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We study the angular structure of polarization of light transmitted through a nematic liquid crystal �NLC�
cell by analyzing the polarization state as a function of the incidence angles and the polarization of the incident
wave. The polarization-resolved angular �conoscopic� patterns emerging after the NLC cell illuminated by the
convergent light beam are described in terms of the polarization singularities such as C points �points of
circular polarization� and L lines �lines of linear polarization�. For the homeotropically aligned cell, the Stokes
polarimetry technique is used to measure the polarization resolved conoscopic patterns at different values of
the ellipticity of the incident light, �ell

�inc�, impinging onto the cell. Using the exact analytical expressions for the
transfer matrix we show that variations of the ellipticity, �ell

�inc�, induce transformations of the angular pattern
exhibiting the effect of avoided L-line crossings and characterized by topological events such as creation and
annihilation of the C points. The predictions of the theory are found to be in good agreement with the
experimental results.
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I. INTRODUCTION

Singularities that represent structurally stable topological
defects have long been known to play a pivotal role in con-
densed matter physics �1�. They are of particular importance
in determining the properties of systems with a broken con-
tinuous symmetry �2–5� �for a recent review see, e.g., Ref.
�6��. Topological methods of quantum field and gauge theo-
ries have been extensively used to classify the topological
defects and to describe transformations of the singularities in
ordered media such as superfluids and liquid crystals �7–9�.

For electromagnetic vector fields, it was originally recog-
nized by Nye �10–12� that the so-called polarization singu-
larities are the important elements characterizing geometry
of the Stokes parameter fields. In particular, the polarization
singularities such as the C points �the points where the light
wave is circularly polarized� and the L lines �the curves
along which the polarization is linear� frequently emerge as
the characteristic feature of certain polarization state distri-
butions. Over the past two decades these singularities and
related issues have been the subject of numerous theoretical,
experimental, and numerical studies �13–24�.

The theory of polarization singularities has also been
found to be a useful tool for studying optical properties of
anisotropic media. In Ref. �25�, it was applied to study the
angular dependence of the polarization state of the electric
displacement field for plane wave eigenmodes in birefringent
dichroic chiral crystals. This analysis was then generalized
and extended to a more complicated case of bianisotropic
media �26�.

The experimental results and theoretical analysis pre-
sented in Refs. �27,28� deal with the unfolding of a linearly

polarized Laguerre-Gauss �LG01� beam with an on-axis vor-
tex on propagation through a birefringent crystal. It was
found that a complicated pattern of polarization singularities
is formed as a result of the anisotropy induced symmetry
breaking.

In our recent investigation into the angular distributions of
the Stokes parameters describing the polarization structure
behind the conoscopic images we performed a theoretical
analysis of the polarization state of the light transmitted
through nematic liquid crystal �NLC� cells as a function of
the incidence angles �29,30�. This polarization structure—the
so-called polarization-resolved angular �conoscopic�
pattern—is represented by the field of polarization ellipses
and results from the interference of four eigenmodes excited
in NLC cells by the plane waves with varying direction of
incidence.

NLCs are technologically important as materials where
the optical anisotropy is determined by the orientational
structure which is sensitive to external fields and, in re-
stricted geometries, can also be influenced by changing the
boundary conditions �31–33�. The conoscopy is widely used
as an experimental technique to characterize orientational
structures in NLC cells.

For example, this method was employed to detect biaxi-
ality of NLCs �34,35� and to measure the pretilt angle in
uniaxial liquid crystal cells �36,37�. Orientational structures
and helix unwinding process in ferroelectric and antiferro-
electric smectic liquid crystals were also studied by conos-
copy in Refs. �38–40�.

In this paper we explore both theoretically and experi-
mentally the polarization-resolved angular patterns for con-
vergent light beam impinging on the homeotropically aligned
NLC cell at varying polarization of the incident wave. The
layout of the paper is as follows. In Sec. II we give experi-
mental details and describe our setup employed to carry out
measurements using a suitably modified method of the
Stokes polarimetry �27,41–43�. The problem of light trans-
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mission through a uniformly anisotropic NLC cell is consid-
ered in Sec. III A. Using the 4�4 matrix formalism we de-
duce the general expressions relating the evolution matrix to
the transmission and reflection matrices. The analytical re-
sults are used for analysis of the polarization-resolved cono-
scopic patterns in Sec. III B. The patterns emerging after
homeotropically aligned NLC cells are treated in Sec. III C.
The polarization ellipse fields are studied as a function of the
ellipticity �ell

�inc�, and the polarization azimuth �p
�inc�, charac-

terizing the polarization state of the incident wave. The ana-
lytical expressions describing loci of the C points and L lines
along with the index formula are used to examine rearrange-
ments of the polarization singularities caused by variations
of the polarization parameters �ell

�inc� and �p
�inc�. We find that

changing the azimuth results in rotation of the ellipse field as
a whole by the angle �p

�inc�, whereas the transformations in-
duced by the ellipticity appear to be complicated by the pres-
ence of bifurcations leading to creation and annihilation of
the C points. It is shown that the structure of the intersecting
L lines formed at �ell

�inc�=0 smoothly evolve into a family of
the concentric L circles at ��ell

�inc��=1. At small values of the
ellipticity, the effect of avoided L line crossings is found to
be an important feature of this transition. Experimentally
measured and computed fields of the polarization ellipses are
presented in Sec. IV along with discussion and concluding
remarks. Mathematical details on the evolution operator of
uniformly anisotropic media and related issues are relegated
to the Appendix.

II. EXPERIMENT

In our experiments we used the NLC cells of thickness
d=110 �m filled with the nematic liquid crystal mixture E7
from Merk. Two glass substrates were assembled to form a
hometropically oriented NLC cell. At the wavelength of light
generated by a low power He-Ne laser from Coherent Group
with �=632.8 nm �see Fig. 1�, the ordinary and extraordi-
nary refractive indices of the NLC are no=1.5246 and ne
=1.7608, respectively; the refractive index of the glass sub-
strates is ng=1.5.

Figure 1 shows our experimental setup devised to perform
the conoscopic measurements using the Stokes polarimetry
technique �27,41–43�. Referring to Fig. 1, the cell is irradi-
ated with a convergent light beam formed by the microscope
objective of high numerical aperture L3. The input polarizer
P1 is combined with the properly oriented quarter wave plate

W1 to control the polarization characteristics �the ellipticity
and the azimuth of polarization� of a He-Ne laser beam
which is expanded and collimated using the lenses L1 and L2.
A charge coupled device �CCD� camera collects the output
from the microscope objective L4 through the collimating
lens L5 and the Stokes analyzer represented by the combina-
tion of the quarter wave plate W2 and the polarizer P2.

This optical arrangement therefore collects simulta-
neously the transmittance of the cell for a range of incident
angles. The distribution of the Stokes parameters S0 , . . . ,S3
describing the state of polarization of the transmitted light
can then be obtained by performing the measurements at six
different combinations of the quarter wave plate W2 and the
analyzer P2 and using the well-known relations �44�

S1 = I0° − I90°, �1a�

S2 = I45° − I135°, �1b�

S3 = IRCP − ILCP, �1c�

S0 = �S1
2 + S2

2 + S3
2, �1d�

where I0°, I90°, I45°, and I135° are the linearly polarized com-
ponents �the subscript indicates the orientation angle of the
analyzer�; IRCP and ILCP are the right- and left-handed circu-
lar polarized components measured in the presence of the
quarter wave plate W2.

Geometrically, the distribution of the Stokes parameters
measured in the observation plane can be conveniently rep-
resented by the two-dimensional field of the polarization el-
lipses. The geometrical elements of polarization ellipses that
determine the polarization ellipse field can be readily com-
puted from the Stokes parameters �1�.

The orientation of a polarization ellipse is specified by the
azimuthal angle of polarization �polarization azimuth�

�p =
1

2
arg�S1 + iS2� , �2�

and its eccentricity is described by the signed ellipticity pa-
rameter

�ell = tan�1

2
arcsin�S3

S0
	
 . �3�

This parameter will be referred to as the ellipticity. The
handedness of the ellipse is determined by the sign of the
ellipticity parameter �ell.

In Sec. IV, we shall describe the polarization ellipse fields
representing the experimentally measured angular patterns.
These will be compared with the predictions of the theory
discussed in the subsequent section.

III. THEORY

A. Transmission boundary-value problem

We consider a nematic liquid crystal �NLC� cell of thick-
ness d sandwiched between two parallel plates that are nor-
mal to the z axis: z=0 and z=d. Typically, anisotropy of

FIG. 1. Experimental setup: He-Ne is the laser; L1, L2, and L5

are the collimating lenses; L3 and L4 are the microscope objectives;
PH is the pinhole; LC is the NLC cell; P1 and P2 are the polarizers;
W1 and W2 are the quarter wave plates; CCD is the CCD camera. A
microscope objective L3 is illuminated with an elliptically polarized
and expanded parallel beam of light from a He-Ne laser. The output
from a second objective L4 is collected by a CCD camera through
the Stokes analyzer.
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nematics is locally uniaxial and NLC molecules align on

average along a local unit director d̂ �31�. In this case the
NLC director

d̂ � e0�d̂� = sin �d cos �dx̂ + sin �d sin �dŷ + cos �dẑ �4�

determines the optic axis. So, the uniaxially anisotropic di-
electric tensor � is given by

� = ��I3 + ��d̂ � d̂, �� = �� − ��, �5�

where In is the n�n identity matrix. �In what follows carets
will denote unit vectors.� Its two principal values �� and ��

define the ordinary and extraordinary refractive indices, no

=���� and ne=����, where � is the NLC magnetic perme-
ability.

In a more general case of biaxial nematics �45,46� that
were recently observed experimentally �35,47�, there are
three different dielectric constants �1, �2, and �3 representing
the eigenvalues of the dielectric tensor as follows:

� = �3I3 + ��1d̂ � d̂ + ��2m̂ � m̂ , �6�

where ��i=�i−�3, and the eigenvectors d̂, m̂, and l̂= d̂�m̂
give the corresponding principal axes.

Similar to the director �4�, the unit vectors m̂ and l̂ can be
expressed in terms of Euler angles as follows:

m̂ = cos 	de1�d̂� + sin 	de2�d̂� , �7a�

l̂ = − sin 	de1�d̂� + cos 	de2�d̂� , �7b�

where e1�d̂�= �cos �d cos �d , cos �d sin �d ,−sin �d� and

e2�d̂�= �−sin �d , cos �d ,0�.
We shall need to write the Maxwell equations for a har-

monic electromagnetic wave �the time-dependent factor is
exp−i
t�� in the form

� � E = i�kvacH , �8a�

� � H = − ikvacD , �8b�

where kvac=
 /c is the free-space wave number; � is the
magnetic permittivity and D=� ·E is the electric displace-
ment field.

The medium surrounding the NLC cell is assumed to be
optically isotropic and characterized by the dielectric con-
stant �m and the magnetic permittivity �m. So, Maxwell’s
equations in the medium outside the cell can be obtained
from Eq. �8� by replacing � and D with �m and �mE, respec-
tively.

As is shown in Fig. 2, there are two plane waves in the
half space z�0 bounded by the entrance face of the NLC
cell: the incoming incident wave Einc ,Hinc� and the outgoing
reflected wave Erefl ,Hrefl�. In the half space z�d after the
exit face, the only wave is the transmitted plane wave
Etr ,Htr� which propagates along the direction of incidence
and is excited by the incident light.

So, the electric field outside the cell is a superposition of
the plane wave solutions of the Maxwell equations

�E�z0 = Einc�k̂inc�ei�kinc·r� + Erefl�k̂refl�ei�krefl·r�, �9a�

�E�z�d = Etr�k̂tr�ei�ktr·r�, �9b�

where the wave vectors kinc, krefl, and ktr that are constrained
to lie in the plane of incidence due to the boundary condi-
tions requiring the tangential components of the electric and
magnetic fields to be continuous at the boundary surfaces.
These conditions are given by

P�ẑ� · ��E�z=0+0 −�E�z=0−0� = P�ẑ� · ��E�z=d+0 −�E�z=d−0� = 0,

�10a�

P�ẑ� · ��H�z=0+0 −�H�z=0−0� = P�ẑ� · ��H�z=d+0 −�H�z=d−0� = 0,

�10b�

where P�ẑ�=I3− ẑ � ẑ is the projector onto the plane with the
normal directed along the vector ẑ �the x-y plane�.

Another consequence of the boundary conditions �10� is
that the tangential components of the wave vectors are the
same. Assuming that the incidence plane is the x-z plane we
have

k� = kvacq� = kmk̂� = kxx̂ + kz
���ẑ, � � inc,refl,tr� ,

�11�

where km /kvac=nm=��m�m is the refractive index of the am-
bient medium and the components can be expressed in terms
of the incidence angle �inc as follows:

kx = km sin �inc � kvacqx, �12�

kz
�inc� = kz

�tr� = − kz
�refl� = km cos �inc � kvacqz

�m�. �13�

The plane wave traveling in the isotropic ambient medium
along the wave vector �11� is transverse, so that the polariza-
tion vector is given by

k
inc

θ inc

E
(tr)

k
tr

E (inc)

E
(tr)

k
refl

E (inc)

E (refl)

E (refl)

^ε, µ^

mmε , µ

mmε , µ

Z

X

Y
Z

X

z=d

z=0

FIG. 2. �Color online� Geometry of nematic cell in the plane of
incidence.
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E��k̂�� = E�
���e1�k̂�� + E�

���e2�k̂�� , �14�

e1�k̂�� = km
−1�kz

���x̂ − kxẑ�, e2�k̂�� = ŷ , �15�

where E�
��� and E�

��� are the in-plane and out-of-plane com-
ponents of the electric field, respectively. The vector charac-
terizing the magnetic field is

�mH��k̂�� = q� � E��k̂�� = nm�E�
���ŷ − E�

���e1�k̂��� ,

�16�

where q�=kvac
−1 k�=nmk̂�. Note that, for plane waves, the di-

mensionless vector

q = kvac
−1 k �17�

is parallel to k and its length gives the refractive index. For
convenience, we shall often use this vector in place of the
wave vector.

The expressions �9�–�16� give the electromagnetic field of
incident, transmitted, and reflected waves propagating in the
ambient medium. This field is of the general form

E�r�,H�r�� = E�z�,H�z��exp�i�kP,r��, kP = P�ẑ� · k ,

�18�

qP = kvac
−1 kP = qP�cos��inc�x̂ + sin��inc�ŷ� , �19�

where the azimuthal angle �inc specifies orientation of the
incidence plane. So, in our case, we have �inc=0 and qP
=qx.

The representation �18� can be applied to describe the
field inside the cell when the dielectric tensor is independent
of the in-plane coordinates x and y. In this case the lateral
components of the electric and magnetic fields

EP = P�ẑ� · E = Exx̂ + Eyŷ � �Ex

Ey
	 , �20�

HP = H � ẑ = Hyx̂ − Hxŷ � � Hy

− Hx
	 , �21�

can be conveniently combined into the vector

F�z� � �EP�z�
HP�z�

	 =�
Ex�z�
Ey�z�
Hy�z�

− Hx�z�
� . �22�

From Maxwell’s equations �8�, the components normal to the
substrates, Ez and Hz, can be readily expressed in terms of
the lateral components

�Hz = �qP,EP � ẑ�, �zzEz = − �ẑ,� · EP� − �qP,HP� .

�23�

By using the relations �23� to eliminate the normal compo-
nents we obtain the equation for the field vector �22� in the
following matrix form:

− i��F = M · F � �M11 M12

M21 M22
	 · �EP

HP
	, � � kvacz ,

�24�

where

M��
�11� = − �zz

−1q�
�P��z�, �25a�

M��
�22� = − �zz

−1��zq�
�P�, �25b�

M��
�12� = ���� − �zz

−1q�
�P�q�

�P�, �25c�

M��
�21� = ��� − �−1p�

�P�p�
�P� − �zz

−1��z�z�, �25d�

where ��� is the Kroneker symbol, qP=kvac
−1 kP and pP= ẑ

�qP.
The field vector �22� can now be written in the form of a

general solution to the linear problem �24�

F��� = U��� · F�0� , �26�

where U��� is the evolution operator that can be determined
by solving the initial value problem

− i��U = M · U, U�0� = I4. �27�

Our above notations can be regarded as a version of the
well-known matrix formalism due to Berreman �48�. By us-
ing these notations we derive the boundary conditions �10� in
the matrix form

F = Vm · �Einc

Erefl
	 = F�0� , �28a�

F� = Vm · �Etr

0
	 = F�h�, h � kvacd , �28b�

where E���
E�

���

E�
��� �.

The matrix Vm relates the field vectors F�F�0−0� and
F��F�h+0�, and the vector amplitudes E� of the waves in
the surrounding medium. From Eqs. �14�–�16�, its block
structure

Vm = �Em − �3Em

Hm �3Hm
	 �29�

is characterized by the two diagonal 2�2 matrices

Em = diag�qz
�m�/nm,1�, �mHm = diag�nm,qz

�m�� , �30�

where qz
�m�=�nm

2 −qx
2 and �3=diag�1,−1�.

It is rather straightforward to check the validity of the
algebraic identity for the matrix �29�

�Vm�T · G · Vm = Nm = Nm diag�I2,− I2�, G � � 0 I2

I2 0
	 ,

�31�

where Nm=2qz
�m� /�m and the superscript T indicates matrix

transposition.
According to Ref. �49�, identities of the form �31� can be

derived as the orthogonality relations resulted from the con-

KISELEV et al. PHYSICAL REVIEW A 78, 033815 �2008�

033815-4



servation law for the energy flux in nonabsorbing media.
Algebraically, Eq. �31� can be used to simplify inversion of
the matrix Vm,

Vm
−1 = Nm

−1 · �Vm�T · G , �32�

and to ease qualitative analysis �see, e.g., Ref. �50� for a
more extended discussion of applications�.

After substituting Eq. �26� into the boundary conditions
�28a� we have

�Einc

Erefl
	 = W · �Etr

0
	 , �33�

W = Vm
−1 · U−1�h� · Vm = �W11 W12

W21 W22
	 , �34�

where U−1�U−1�h�.
From Eq. �33� we have

�E�
�tr�

E�
�tr� 	 = T · �E�

�inc�

E�
�inc� 	 , �35�

T = W11
−1, �36�

where T is the transmission �transfer� matrix linking the
transmitted and incident waves.

A similar result for the reflected wave is

�E�
�refl�

E�
�refl� 	 = R · �E�

�inc�

E�
�inc� 	 , �37�

R = W21 · W11
−1 = W21 · T , �38�

where R is the reflection matrix.
For uniformly anisotropic media, the elements of the ma-

trix �25� are constants and solving Eq. �27� gives the formula
for the evolution matrix,

U��� = expiM�� = V · expi��� · V−1, �39�

� = diag��1,�2,�3,�4�, M · V = V · � , �40�

where �i is the eigenvalue of the matrix M and V
= �V1V2V3V4� is the matrix composed of the right eigenvec-
tors, M ·Vi=�iVi. Technical details on computing the evolu-
tion operator for both biaxial and uniaxial anisotropies can
be found in the Appendix. In this section we restrict our-
selves to the simplest �and important for our purposes� case
that occurs when the NLC cell is homeotropically aligned.

For the homeotropic director structure with d̂= ẑ, the ei-
genvalue problem for the matrix M is easy to solve. The
result is

� = diag�qz
�e�,qz

�o�,− qz
�e�,− qz

�o��, V = �E+ − �3E+

H+ �3H+
	 ,

�41�

E+ = diag�qz
�e�/n�,1�, �H+ = diag�n�,qz

�o�� , �42�

where qz
�o�=�n�

2 −qx
2 and qz

�e�=n�n�
−1�n�

2−qx
2.

The analytical relations �41� can now be substituted into
the expression �39� to yield the evolution matrix U−1�h�
=U�−h� that enter the linking matrix W defined in Eq. �34�.
The final step involves substituting the block 2�2 matrices
W11 and W21 into Eqs. �36� and �38� to find the transfer and
the reflection matrices in the following form:

T = diag�te,to� = �cos��+h� − i�+ · sin��+h��−1, �43�

R = diag�re,ro� = − i�3 · �− · sin��+h� · T , �44�

where

�+h = diag�qz
�e�,qz

�o��h � diag��e,�o� , �45�

�� = �� � �−1�/2,

� =
�m

� �
no

2qz
�m�

nm
2 qz

�e� 0

0
qz

�o�

qz
�m�
� � diag�	e,	o� . �46�

B. Polarization-resolved angular patterns

We will now proceed to a study of how the polarization
properties of the transmitted wave depend on the direction of
the incident beam. This direction is specified by two angles:
the incidence angle �inc and the azimuthal angle of the plane
of incidence �inc.

In the previous section and in the Appendix, the transmis-
sion problem was analyzed in the plane of incidence where
�inc=0. Clearly, when �inc�0, in order to have the Euler
angles describing orientation of the director �4� with respect
to the incidence plane we need to replace the director azi-
muthal angle �d with �d−�inc.

In this section dependence of the polarization parameters
of transmitted waves on the angles �inc and �inc will be our
primary concern. For this purpose, we assume that the trans-
mission matrix T��inc ,�d ,�d� considered in Sec. III A and in
the Appendix is changed to T��inc ,�d ,�d−�inc�.

As previously discussed in Sec. II, experimentally, the
characteristics of the polarization ellipse can be determined
by measuring the Stokes parameters �1�. These parameters
are related to the coherence matrix with the elements M��

=E�E�*, where � ,�� � , � � �51,52�. In the circular basis
�2e��k̂�=e1�k̂�� ie2�k̂�, this matrix written as a linear com-
bination of the Pauli matrices gives the Stokes parameters Si,
as its coefficients

Mc = C · M · C+ = � �E+�2 E+E−
*

E−E+
* �E−�2

	 = 2−1�
i=0

4

Si�i, �47�

where

�0 = I2, �1 = �0 1

1 0
	, �2 = �0 − i

i 0
	, �3 = �1 0

0 − 1
	 ,

�48�

POLARIZATION-RESOLVED ANGULAR PATTERNS OF… PHYSICAL REVIEW A 78, 033815 �2008�

033815-5



�E+

E−
	 = C · � E�

E�

	, C = 2−1/2�1 − i

1 i
	 . �49�

Since the determinant of the coherence matrix vanishes,
det M=0, the Stokes parameters lie on the four-dimensional
cone S0

2=�i=1
3 Si

2, and can be parametrized as follows:

S0 = �E+�2 + �E−�2 = �E��2 + �E��2, �50a�

S1 = 2 Re E+
*E− = �E��2 − �E��2 = S0 cos 2�p cos 2�p,

�50b�

S2 = 2 Im E+
*E− = 2 Re E�E

�
* = S0 cos 2�p sin 2�p,

�50c�

S3 = �E+�2 − �E−�2 = 2 Im E�E
�
* = S0 sin 2�p, �50d�

where 0�p�� is the polarization azimuth �2� and −� /4
��p�� /4 is the ellipticity angle. Then, the relations ex-
pressing the ellipse characteristics in terms of the Stokes pa-
rameters are

�p = 2−1 arg�E+
*E−� = 2−1 arg S, S � S1 + iS2, �51�

�ell =
�E+� − �E−�
�E−� + �E+�

= tan �p, �p = 2−1 arcsin�S3/S0� . �52�

Similar to Refs. �24,53�, we have used Eqs. �47� and �50d�
to define the Stokes parameter S3 which is opposite in sign to
that given in the book �44�. The ellipse is considered to be
right handed �RH� if its helicity is positive, so that �E+�
� �E−� and �ell�0. In the opposite case with �ell0, the el-
lipse is left handed �LH�.

In the spherical basis e+ ,e−�, similar to Eq. �35�, the
transmission matrix

Tc = �t++ t+−

t−+ t−−
	 = C · T · C+ �53�

relates the circular components of the incident and transmit-
ted waves

�E+
�tr�

E−
�tr� 	 = Tc · �E+

�inc�

E−
�inc� 	 , �54�

where E�
���= �E�

���� iE�
���� /�2. So, for the transfer matrix de-

scribing the conoscopic patterns on the transverse plane of
projection, we have �29,30�

T̃��,�� = exp�− i��3� · Tc��,�� · exp�i��3� , �55�

� = r tan �inc, � = �inc, �56�

where � and � are the polar coordinates in the observation
plane �x=� cos � and y=� sin � are the Cartesian coordi-
nates� and r is the aperture dependent scale factor.

For the elliptically polarized incident plane wave with the
circular components

E�
�inc� = exp�− i��p

�inc���1 + ��ell
�inc���Einc� , �57�

expressed in terms of the polarization azimuth �p
�inc� and the

ellipticity parameter �ell
�inc�, the reduced components of the

transmitted wave are given by

E�
�tr�/�Einc� � �� = ����ei��

= t�,��1 + ��ell
�inc�� + t�,−��1 − ��ell

�inc��

�exp�− 2i����exp�− i��p
�inc�� , �58�

where �=�−�p
�inc�.

For the transmitted wave, the formula �58� gives the nor-
malized Stokes parameters si

�tr�=Si
�tr� /S0

�tr� as a function of the
incidence angles �inc and �inc. From Eqs. �51� and �52�, these
parameters are determined by the ellipticity �ell= ���+�
− ��−�� / ���+�+ ��−��, and the polarization azimuth �p= ��−
−�+� /2. Owing to the relation �56�, the incidence angles and
the points in the observation plane are in one-to-one corre-
spondence. So, the distribution of the normalized Stokes pa-
rameters can be evaluated by computing the characteristics
of the polarization ellipse �ell and �p at each point of the
projection plane. Geometrically, this procedure yields the
two-dimensional field of polarization ellipses that might be
called the polarization-resolved angular �conoscopic� pattern.

The point where ����=0 and thus the transmitted wave is
circularly polarized with �ell=−� will be referred to as the C�

point. This is an example of the polarization singularity
where the phases �� and �p become indeterminate.

Equivalently, C points can be viewed as the phase singu-
larities of the complex scalar field

S̃ = �+
*�− = S̃1 + iS̃2 �59�

proportional to the Stokes field defined in Eq. �51�. Such
singularities are characterized by the winding number which
is the signed number of rotations of the two-component field

�S̃1 , S̃2� around the circuit surrounding the singularity �2�.
The winding number, also known as the signed strength of
the dislocation, is generically �1.

Since the polarization azimuth �51� is defined modulo �

and 2�p=arg S̃, the dislocation strength is twice the index of
the corresponding C� point, IC. For generic C points, IC
= �1 /2 and the index can be computed from the formula

IC =
1

2
sgn�Im��xS̃*�yS̃��x=x�

y=y�
, �60�

where �xf is the partial derivative of f with respect to x.
The relation �60� gives the index of the C� point with the

coordinates �x� ,y�� expressed in terms of the vorticity

�18,24�: Im��xS̃*�yS̃�=�xS̃1�yS̃2−�yS̃1�xS̃2. The formula link-
ing gradients of the complex field �E ,E���+�− and the
index for C lines in the three-dimensional space was derived
in Ref. �54�.

In the case with ��=0 �C� point�, only derivatives of ��

enter the expression �60�, which can be suitably rearranged
to yield the index of the C� point in the following form:
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IC =
�

2
sgn�Im��x���y��

*��x=x�
y=y�

=
�

2
sgn�Im��������

�
*�� �=��

�=��
. �61�

Subsequently, we shall apply the formula �61� expressing the
index in terms of the derivatives with respect to polar coor-
dinates to the case of a homeotropically aligned cell.

In addition to the handedness and the index, the C points
are classified according to the number of straight lines termi-
nating on the singularity. This is the so-called line classifica-
tion that was initially studied in the context of umbilic points
�55�.

For generic C points, as is shown in Fig. 3, the number of
the straight lines, NC, may either be 1 or 3. This number is 3
provided the index equals −1 /2, IC=−1 /2, and such C points

are called stars. At IC=1 /2, there are two characteristic pat-
terns of polarization ellipses around a C point: �a� lemon
with NC=1 and �b� monstar with NC=3 �10� �a monstar is a
form on which three straight streamlines terminate�. Differ-
ent quantitative criteria to distinguish between the C points
of the lemon and the monstar types were deduced in Refs.
�24,30�.

The location of the C� points on the projection plane is
determined by the polar coordinates: �k

��� and �k
���, where k is

the numbering label. These can be found by solving the
equation

�����,��� = 0 �62�

that generally has multiple solutions.
The case of a linearly polarized wave with �ell=0 provides

another example of the polarization singularity where the
handedness is undefined. The curves along which the polar-
ization is linear are called the L lines.

The transmitted wave is linearly polarized when the con-
dition

��+��,��� = ��−��,��� �63�

is satisfied. So, Eq. �63� describes the loci of points forming
the L lines lying in the projection plane.

C. Ellipticity induced effects

1. C points: Creation and annihilation

When the director is normal to the substrates, the NLC
cell is homeotropically aligned and dz=1. In this case the
transmission matrix �43� is diagonal and its elements in the
circular basis are given by

t�,� = t+, t�,−� = t−, t� = �te � to�/2, �64�

where the transmission coefficients

te,o = te,o�qx� = �cos��e,o� − i	e,o sin��e,o��−1 � te,o���
�65�

are expressed in terms of the phases

�e = qz
�e�h = n�n�

−1�n�
2 − qx

2h, �o = qz
�o�h = �n�

2 − qx
2h ,

�66�

and the amplitudes 	e,o defined in Eq. �46�.
Owing to the cylindrical symmetry of the homeotropic

structure, the transmission coefficients �65� do not depend on
the azimuthal angle of the incidence plane ���inc. From
Eq. �58� another consequence of this symmetry is that the
azimuth �p−�p

�inc�, and the ellipticity of the transmitted wave
depend only on the difference of the azimuthal angles: �
−�p

�inc�. It follows that the sole effect of changing the polar-
ization azimuth of the incident wave is the rotation of the
polarization ellipse field by the angle �p

�inc�. So, we focus our
attention on the effects governed by the ellipticity of the
incident wave, �ell

�inc�.
From Eqs. �58� and �64�, the C� points may appear only if

the condition

(a)

(b)

(c)

FIG. 3. �Color online� Arrangement of the polarization ellipses
around the C points of three different types. �a� Star: IC=−1 /2 and
NC=3. �b� Lemon: IC= +1 /2 and NC=1. �c� Monstar: IC= +1 /2
and NC=3.
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�t�,−��
�t�,��

�
�t−�
�t+�

=
1 + ��ell

�inc�

1 − ��ell
�inc� �67�

is satisfied. Another form of this condition is

Re F��� = − �
2�ell

�inc�

1 + ��ell
�inc��2 � �ell�inc� , �68�

F��� =
2te���t

o
*���

�te����2 + �to����2
=

exp�i��
cosh�ln�te� − ln�to��

, �69�

where �=2��ell
�inc���1+ ��ell

�inc��2�−1, �=arg�teto
*�, �ell=−� is the

ellipticity of the C� point, and �inc=sgn��ell
�inc�� is the handed-

ness �helicity� of the incident wave. Solutions of Eq. �68�
define the radii of circles containing the C points.

Plots depicted in Fig. 4 demonstrate nonmonotonic behav-
ior of the function Re F that enter the left-hand side of Eq.
�68�.

The experimentally relevant case of the nematic cell filled
with the LC mixture E7 is shown in Fig. 4�a�. It is charac-
terized by the weak anisotropy of the transmission ampli-
tudes �te� and �to�, so that �1− �te� / �to��10−4 for the incidence
angles up to 60°. For such cells, the phase of the function
�69�, �, can be approximated by the difference in optical
path of the ordinary and extraordinary waves, �=�e−�o. So,
the formula

F��� � F0��� = exp�i��, � = �e − �o, �70�

provides a high accuracy approximation for the expression
�69� and, for the LC mixture E7, the deviation max�F−F0�
can be estimated to be better than 5.0�10−4.

The radii of the circles with the C points can now be
accurately located by solving the approximate equation
cos �= �� obtained from Eq. �68� by using the expression
�70�. The result can be written as two sequences of radii,

����0�� � arccos���, ����k
����� � � arccos��� + �k,

k = 1, . . . ,N , �71�

where N is determined by the number of solutions and the
circles of each sequence, �k

�+� and �k
�−�, are numbered by the

nonnegative integer k in nondecreasing order of size, so that
�0��0

�����1
�−���1

�+�
¯ ��k

�−���k
�+��¯.

At �=�k
���, there is a pair of the C points on each circle of

the radius �k
��� with the ellipticity and the azimuthal angles

given by

��ell��=�k
��� = �− 1�k�inc � �k, k = 0, . . . ,N , �72�

��k
��� = �p

�inc� � �/2 −
�k

2
arg�t+

*t−��=�k
���, �73�

where �0
�����0 and �� +,−�.

The symmetric arrangement of the C points is a conse-
quence of the symmetry relation

�����,��� = �����,� + ��� �74�

for the amplitudes �58�.
We can now substitute Eq. �58� into the expression for the

index �61� and use the relations �64� and �68� to recast the
result into the form of the index formula

IC = −
1

2
sgn��� Re F�����=�k

��� =
��− 1�k

2
, k = 0, . . . ,N ,

�75�

where the second equality follows because Re F is an oscil-
lating function of � and F�0�=1.

Interestingly, Eq. �75� relates the index of C points and
derivatives of the transmission coefficients with respect to
the incidence angle ���f =cos2 �inc�f /��inc�. The index is de-
termined by the circle number k and alternates in sign start-
ing from IC= +1 /2, which is the index of two C points sym-
metrically arranged in the vicinity of the origin.

So, the pair of C points lying on the smallest circle of the
radius �0 can either be of lemon or monstar types. Interest-
ingly, when � approaches unity and the incident light be-
comes circularly polarized, the radius �0 vanishes and the C
points merge into one C point of the index +1.

This is the limiting case where the incident light is circu-
lar polarized with �ell

�inc�= �1 and a C point may develop
provided that the transmission coefficients meet the isotropy
condition: te= � to. As can be seen from Eq. �65� we have
te= to for the case of normal incidence with qx=sin �inc=0.
The corresponding C point is located at the origin and, as it
was discussed earlier, its index IC equals +1.

At this stage, however, it remains unclear if the above-
mentioned C point is unique. In order to clarify this, we shall
look more closely at the events that happen when the ellip-
ticity parameter � defined in Eq. �68� varies from zero to
unity. At �=0, the incident light is in the state of linear
polarization with �ell

�inc�=0, whereas the incident wave is cir-
cular polarized with ��ell

�inc��=1 at �=1.
The case of linearly polarized incident waves was previ-

ously studied in Refs. �29,30�. Figure 6�a� shows the
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FIG. 4. �Color online� The real part of the function �69� that
enters the left-hand side of Eq. �68� computed for �a� the cell filled
with the NLC mixture E7 and �b� the KDP �potassium dihydrogen
phosphate� birefringent crystal. The parameters are: �a� n�

=1.5246, n� =1.7608, nm=1.5, d=110 �m, and �b� n�=1.5093, n�

=1.4683, nm=1.0, d=300 �m.
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polarization-resolved angular pattern as the polarization el-
lipse field computed at �=0. It can be seen that we have a
sequence of N+1 concentric circles each containing two
pairs of symmetrically arranged C points. The index and the
handedness of the C points alternate in sign along the radial
direction. The C points on the circle of the smallest radius,
�=�0, corresponding to the direction close to the normal in-
cidence are found to be of the lemon type with the index
equal to +1 /2.

Algebraically, from Eq. �71� it follows that the difference
between the radii of the C points �k

�+� and �k+1
�−� , where k

=0, . . . ,N, vanishes with the ellipticity �ell
�inc� approaching

zero. So, at �ell
�inc�=0, the angular polarization structure is

characterized by the presence of degeneracy, which is a con-
sequence of the additional symmetry relation

�����,��� = ��−���,� − ��� . �76�

The symmetry-breaking effects due to nonvanishing ellip-
ticity of the incident wave are illustrated in Figs. 6�b� and
6�c� for small values of �ell

�inc�. This is the case when the
relation �76� breaks down removing the above degeneracy,
so that �k

�+��k+1
�−� at �ell

�inc��0.
As is schematically illustrated by Fig. 5�a�, there is an-

other type of degeneracy which takes place when the ellip-
ticity parameter � reaches a local maximum of the function
Re F such as the one marked by a box in Fig. 4�a�. In con-
trast to the above-discussed case of linear polarization, the
number of C points changes as the parameter � and the el-
lipticity �ell

�inc� pass through their critical values �c and ��c�.
The picture shown in Fig. 5�a� is typical of a saddle-node

�tangent� bifurcation �56,57�. Such bifurcations occur at the
incidence angles represented by the values of the radii �see
Eq. �56�� at local extrema of the real part of the function
�69�. By applying the approximation �70�, these radii can be
estimated from the solutions of the equation

����k
�c��� � �k, k = 0, . . . ,N , �77�

obtained from Eq. �71� by setting arccos���=0.
Given the critical value of the radius, �=�k

�c�, we can use
Eq. �68� to deduce the relations

�k
�c� = �Re F��k

�c���, �k
�c��k

�c� = − 1 + �1 − ��k
�c��2, �78�

and to compute the corresponding values of the parameter �
and the ellipticity: �=�k

�c� and ��ell
�inc� � =�k

�c�. It is also not dif-
ficult to show that �0

�c�=0 and �k
�−���k

�c���k
�+�.

Our analysis suggests that the ellipse field undergoes a
sequence of tangent bifurcations as the magnitude of the el-
lipticity ��ell

�inc�� increases from zero to unity. There are two
pairs of the C points with �=�k

�−� and �=�k
�+� that merge and,

subsequently, annihilate as the governing parameter passes
through the bifurcation point with ��ell

�inc��=�k
�c� and �k

�+�=�k
�−�.

In addition, an important consequence of the index for-
mula �75� is that the indices of the C points involved in a
tangent bifurcation differ only in sign, so that the total sum
of indices remains intact. Obviously, this result agrees with
the conservation law of the total topological index.

Note, however, that, within the approximation �70�, the C
points cannot merge and annihilate provided the incident
wave is not circular polarized. Mathematically, the difficulty
is that, for the approximate function cos �, the critical values
of the ellipticity are all equal to unity, �k

�c�=�k
�c�=1. So, we

arrive at the conclusion that the difference 1−�k
�c� is deter-

mined by the accuracy of the approximation �70�.
For the cell filled with the LC mixture E7, the first three

critical values of the ellipticity �3
�c��2

�c��1
�c� turned out to

be very close to unity: 1−�1
�c��1.22�10−6, 1−�2

�c��1.17
�10−5, and 1−�3

�c��4.16�10−5. The polarization-resolved
angular patterns presented in Fig. 7 are computed at the three
different values of �ell

�inc�: �a� �3
�c��ell

�inc�=�2
�c�−10−7�2

�c�; �b�
�2

�c��ell
�inc�=�1

�c�−10−7�1
�c�; �c� �1

�c��ell
�inc�=�1

�c�+10−61.
The pairs of the C points with k=3, k=2, and k=1 are shown
to coalesce and disappear in succession as the ellipticity
passes sequentially through �3

�c�, �2
�c�, and �1

�c�.
So, in the limit of circular polarization with �ell

�inc�=1, we
have the pattern where the only C point is located at the
origin. The index of this C point is IC= +1. This result is in
agreement with the Poincaré-Hopf theorem linking the Euler
characteristics � of a two-dimensional manifold and the total
topological charge �index� of a smooth vector field on the
manifold �8,58�. In our case, it can be concluded that �
=2IC is the total index, where �= +2 is the Euler character-
istics of a sphere.

So far, we considered bifurcations at the local extrema
that, according to Eq. �77�, are in one-to-one correspondence
with the extrema of the function Re F0=cos �. Thus, such
bifurcations are governed by the phase difference between
ordinary and extraordinary waves, �=�e−�o. As is shown in
Fig. 7, they are typically characterized by extremely small
differences between unity and the critical values of the ellip-
ticity. For this reason they cannot be detected experimentally.

From the above discussion it can be inferred that the criti-
cal values might be lowered only if the approximation �70�
does not work well. In particular, this is the case for the

β > β
β = β

β < β

c

c

c

(a)

β > β

β = β
β < β < β

β = β

u

u

b u

b

(b)

FIG. 5. �Color online� Schematic representation of creation and
annihilation of C points governed by saddle-node bifurcations of
the solutions of Eq. �68� that take place within the areas marked by
the boxes in Figs. 4�a� and 4�b�. �a� C points annihilate as the
governing parameter � passes through its critical value �c in the
immediate vicinity of unity. �b� Two successive bifurcations result
in creation and annihilation of C points at �=�b and �=�u,
respectively.
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graph of Re F plotted in Fig. 4�b� where the anisotropic ma-
terial is represented by the KDP �potassium dihydrogen
phosphate� birefringent crystal. The deviation max�F−F0�
can be estimated at about 7.0�10−2, so that max�1−�k

�c��
�0.02.

The curve shown in Fig. 4�b� also demonstrates that the
breakdown of the approximation �70� may manifest itself in
additional extrema formed away from the neighborhood of
unity. As is illustrated in Fig. 5�b� for the region marked by
the box in Fig. 4�b�, these local extrema result in two suc-
cessive tangent bifurcations leading to creation and annihila-
tion of two different pairs of the C points.

In contrast to the extrema described by the phase differ-
ence �, this is the multireflection which is primarily respon-
sible for additional small-scale oscillations. Typically, it is a
challenging task to resolve accurately these ripplelike and
noisy oscillations in polarimetry measurements.

2. Avoided L-line crossings

Now we pass on to discussing the L lines which are the
curves of linear polarization in the observation plane. Ana-
lytically, substituting Eq. �58� into the relation �63� and using
the matrix elements �64� give the equation

2�ell
�inc� Re F��� + �1 − ��ell

�inc��2�sin�2��Im F��� = 0, �79�

describing L lines for the case of the homeotropically aligned
NLC cell.

We begin with the results for the case of linearly polarized
incident waves studied in Refs. �29,30�. At �ell

�inc�=0, from Eq.
�79� there are two straight lines of linear polarization: �
=�p

�inc� and �=�p
�inc�+� /2, where the polarization vectors of

incident and transmitted waves are parallel, �p
�tr���p

=�p
�inc�. Other L lines are circles separating the circles of C

points. Interestingly, the radii of the circles, �k
�L�, can be

found as the solutions of Eq. �77� with k=1, . . . ,N.
When k is even, it can be concluded that, similar to the

straight L lines, �p��p
�inc�. If k is odd, the polarization vec-

tor of the transmitted wave rotates with the azimuthal angle
of the incidence plane and �p��p

�inc�+2�.
The structure of the L lines at �=0 is shown in Fig. 6�a�,

where the L lines are represented by the solid lines bounding
the regions of left- and right-handed polarization. As it was
discussed in the preceding section, the case of linear polar-
ization possesses additional symmetry described by the rela-
tion �76�. This symmetry is broken at nonzero values of the
ellipticity and the case of linear polarization is structurally
unstable.

In Figs. 6�b� and 6�c�, we show that even small values of
the ellipticity, �ell

�inc�, change the structure of the intersecting L
lines depicted in Fig. 6�a� into a family of nonintersecting
closed L lines. The figures clearly demonstrate what might
be called, by analogy with the well-known avoided level
crossings in the quantum mechanics, the effect of avoided
L-line crossings.

The closed L lines gradually evolve into the circles as the
ellipticity approaches the limit of circular polarization with
��ell

�inc��=1. The radii of the C circles �k
�L� can be found by

solving the equation Re F���=0. It follows that �k
�−� at �ell

�inc�

=0 is equal to �k
�L� at ��ell

�inc��=1. So, we have a family of the
concentric circles describing both the C points for linearly
polarized incident waves �see Fig. 6�a�� and the L lines for
circular polarized incident waves �see Fig. 7�.

IV. RESULTS AND DISCUSSION

The analytical results presented in the previous section
completely characterize the polarization-resolved angular

FIG. 6. �Color online� Polarization-resolved conoscopic patterns
computed as polarization ellipse fields in the observation plane for
the homeotropically oriented cell filled with the NLC mixture E7 at
small values of the ellipticity: �a� �ell

�inc�=0.0, �b� �ell
�inc�=0.01, and �c�

�ell
�inc�=−0.01. The parameters used in calculations are as follows: the

wavelength is �inc=632.8 nm; the polarization azimuth is �p
�inc�=0;

the cell thickness is d=110 �m; the scale factor is r=5 mm; nm

=1.5, n�=1.5246, and n� =1.7608. The C points of the star, the
lemon, and the monstar types are marked by stars, diamonds, and
triangles, respectively. L lines are represented by solid lines. Left-
handed and right-handed polarization is, respectively, indicated by
solid and open ellipses.
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patterns of light transmitted through the NLC cell for the
homeotropic orientational structure in terms of the polariza-
tion singularities. These patterns can be conveniently repre-
sented as the fields of polarization ellipses and characterize
the polarization structure behind the conoscopic images mea-
sured in experiments with two crossed polarizers.

After computing the loci of the C-points and the L lines,
we have deduced a simple formula for the index of the C
points �75� and studied what happens to the polarization sin-
gularities if the ellipticity and the polarization azimuth of the
incident wave vary. It turned out that the C points may ap-
pear and disappear when the pattern undergoes bifurcations
at some critical values of the ellipticity. In addition, the pat-
terns formed in the neighborhood of zero ellipticity �linearly
polarized incident light� are characterized by the appearance
of avoided L-line crossings.

Now we compare the experimentally measured and the
theoretically calculated polarization-resolved angular pat-

terns for the homeotropically oriented NLC cell. These pat-
terns are shown in Figs. 8–10 as the fields of polarization
ellipses in the observation plane where the polar coordinates
are defined in Eq. �56� and the scale factor r is taken to be
5 mm. The parameters used in our calculations are described
in Sec. II. They are also listed in the caption of Fig. 6.

In Fig. 8, we present the results obtained for the linearly
polarized wave with �ell

�inc�=0.0, whereas the cases of ellipti-
cally polarized incident light with �ell

�inc�=0.26 and �ell
�inc�

=0.63 are shown in Figs. 9 and 10, respectively. As is evi-
dent from the figures, the C points are arranged in chains
formed by four rays along which they alternate in sign of the
handedness and of the index. The L lines are typically rep-
resented by the closed curves separating the regions of dif-
ferent polarization handedness. It is also clear that the pre-
dictions of the theory discussed in Sec. III C are in good
agreement with the experimental data.

In addition, by making a comparison between the patterns
with different values of ellipticity we arrive at the conclusion
that, when the ellipticity changes, the C points mainly move
along the radial direction and their azimuthal angles remain
approximately constant. Theoretically, it can be shown that,
at �p

�inc�=0, the azimuthal angle ���k
���� given by Eq. �73� does

not depart appreciably from � /4 provided the magnitude of
the ellipticity ��ell

�inc�� is not in the immediate vicinity of unity.

FIG. 7. �Color online� Polarization-resolved conoscopic patterns
of the homeotropically oriented NLC cell computed at different
values of the ellipticity. Three cases are shown: �a� �3

�c��ell
�inc�

�2
�c�; �b� �2

�c��ell
�inc��1

�c�; �c� �1
�c��ell

�inc�1. Other parameters are
listed in the caption of Fig. 6.

FIG. 8. �Color online� �a� Experimentally measured and �b�
theoretically computed fields of polarization ellipses in the obser-
vation plane for the homeotropically aligned cell of the thickness
d=110 �m filled with the NLC mixture E7. The incident wave is
linearly polarized with the polarization azimuth �p

�inc�=0. The C
points of the star, the lemon, and the monstar types are marked by
stars, diamonds, and triangles, respectively. L lines are represented
by solid lines. Left-handed and right-handed polarization is, respec-
tively, indicated by solid and open ellipses.
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By contrast, as is shown in Fig. 7, annihilation of the C
points is accompanied by drastic changes in the azimuth of
the C points, whereas the radius is very close to its critical
value defined in Eq. �77�.

In the pseudo-three-dimensional �x ,y ,�ell
�inc�� space, where

the coordinates in the plane of observation, x and y, are
augmented by the incident wave ellipticity giving the third
dimension, this effect manifests itself in the specific type of
local structure of C lines close to the bifurcation point de-
picted in Fig. 11. In particular, the C curve is shown to
sharply bend toward the bifurcation point. Such bends can be
seen as cusps in the global structure of entwining C lines
presented in Fig. 12.

Figures 11 and 12 suggest that the geometric rearrange-
ments and transformations studied in this paper might be
regarded as pseudodynamics of the polarization ellipse fields
with the ellipticity served as a “time” parameter. In three-
dimensional space, phase singularity lines, whose geometry
depends on a time parameter, were recently investigated in
Ref. �59�.

In conclusion, we note that the homeotropic alignment
presents the simplest case of anisotropic orientational struc-

FIG. 9. �Color online� �a� Experimentally measured and �b�
theoretically computed fields of polarization ellipses for the homeo-
tropically aligned cell filled with the NLC mixture E7. The elliptic-
ity of the incident light is �ell

�inc�=0.26.

FIG. 10. �Color online� �a� Experimentally measured and �b�
theoretically computed fields of polarization ellipses for the homeo-
tropically aligned cell filled with the NLC mixture E7. The elliptic-
ity of the incident wave is �ell

�inc�=0.63 and the polarization azimuth
is �p

�inc��20°.

FIG. 11. �Color online� Right-handed C lines near the bifurca-
tion point with �ell

�inc�=�2
�c� in �x ,y ,�ell

�inc�� space. C points annihilate at
the bifurcation point �0,�2

�c� ,�2
�c��, marked by a black solid diamond

�see also Fig. 7�a��. Curves are computed for the homeotropically
aligned cell filled with the NLC mixture E7.

FIG. 12. �Color online� C lines in the three-dimensional
�x ,y ,�ell

�inc�� space computed for the homeotropically aligned cell
filled with the NLC mixture E7. Bifurcation points where C points
annihilate are shown as black solid diamonds. Two circular points,
�0, 0, 1� and �0, 0, −1�, indicate the C points with the index IC

= +1 formed at circularly polarized incident wave. Right- and left-
handed C points are represented by thick and thin lines,
respectively.
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ture. Our theoretical analysis can be extended to more com-
plicated cases involving both uniaxial and biaxial anisotro-
pies by using the analytical results presented in the
Appendix. These results will be published elsewhere.
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APPENDIX: OPERATOR OF EVOLUTION

Equations �36� and �38� express the transmission and re-
flection matrices in terms of the linking matrix �34�, which is
determined by the evolution operator �26�. In the case of
uniform anisotropy, the operator can be computed as the evo-
lution matrix �39� expressed in terms of the eigenvalues and
the eigenvectors �40� of the matrix �25�.

In this section we consider how the eigenvalue problem
can be solved using the basis of eigenmodes �normal modes�
in a uniformly anisotropic medium. These eigenmodes are
known to be linearly polarized plane waves characterized by

the k̂ dependent refractive indices �44,52,60�.

1. Orthogonality relations

From Eqs. �25a�–�25d�, if the dielectric tensor � is sym-
metric, �ij =� ji, we deduce the relations for the block matrices

M12
T = M12, M21

T = M21, M11
T = M22, �A1�

giving the symmetry identity

MT = G · M · G, G = � 0 I2

I2 0
	 �A2�

for the matrix M.
The left eigenvectors V1� ,V2� ,V3� ,V4�� of the matrix M

can be defined as the right eigenvectors of its transpose MT,

MT · Vi� = �iVi� ⇔ MT · V� = V� · � , �A3�

where V�= �V1�V2�V3�V4�� is the matrix of the left eigenvec-
tors. It is not difficult to prove that the left and right eigen-
vector form a biorthogonal set

�Vi�,V j� = �Vi��
T · V j = �ijNi ⇔ V�T · V = N , �A4�

where N=diag�N1 ,N2 ,N3 ,N4�.
Equation �A2� and the definition �A3� can now be com-

bined to yield the relation

V� = G · V , �A5�

linking the matrices of the left and right eigenvectors, V� and
V. It remains to notice that the identities �A4� and �A5� give
both the orthogonality relation

VT · G · V = N � diag�N1,N2,N3,N4� �A6�

and the formula for inverse of the eigenvector matrix

V−1 = N−1 · VT · G . �A7�

The relations given in Eqs. �31� and �32� represent the spe-
cial case of isotropic media and, thus, immediately follow
from Eqs. �A6� and �A7�.

By combining the identities �32� and �A7� with the ex-
pression for the evolution operator �39�, we derive the link-
ing matrix �34� for the case of uniform anisotropy in the
following form:

W = Vm
−1 · exp− iMh� · Vm = Nm

−1 · W̃

= Nm
−1� W̃11 W̃12

− W̃21 − W̃22

	 , �A8�

W̃ = ṼT · Wd · Ṽ , �A9�

Ṽ = VT · G · Vm, Wd = N−1 · exp− i�h� . �A10�

From Eqs. �A8� and �A9� the matrices W̃ and Wii are sym-
metric, whereas W21

T =−W12. So, we conclude that the trans-
mission matrix T=W11

−1 is symmetric too.
Note that, for a nonabsorbing medium characterized by a

real matrix M, Im M=0, inverse of the matrix �A8� can be
derived by complex conjugation: W−1=W*, where an aster-
isk indicates complex conjugation. In particular, the conser-
vation law

T† · T + R† · R = I2, �A11�

where the superscript † stands for Hermitian conjugation,
can be immediately deduced from the relation

W11
* · W11 + W12

* · W21 = W11
† · W11 − W21

† · W21 = I2.

�A12�

2. Uniformly biaxial media

For plane waves, owing to the Maxwell equation �8b�, the
electric displacement field is transverse, �D ,k�=0. So, as-
suming that the wave vector k lies in the plane of incidence
�the x-z plane�, the vector D can be conveniently defined by

its components in the basis e1�k̂� ,e2�k̂� ,e0�k̂�� k̂�,

D = D1e1�k̂� + D2e2�k̂� , �A13�

k̂ � e0�k̂� = k−1k = q−1�qxx̂ + qzẑ� , �A14�

where e1�k̂�=q−1�qzx̂−qxẑ�, e2�k̂�= ŷ, and q=k /kvac=n is the
refractive index.

Given the electric displacement field �A13�, the electric
field can be found from the constitutive relation

E = �� · D , �A15�

� = �3I3 + ��1d̂ � d̂ + ��2m̂ � m̂ , �A16�

where �i= ���i�−1, ��i=�i−�3, and �� is the inverse dielec-
tric tensor ��� ·�=I3�.
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The Maxwell equations can now be combined with the
relation �A15� to yield the equation for the displacement vec-
tor D in the form of an eigenvalue problem

�t · D = q−2D, �t = P�k̂� · � · P�k̂� , �A17�

where P�k̂�=I3− k̂ � k̂ is the projector onto the plane normal
to the wave vector k. By using the expression for the inverse
dielectric tensor �A16� we can rewrite Eq. �A17� in the ex-
plicit matrix form as follows:

�a−�3 + b�1 − cI2��D1

D2
	 = 0, �1 = �0 1

1 0
	 , �A18�

2a� = ��1�d̃1
2 � d̃2

2� + ��2�m̃1
2 � m̃2

2� , �A19�

b = ��1d̃1d̃2 + ��2m̃1m̃2, �A20�

c = 1 − �3q2 − a+, �A21�

where d̃i=q(d̂ ,ei�k̂�) and m̃i=q(m̂ ,ei�k̂�). Then the disper-
sion relation �Fresnel’s equation�

�1 − �3q2�1 − �3q2 − ��1�q2 − �d̂,q�2� − ��2�q2 − �m̂,q�2��

− ��1��2q2�d̂ � m̂,q�2 = 0 �A22�

can be derived as the condition for the system of linear equa-
tions �A18� to have a nonvanishing solution.

The Fresnel equation describes the wave surface. In our
case solving the algebraic equation �A22� at qx=nm sin �inc
gives the values of the z component of the vector q, qz.
Generally, there are four roots of Eq. �A22�,
qz

�1� ,qz
�2� ,qz

�3� ,qz
�4��, that form a set of the eigenvalues

�1 ,�2 ,�3 ,�4� defined in Eq. �40�. Each root qz
�i� corresponds

to the eigenwave propagating inside the cell with the dimen-
sionless wave vector qi= �qx ,0 ,qz

�i�� and the refractive index
ni=qi. The corresponding polarization vector of the electric
displacement field is given by

D�i� =�cos �ie1�k̂i� + sin �ie2�k̂i� , �c�qz=qz
�i� � 0,

− sin �ie1�k̂i� + cos �ie2�k̂i� , �c�qz=qz
�i�  0,�

�A23�

where

2�i = arg��a− + ib��qz=qz
�i� = arg���1�d̃1 + id̃2�2 + ��2�m̃1

+ im̃2�2�qz=qz
�i�. �A24�

From Eq. �A24� it is clear that the azimuthal angle �i be-
comes indeterminate in the degenerate case when the coeffi-
cients a− and b are both identically equal to zero. Typically,
as far as the eigenmodes are concerned, this case does not
present any fundamental difficulties. It just means that the
azimuthal angles of the degenerate eigenmodes can be pre-
scribed arbitrarily. Such freedom of choice, however, does
not affect the evolution operator which remains uniquely de-
fined.

The procedure to determine the characteristics of the
eigenmodes involves the following steps: �a� evaluation of
the eigenvalues qz

�i� by solving the Fresnel equation �A22�;
�b� calculation of the polarization vectors of the electric dis-
placement field D�i� by using the formula �A23�; �c� comput-
ing the polarization vectors of the electric and magnetic
fields from the relations: E�i�=�� ·D�i� �see Eq. �A15�� and
�H�i�=qi�E�i� �see Eq. �16��.

As a result, we obtain the eigenvectors expressed as fol-
lows:

Vi � �EP
�i�

HP
�i� 	, HP

�i� = � qiD1
�i�

qz
�i�D2

�i� 	 , �A25�

�−1EP
�i� = �qz

�i�D1
�i�/qi

D2
�i� 	 + qx���1�qi,d̂��d̂,D�i��

+ ��2�qi,m̂��m̂,D�i����1

0
	 . �A26�

3. Uniaxial anisotropy

Now we apply the above procedure to the limiting case of
uniaxial anisotropy with �2=�3 and ��2=��2=0. At ��2
=0, the Fresnel equation �A22� takes the factorized form and
the values of qz can be found as roots of two quadratic equa-
tions.

The first equation 1−�3q2=0 represents the spherical
wave surface. The corresponding eigenmodes are known as
the ordinary waves. There are two values of qz,

qz
��o� = � �n�

2 − qx
2, �A27�

where n�
2 =��3����, that are equal in value but opposite in

sign. When, similar to the incident and transmitted waves,
the z component of the wave vector �and the vector q� is
positive, the eigenmode might be called the refracted �for-
ward� eigenwave. In the opposite case where, similar to the
reflected wave, qz

��� is negative, the eigenmode will be re-
ferred to as the reflected �backward� eigenwave. So, Eq.
�A27� describes two ordinary eigenmodes: the refracted
eigenwave with qz=qz

�+o��0 and the reflected eigenwave
with qz=qz

�−o�0.
The second equation

q2 + ua�q,d̂�2 − n�
2 = 0, �A28�

where n�
2=��1���� and ua=−��1 /�1= �n�

2−n�
2 � /n�

2 is the
anisotropy parameter, gives the values of qz for the eigen-
modes known as the extraordinary waves. These are given
by

qz
��e� = �1 + uadz

2�−1− uadzdxqx � �D� , �A29�

D = n�
2�1 + uadz

2� − qx
2�1 + ua�dx

2 + dz
2�� , �A30�

where dx= �d̂ , x̂� and dz= �d̂ , ẑ�.
At ua�0 �ua0�, in the x-z plane, Eq. �A28� describes

the ellipse with the major �minor� semiaxis of the length n�
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oriented perpendicular to the projection of the director �4� on
the plane of incidence �dx ,0 ,dz�. The length of minor �major�
semiaxis, ñ�= �n�

−2−ua�dy /n��2�−1/2, depends on the y compo-
nent of the director and varies from n� to n� as dy

2 increases
from zero to unity. Clearly, degeneracy in refractive indices
with no=n�e may occur only if the director is in the inci-
dence plane ��d=0�. Additionally, the matching condition
for the x components of q and the director qx�nm sin �inc
= �nodx� �no sin �d needs to be met.

The wave vectors and the refractive indices of the normal
modes are determined by the relation

q�� = kvac
−1 k�� = qxx̂ + qz

����ẑ = n��k̂��, � � o,e� ,

�A31�

where n��=q��, n�o=no=n� is the ordinary refractive in-
dex and n�e is the refractive index of the extraordinary wave

propagating along the unit vector k̂�e.
By substituting ��2=0 into Eq. �A23� we can obtain the

polarization vectors of the electric displacement field �29,30�
as follows:

D��o� = − q�o
2 q�o � d̂ = − n�

2 q�o � d̂ , �A32a�

D��e� = q�e
2 P�k̂�e� · d̂ = q�e

2 d̂ − �d̂,q�e�q�e.

�A32b�

Then, following the procedure described at the end of the
preceding section, we find the polarization vectors of the
electric field for the eigenmodes

�−1E��o� = − q�o � d̂ , �A33a�

�−1E��e� = d̂ − n�
−2�d̂,q�e�q�e. �A33b�

The result for the magnetic field of the normal modes is

H��o� = n�
2 d̂ − �d̂,q�o�q�o, �A34a�

H��e� = q�e � d̂ . �A34b�

Solution of the eigenvalue problem can now be presented
in the matrix form as follows:

� = diag�qz
�+e�,qz

�+o�,qz
�−e�,qz

�−o��, V = �E+ E−

H+ H−
	 ,

�A35�

where

E� = �Ex
��e� Ex

��o�

Ey
��e� Ey

��o� 	, H� = � Hy
��e� Hy

��o�

− Hx
��e� − Hx

��o� 	 .

�A36�

Owing to the orthogonality relations �A6� the matrix

N = VT · G · V = diag�N+,N−� �A37�

is diagonal and its nonvanishing elements

N� = �N�e 0

0 N�o
	, N� = 2�ẑ,E��� � H���� = 2�EP

���,HP
����

�A38�

are proportional to the normal components of the Poynting
vector of the eigenmodes.

Substituting the expressions for the electric and magnetic
fields of the eigenmodes �see Eqs. �A33� and �A34�, respec-
tively� into Eq. �A38� gives the diagonal elements of the
matrices N+ and N−,

�−1N�o = 2qz
��o��n�

2 − �q�o,d̂�2� , �A39�

�−1N�e = 2n�
−2qz

��e��n�
2 − �q�e,d̂�2� + dz�q�e,d̂��n�e

2 − n�
2 �� .

�A40�

The eigenvalues of ordinary and extraordinary waves that
enter the matrix of eigenvalues, �, are given by Eqs. �A27�
and �A29�, respectively. The elements of the 2�2 block ma-
trices �A36� that define the matrix of eigenvectors �A35� are
the lateral components of the vectors �A33� and �A34�.

These analytical expressions can now be substituted into
the linking matrix �A8� to write explicitly the elements of the

transfer matrix �36�. For the homeotropic structure with d̂
= ẑ, it is rather straightforward to show that the result is given
by Eqs. �41�–�46�.
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