude and phase are symmetrical and antisymmetrical
with respect to k0n1 sin �0, respectively. Changing the inci-
dent angle �0 does not affect the profile of Rg�kx�, it just
alters the position of the symmetrical center and then shifts
Rg�kx� wholly. If the precondition ���0 is satisfied, the cen-
ter frequency of Rg�kx� is far away from the distribution re-
gion of f�kx�, so all significant plane wave components
propagate according to the ordinary reflection and transmis-
sion.

III. ANALYTICAL JUSTIFICATION

In this section, we give a rigorous justification about the
generalized reflection and transmission proposed in Sec. II.
Carniglia and Mandel have rigorously proved that in a half-
space which is filled with two nonmagnetic, transparent, ho-
mogeneous and isotropic media as shown in Fig. 3, an arbi-
trary source-free optical field can be represented by the
combination of possible right incident and left incident
modes �22�. If TE and TM polarizations are considered, el-
ementary interface modes can be divided into four types: �L

TE,
�L

TM, �R
TE, and �R

TM. They form a set of complete orthogonal
basis in the half space. Here the suffixes L and R indicate the
incidences from the left and the right, respectively. As shown
in Fig. 3, each mode consists of a triplet of waves, which are
the incident wave, the reflected wave, and the transmitted
wave: �L

TE/TM =�L
I +�L

R+�L
T, �R

TE/TM =�R
I +�R

R+�R
T. Since the inci-

dent Gaussian beam is assumed to be TE polarized without
losing the generality, we only need to consider two mode
types, namely, �L

TE and �R
TE.
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FIG. 2. �Color online� �a� Amplitude and �b� phase distributions
of the generalized reflection coefficient Rg�kx�. The parameters in
the calculation are n1=3.37, n2=3.35, and �=1.55 	m.
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Since we utilize the internal coordinates of the incident
beam �the x-z coordinates� here, the expressions of �L

I , �L
R, �L

T,
�R

I , �R
R, and �R

T are a little different from those in Carniglia and
Mandel’s work, which utilize the coordinates along and nor-
mal to the interface,

�L
I

= � 1

n2
exp�iKx

I�x + a� + iKz
Iz�

n2

n1
� k�

T

K�
I

for x � ztan�0 − a

0 for x � ztan�0 − a ,



�4�

�L
R

=� R

n2
exp�iKx

R�x + a� + iKz
Rz�

n2

n1
� k�

T

K�
I

for x � ztan�0 − a

0 for x � ztan�0 − a ,



�5�

�L
T

= � T

n2
exp�ikx

T�x + a� + ikz
Tz�

n2

n1
� k�

T

K�
I

for x � ztan�0 − a

0 for x � ztan�0 − a ,



�6�

�R
I = � 1

n1
exp�ikx

I�x + a� + ikz
Iz� for x � z tan �0 − a

0 for x � z tan �0 − a ,



�7�

�R
R = � r

n1
exp�ikx

R�x + a� + ikz
Rz� for x � z tan �0 − a

0 for x � z tan �0 − a ,



�8�

�R
T = � t

n1
exp�iKx

T�x + a� + iKz
Tz� for x � z tan �0 − a

0 for x � z tan �0 − a .



�9�

In Eqs. �4�–�9�, we denote the wave vectors inside the me-
diums on the right and on the left of the interface by k and K,
respectively. As shown in Fig. 3, R and T denote the reflec-
tion and the transmission coefficients of the left incident
mode, respectively, while r and t denote the reflection and
the transmission coefficients of the right incident mode, re-
spectively. The position of the interface is determined by the
parameter a, � and � denote the directions normal and par-
allel to the interface, respectively. Although the left incident
mode �L

TE contains three waves with different propagation
directions, they are related by the Fresnel law, so we choose
to label a left incident mode by the wave vector of its trans-
mitted wave �L

TE�kx
T ,kz

T�. Analogically, we choose to label a
right incident mode by the wave vector of its incident wave
�R

TE�kx
I ,kz

I�. The difference between the coefficients in Eqs.
�4�–�6� and those in Eqs. �7�–�9� is for the requirement of the
normalization as will be shown following.

Before using the interface modes listed in Eqs. �4�–�9� to
represent an arbitrary field, we should prove their orthonor-
mality in the x-z coordinates at first. According to Carniglia
and Mandel’s derivation �22�, for the expressions listed in
Eqs. �4�–�6�, we have

� ��L
TE�kx

T,kz
T�� � �L

TE�kx�
T,kz�

T�n2�x,z�dxdz

= �2��2
�K�
I − K��

I�
�K�
I − K��

I�
n2

n1
�2 k�

T

K�
I . �10�

With the help of the relations 
�K�
I −K��

I�
= �n1 /n2�2�K�

I /k�
T �
�k�

T −k��
T� �22� and K�

I=k�
T, the result of

the integral in Eq. �10� is �2��2
�k�
T −k��

T�
�k�
T−k��

T�. Since
k�

T and k�
T can be expressed in terms of kx

T and kz
T, namely,

k�
T =kx

T cos �0−kz
T sin �0 and k�

T=kx
T sin �0+kz

T cos �0, we can
deduce the following relation: 
�k�

T −k��
T�
�k�

T−k��
T�=
�kx

T

−kx�
T�
�kz

T−kz�
T�. Then the ultimate integral result of Eq. �10�

is

� ��L
TE�kx

T,kz
T����L

TE�kx�
T,kz�

T�n2�x,z�dxdz

= �2��2
�kx
T − kx�

T�
�kz
T − kz�

T� . �11�

For the right incident mode listed in Eqs. �7�–�9�, we have

� ��R
TE�kx

I ,kz
I����R

TE�kx�
I,kz�

I�n2�x,z�dxdz

= �2��2
�k�
I − k��

I�
�k�
I − k��

I�

= �2��2
�kx
I − kx�

I�
�kz
I − kz�

I� . �12�
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FIG. 3. Interface modes in a half-space formed by the combina-
tion of two mediums.
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Having proved the orthonormality of the right and the left
incident modes listed in Eqs. �4�–�9�, we can use them to
present an arbitrary TE polarized source-free optical field in
the half-space shown in Fig. 3.

E�x,z,t� =
1

�2��2��
K�

I �0

exp�− i�t�f1�kx
T,kz

T��L
TE�kx

T,kz
T�dkx

Tdkz
T

+
1

�2��2��
k�

I �0

exp�− i�t�f2�kx
I ,kz

I��R
TE�kx

I ,kz
I�dkx

Idkz
I .

�13�

In Eq. �13�, � is the angular frequency of the interface
mode, �n� /c�2=kx

2+kz
2, where c is the light velocity in

vacuum. On taking products of both sides of Eq. �13� with
n2�x ,z���L

TE�kx�
T ,kz�

T��* and integrating over all space, with
the aid of Eq. �11� we find

f1�kx�
T,kz�

T� = exp�i��t��
−�

+�

n2�x,z�E�x,z,t�

���L
TE�kx�

T,kz�
T���dxdz . �14�

Similarly we have

f2�kx�
I,kz�

I� = exp�i��t��
−�

+�

n2�x,z�E�x,z,t���R
TE�kx�

I,kz�
I���dxdz .

�15�

Since we discuss the monochromatic field here, E�x ,z , t�
=e�x ,z�exp�−i�1t�, the space integrals in Eqs. �14� and �15�
only need to be conducted on the plane z=0.

f1�kx�
T� = �

−�

+�

n2�x,z�e�x,0���L
TE�kx�

T,kz�
T���dx , �16�

f2�kx�
I� = �

−�

+�

n2�x,z�e�x,0���R
TE�kx�

I,kz�
I���dx . �17�

Before calculating the integrals in Eqs. �16� and �17�, we
assume that n1�n2. Since the incident beam is located on the
right of the interface, and there is only the transmitted wave
in this region for the left incident mode �L

TE, we have

f1�kx�
T� = �

−�

+�

n1e�x,0�exp�− ikx�
T�x + a��
T�k��

T

K��
I�*

dx

= n1T�k��
T

K��
I exp�− ikx�

Ta�f�kx�
T� . �18�

In Eq. �18�, f�kx�
T� is the Fourier transform of e�x ,0�; the

variation range of kx�
T is �k0n1 cos�arcsin�n2 /n1�−�0� ,k0n1�.

Since k��
T is a real number for the incidence from an optically

thinner medium to an optically denser medium, the conjugate
symbol * in Eq. �18� can be removed.

As the right incident mode contains the incident and the
reflected waves on the right of the interface, the integral in
Eq. �17� includes two terms,

f2�kx�
I� = �

−�

+�

n1
2e�x,0���R

I �kx�
I,kz�

I���dx

+ �
−�

+�

n1
2e�x,0���R

R�kx�
R,kz�

R���dx . �19�

The two integrals in Eq. �19� need to be conducted according
to three regions of kx�

I as shown in Fig. 3.
Region I. kx�

I� �−k0n1 ,−k0n1 cos 2�0�. The incident wave
with kx�

I=−k0n1 cos 2�0 gives rise to a reflected wave propa-
gating along the positive direction of the x axis as shown in
Fig. 3. For the right incident modes �R

TE in region I, their
reflected waves propagate downwards kz�

R�0, so the second
integral in Eq. �19� can be discarded.

f2�kx�
I� = �

−�

+�

n1
2e�x,0���R

I �kx�
I,kz�

I���dx

= n1 exp�− ikx�
Ia�f�kx�

I� . �20�

Region II. kx�
I� �−k0n1 cos 2�0 ,k0n1 sin�arcsin�n2 /n1�+�0

−� /2��, and then kx�
R� �k0n1 cos�arcsin�n2 /n1�−�0� ,k0n1�.

The transverse wave vector of the wave incident at the criti-
cal angle is k0n1 sin�arcsin�n2 /n1�+�0−� /2�. For the right
incident modes in region II, their incident angles are smaller
than the critical angle, and their reflected waves propagate
upward kz�

R�0. Substituting Eqs. �7� and �8� into Eq. �19�
and noting that r=r* for the partial reflection, we have

f2�kx�
I� = n1 exp�− ikx�

Ia�f�kx�
I� + n1r exp�− ikx�

Ra�f�kx�
R� .

�21�

It is important to note that the variation range of kx�
R here is

the same as that of kx�
T in Eq. �18�.

Region III. kx�
I� �k0n1 sin�arcsin�n2 /n1�+�0−� /2� ,

k0n1 sin �0�, and kx�
R� �k0n1 sin �0 ,k0n1 cos�arcsin�n2 /n1�

−�0��. Incident angles of the right incident modes in this
region exceed the critical angle, thus the expression of f2�kx�

I�
is

f2�kx�
I� = n1 exp�− ikx�

Ia�f�kx�
I� + n1r* exp�− ikx�

Ra�f�kx�
R� .

�22�

Having calculated the amplitudes of all possible compo-
nent modes, we can express an optical field in terms of their
superposition. With the aid of Eqs. �18�–�22�, we have
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e�x,z� =
1

2�
�

−k0n1

k0n1 sin �0

n1 exp�− ikx�
Ia�f�kx�

I��R
TE�kx�

I�dkx�
I

+
1

2�
�

k0n1 sin �0

k0n1 cos�arcsin�n2/n1�−�0�

n1r* exp�− ikx�
Ra�f�kx�

R��R
TE�kx�

I�dkx�
R

+
1

2�
�

k0n1 cos�arcsin�n2/n1�−�0�

k0n1

n1r exp�− ikx�
Ra�f�kx�

R��R
TE�kx�

I�dkx�
R

+
1

2�
�

k0n1 cos�arcsin�n2/n1�−�0�

k0n1

n1T�k��
T

K��
I exp�− ikx�

Ta�f�kx�
T��L

TE�kx�
T�dkx�

T. �23�

It is evident that the first integral in Eq. �23� implies the ordinary reflection and transmission, thus we need to examine the last
three integrals.

Since the integrating range of the second integral of Eq. �23� is region III, where the incident angle is bigger than the critical
angle, we have rr*= �r�2=1 and r*t= t*. Then substituting the expression of �R

TE into its integrand, we have

n1r* exp�− ikx�
Ra�f�kx�

R��R
TE�kx�

I� = �r*f�kx�
R�exp�ikx�

Ix + ikz�
Iz + i�kx�

I − kx�
R�a� + f�kx�

R�exp�ikx�
Rx + ikz�

Rz� , x � z tan �0 − a

t*f�kx�
R�exp�iKx�

Tx + iKz�
Tz + i�Kx�

T − kx�
R�a� , x � z tan �0 − a .

�
�24�

Since it is the evanescent wave on the left of the interface for region III, the implication of Eq. �24� is just the reverse mode
shown in Fig. 1.

The last two integrals of Eq. �23� can be merged since they have the identical integrating range, then the integrand of the
merged integral is

n1r exp�− ikx�
Ra�f�kx�

R��R
TE�kx�

I� + n1T�k��
T

K��
I exp�− ikx�

Ta�f�kx�
T��L

TE�kx�
T�

=�T
k��

T

K��
I f�kx�

T�exp�iKx�
Ix + iKz�

Iz + i�Kx�
I − kx�

T�a� + RT
k��

T

K��
I f�kx�

T�exp�iKx�
Rx + iKz�

Rz + i�Kx�
R − kx�

T�a�

+ trf�kx�
R�exp�iKx�

Tx + iKz�
Tz + i�Kx�

T − kx�
R�a� , x � z tan �0 − a

rf�kx�
R�exp�ikx�

Ix + ikz�
Iz + i�kx�

I − kx�
R�a� + r2f�kx�

R�exp�ikx�
Rx + ikz�

Rz� + T2 k��
T

K��
I f�kx�

T�exp�ikx�
Tx + ikz�

Tz� , x � z tan �0 − a .

�25�

In Eq. �25�, Kx�
T=Kx�

R, kx�
T=kx�

R, Kz�
T=Kz�

R, and kz�
T=kz�

R. Utilizing the relations RTk��
T /K��

T+rt=Rt+rt=0 and r2+T2k��
T /K��

T

=r2+Tt=1, and then noting that both r and t are real numbers for the partial reflection, we can reorganize Eq. �25� into the
following form:

n1r exp�− ikx�
Ra�f�kx�

R��R
TE�kx�

I� + n1T�k��
T

K��
I exp�− ikx�

Ta�f�kx�
T��L

TE�kx�
T�

= �t*f�kx�
R�exp�iKx�

Ix + iKz�
Iz + i�Kx�

I − kx�
R�a� , x � z tan �0 − a

r*f�kx�
R�exp�ikx�

Ix + ikz�
Iz + i�kx�

I − kx�
R�a� + f�kx�

R�exp�ikx�
Rx + ikz�

Rz� , x � z tan �0 − a .
� �26�

The same as Eq. �24�, Eq. �26� also means the reverse mode
shown in Fig. 1.

With Eqs. �23�, �24�, and �26�, we come to the conclusion
given in Sec. II. After the angular expansion, the plane wave
components with kx�k0n1 sin �0 propagate as the reverse
mode of the ordinary reflection and transmission, so the ex-
pression of the field on the right of the interface is

e�x,z� =
1

2�
�

−k0n1

k0n1

f�kx�exp�ikxx + i�k0
2n1

2 − kx
2z�dkx

+
1

2�
�

−k0n1

k0n1

f�kx�Rg�kx�exp�ikx
Rgx + i�k0

2n1
2 − �kx

Rg�2z

+ i�kx
Rg − kx�a�dkx. �27�
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In Eq. �27�, the symbol kx
Rg denotes the transverse wave vec-

tor of the generalized reflected wave, and the two integrals
represent the incident and the reflected fields. Equation �27�
can be reorganized into the following form that we are fa-
miliar with:

e�x,z� =
1

2�
�

−k0n1

k0n1

f�kx�exp�ikxx + i�k0
2n1

2 − kx
2z�dkx

+
1

2�
�

−k0n1

k0n1

f�kx�Rg�kx�exp�ikxx� + i�k0
2n1

2 − kx
2z��dkx,

�28�

where �x ,z� and �x� ,z�� are the intrinsic coordinate system of
the incident beam and its mirror-reflected coordinates, re-
spectively.

Though our proof is based on the interface with a refrac-
tive index distribution of n1�n2, an analogical deduction
and result hold true for the case of n2�n1 and for various
multilayered structures. As an illustration, we calculate field
distributions on a certain z plane when a beam is incident on
a dielectric slab with different values of �0. The results are
shown in Fig. 4, where they are compared with simulations
utilizing the beam propagation method �BPM� �23�. The pa-
rameters in Fig. 4 assure that ���0, so considerable plane
wave components are handled by the reversed mode shown
in Fig. 1. The agreement between theoretical calculations and
simulations validates further the generalized reflection and
transmission theory.

IV. GH SHIFT IN THE INCIDENCE CIRCUMSTANCE
���0

With the definition of the generalized reflection coeffi-
cient Rg�kx�, we can discuss the GH shift in the limit of
grazing incidence ��0=90° � �24�. There is an unsolved con-
troversy about this problem. Lotsch �24� and Renard �25�
thought that the GH shift for this case did not exist. Utilizing

the angular expansion method, Mcguirk �18� asserted that the
shift was not zero. However, he failed to prove it rigorously.
By assuming an incident beam with a sufficiently small
spread angle � �assure �0���, he could derive the GH shift
for incident angles arbitrarily close to 90°. However, he
could not give a reasonable explanation about the GH shift at
�0=90° or that under the incidence condition ���0. Accord-
ing to the theory of the angular expansion method, the GH
shift can be regarded as the first order derivative of the phase
of the reflectance at the position kx=0,

D = � d


dkx
�

kx=0
, �29�

where 
�kx� is the phase of Rg�kx�. As we have indicated, the
traditional reflection and transmission coefficients are de-
fined in the domain �−� ,k0n1 sin �0�, so kx=k0n1 sin �0 is a
discontinuity point. When �0 is 90°, this discontinuity point
is located at the position kx=0, thus the differentiation in Eq.
�29� is meaningless. For the incidence condition ���0, it is
unable to deduce the exact expression of the reflected beam
without the generalized reflection coefficient, so the GH shift
also cannot get a reasonable explanation.

Our work has extended the definition domain of the re-
flectance to the entire kx axis, so we can examine the deriv-
ability of 
�kx� at its center frequency kx=k0n1 sin �0. As
shown in Fig. 2�b�, 
�kx� is antisymmetrical about its center
frequency, meanwhile its left and right limits at this position
are −� and �, respectively. Since −� and � denote the same
angle actually, 
�kx� is continuous and derivable at kx
=k0n1 sin �0. When �0=90°, the derivative in Eq. �29� does
exist. For example, its value is −1.36 	m for the parameters
in Fig. 2. In fact, the incident angle of 90° ��0=0° � should
not be regarded as the incidence limit. As shown in Figs. 1
and 4, a beam can also be incident on the interface with
negative values of �0 due to the beam spreading.

Besides the generalized reflectance Rg�kx�, the output field
on the right of the interface is modulated by the spectrum
superposition effect in the incidence circumstance ���0.
Utilizing the coordinate conversion and the paraxial approxi-
mation �7,26�, we can deduce the spatial frequency spectrum
which determines the optical field on the right of the inter-
face from Eq. �28�,

g�kx� =
1

cos 2�0
f�kx��exp�i�kx��z� − h�sin 2�0�

+ �k0
2n1

2 − kx�
2�1/2�z� cos 2�0 + 2h sin2 �0��

+ f�kx�Rg�kx�exp�i�k0
2n1

2 − kx
2�1/2z�� . �30�

In Eq. �30�, h is the distance from the incident position to the
interface along the beam axis as shown in Fig. 1. Its value is
determined by the parameter a, h=a / tan �0. The expression
of the variable kx� in Eq. �30� is kx�= �k0n1 sin 2�0
−kx� /cos 2�0.

The spectrum g�kx� in Eq. �30� consists of two sections.
One is the reflected spectrum whose center locates at kx=0.
If we ignore the influence of Rg�kx�, its 1 /e half width
is about k0n1 sin �. The other is the incident spectrum
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FIG. 4. �Color online� Field distributions on a certain z plane
when a beam is incident on a dielectric slab with different values of
�0. Nonsolid and solid lines correspond to theoretical calculations
and simulations, respectively. Thickness and refractive index of the
slab are 4 	m and 3.35, respectively. The refractive index of the
medium surrounding the slab is 3.37. Other parameters in the cal-
culations are �=1.55 	m, w=2 	m, a=2w, z=800 	m, and �
=4.18°.
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after the coordinate conversion. Its center is located at kx
=k0n1 sin 2�0, and its 1 /e half width is k0n1 sin � cos 2�0.
For the ordinary incidence that �0��, there is no overlap-
ping between the two spectrums since k0n1 sin 2�0
�k0n1 sin � cos 2�0+k0n1 sin �. When we conduct the in-
verse Fourier transform to g�kx� to calculate the field on the
right of the interface, the main contribution to the integral
comes from the integrating domain �−� ,k0n1 sin �0� in the
far field. It is the reflected spectrum occupying this domain,
so the output field on the right of the interface can be re-
garded as a pure reflected field in the far field. On the con-
trary, if ���0, the reflected and the incident spectrums su-
perpose with each other, which is called the spectrum
superposition effect in this paper. Then in the real space, it
appears that the output field is the interference of the incident
beam and its virtual image. In Fig. 4, since the distance be-
tween the incident beam and its image is fixed �a=2w�, the
output fields exhibit the similar fringes for different values of
�0.

Due to the spectrum superposition effect, we can no
longer use Eq. �29� to calculate the GH shift of the output
field in the incidence circumstance ���0. Its exact definition
should be

D = � d�angle„g�kx�/f�kx�/ exp�i�k0
2n1

2 − kx
2z��…�

dkx
�

kx=0
.

�31�

Plots of the value of D versus the waist width of the incident
Gaussian beam are shown in Fig. 5, where negative values of
D correspond to GH shifts toward the positive direction of
the x� axis. It is well known that the GH shift is independent
of the incident beam width for the ordinary incidence. How-
ever, this conclusion does not stand when ���0 as shown in
Fig. 5. Another interesting phenomenon is the negative GH
shift �the positive value of D� when the value of w is small.
As w increases, the condition ���0 is not satisfied anymore
and thus the spectrum superposition effect is eliminated. Fi-
nally, the value of D levels off at a negative value which can
be calculated by Eq. �29�. Figure 6 presents field distribu-
tions associated to the GH shift shown in Fig. 5. The abscis-

sas of output peaks are −57.9, 55.9, and 0.62 	m for w=2, 6,
and 18 	m, respectively. We find the locations of output
peaks in Fig. 6 differ from the GH shifts in Fig. 5 except for
the case of w=18 	m. The reason is that besides the GH
shift, the position of the output peak is also influenced by the
angular shift and the focal shift induced by the spectrum
superposition effect �1,7�.

At the end of this section, we give a simple discussion
about the feasibility of the experimental test. In experiment,
we can measure the positions of the output peaks at different
propagation distances, and then determine their linear rela-
tion by data fitting x�=az�+b. In theory, the position of the
output peak is determined by the equation x�=��z�+��+�.
The symbols �, �, and � denote the angular shift, the GH
shift, and the focal shift, respectively. All of them can be
determined by strict theoretical calculation �7�. Comparing
the practical testing result with the theoretical calculation, we
can validate the result in Fig. 5.

V. CONCLUSION

When a bounded beam is incident on an interface, part of
its plane wave components do not propagate toward the in-
terface after the angular expansion. In this paper, by repre-
senting an optical field in terms of the interface modes which
form a set of complete orthogonal basis, we rigorously prove
that these plane waves propagate according to the reverse
mode of the ordinary reflection and transmission. Based on
the two interaction manners between different plane wave
components and the interface, we propose the definition of
the generalized reflection and transmission. With this defini-
tion, we solve the controversy about the GH shift in the
grazing incidence limit, and remove one precondition of uti-
lizing the angular expansion method, namely, the value of �0
should exceed that of �. Then the characteristics of the inci-
dence circumstance ���0 are studied, including the spec-
trum position effect and the GH shift of the output field.

In fact, the incidence circumstance ���0 has other appli-
cations besides Lloyd’s mirror. A typical one is the total-
internal-reflection �TIR� optical waveguide switch in the area
of integrated optics. The waveguide width is on the scale of
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FIG. 5. �Color online� Goos-Hänchen shift as a function of the
incident Gaussian beam width. The parameters in the calculations
are n2=3.27, a=2w, z=5000 	m; other parameters are the same as
those in Fig. 2.
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FIG. 6. �Color online� Field distributions associated with the
GH shift shown in Fig. 5. In the calculation �0=1°, other param-
eters are the same as those in Fig. 5.
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several microns for practical TIR switches, while the cross-
ing angle between the incident waveguide and the electrode
seldom exceeds 3°, so the inequality ���0 is always satis-
fied. Our work gives a theoretical foundation for studying
these light propagation problems.
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