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Taking into account the characteristics of a free scalar field in elliptic coordinates, a new dynamical variable
is found for the free electromagnetic field. The conservation law associated to this variable cannot be obtained
by direct application of standard Noether theorem since the symmetry generator is of second order. Conse-
quences on the expected mechanical behavior of an atomic system interacting with electromagnetic waves
exhibiting such a symmetry are also discussed.
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I. INTRODUCTION

Symmetries in physical systems manifest as dynamical
constants. In this way, via Noether theorem, the homogeneity
and isotropy of free space is directly related to the conserva-
tion of linear momentum P� and angular momentum J�, re-
spectively, and time homogeneity is related to energy E con-
servation. For a system of particles interacting through
intermediate fields, global conservation laws are usually
translated, via the equations of motion, into local conserva-
tion laws describing the interchange of dynamical variables
between particles and fields. Under proper circumstances, the
effects of macroscopic materials on the fields are synthesized
into boundary conditions for the fields. These boundary con-
ditions define a set of field configurations �modes� that sat-
isfy them. The mean value of the different dynamical vari-
ables can be evaluated for each mode inside the region where
boundary conditions are imposed. If this value of the dy-
namical variable can change in time just through its flow on
the boundaries, a conservation law for the dynamical vari-
able associated to the field holds. For instance, the geometry
of waveguides define the electromagnetic �EM� modes and
the parameters which characterize them are linked to dy-
namical properties of the field. For rectangular symmetry, the

Cartesian wave vector k� is related to the momentum P� of the
EM field, the frequency to the energy E per photon, and the
polarization to the spin angular momentum along k�, Sz. For
cylindrical symmetry the energy E per photon, linear mo-

mentum P̂z, orbital momentum along the symmetry axis Lz,
and helicity Sz, define the parameters that characterize the
electromagnetic Bessel modes: frequency �, wave vector
component along the symmetry axis kz, azimuthal integer m,
and polarization �. As shown 20 years ago, Bessel modes
�1�, as well as other electromagnetic configurations coincid-
ing with modes inside waveguides of a given geometry, can
be generated approximately in free space by interferometric
means. This has lead to the possibility of creating, in the
quantum realm, photons with a variety of quantum numbers
which, in fact, can be entangled �2�.

The purpose of this work is to study the dynamical prop-
erties of electromagnetic waves in elliptic-cylindrical coordi-

nates. The corresponding modes are known as Mathieu
fields. The cylindrical symmetry leads, under ideal condi-
tions, to propagation invariance along the symmetry axis.
Four of the five dynamical variables behind the parameters
that characterize Mathieu modes can be directly identified.
The symmetry generator behind the fifth parameter is trivi-
ally obtained from the wave equations but its relation to the
electromagnetic dynamical variable is not, since the symme-
try generator is of second order. We shall give an explicit
expression for this dynamical variable.

The zeroth order Mathieu beams were first generated in
free space by an annular slit illuminated with a strip pattern
produced by a cylindrical lens �3�; higher order Mathieu
beams have already been generated by holographic means
�4�. Given the increasing use of light to control the motion of
atomic systems and microparticles we shall also make an
analysis of the behavior of an atom in a Mathieu field. Em-
phasis will be given on the dependence of mechanical effects
on the values of that parameter and the associated dynamical
variable.

II. MASSLESS SCALAR FIELD IN ELLIPTIC
COORDINATES

Elliptic-cylindrical coordinates are defined by the trans-
formations �5�

x + ıy = f cosh�u + ıv�, u � �0,��, v � �0,2�� ,

z = z , �1�

where the real valued constant f is half the interfocal dis-
tance and the coordinates u and v are the so-called radial-
and angular-like variables, while z is the axial variable. Uni-
tary vectors related to a given coordinate x will be written êx.
The relevant scaling factor for this coordinate system is

h = hu = hv = f��cosh 2u − cos 2v�/2. �2�

Considering the solution of the wave equation under the as-
sumption of propagation invariance along the z direction,

�2� = �ct
2 �, ��r�,t� = ��r���eı�kzz−�t�, �3�

the Helmholtz equation is obtained—partial derivatives with
respect to a given variable x are compactly denoted by �x,
also the notation �ct=

1
c �t will be used. In elliptic coordinates,

the Helmholtz equation takes the form
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� 1

h2 ��u
2 + �v

2� + k�
2 ���u,v� = 0, k�

2 =
�2

c2 − kz
2. �4�

This equation is separable, ��u ,v�=U�u�V�v�, and yields the
set of differential equations

��u
2 − b + 2q cosh 2u�U�u� = 0, �5�

��v
2 + b − 2q cos 2v�V�v� = 0, �6�

known as the modified and ordinary Mathieu equations, in
that order, which will be called radial and angular Mathieu
differential equations from now on. The real constant q is
related to both half the interfocal distance f and the magni-
tude of the perpendicular component of the wave vector k�

by

q = �fk�/2�2. �7�

From a field theoretical point of view, q is directly related to
the perpendicular momentum carried by the wave �. For a
given value of q, the possible values of b compatible with the
boundary condition V�v+��=V�v� or V�v+2��=V�v� are
called the characteristic values �6,7�. They are usually or-
dered in ascending values and renamed an �bn� for even, p
=e, �odd, p=o� solutions. The parity of the order n deter-
mines if the function is �-or 2�-periodic for even or odd
order n, respectively. The mathematical set ���u ,v��p,n,q�	 is
complete and orthogonal �8�.

From Mathieu radial �5� and angular �6� equations, it is
straightforward to construct an operator that shares eigen-
functions with the squared transverse momentum,

B��u,v� = b��u,v� ,

B = −
f2

2h2 �cos 2v�u
2 + cosh 2u�v

2� . �8�

A physical interpretation of the dimensionless eigenvalue b
can be found writing the operator B in Cartesian coordinates

B = − �x2 −
f2

2
��y

2 − �y2 +
f2

2
��x

2 + 2xy�x�y + x�x + y�y ,

B =
1

2
�lz+lz− + lz−lz+� −

f2

2
��

2 � l�z+�l�z−� −
f2

2
��

2 , �9�

where the operator lz�=−ı��r�� f êx���� �z, in the context of
the quantum mechanics of a particle, is proportional to the z
component of the angular momentum with respect to either
focii of the elliptic-cylindrical coordinate system.

Previous studies of the Helmholtz equation, Eq. �4�, al-
ready report this identification �9,10�. That is the case of the
analysis of the spectra of a quantum elliptic billiard for
which B commutes with the free particle Hamiltonian �9,11�.
In fact, 	= lz+lz−+2mf2H is a constant of motion of the clas-
sical analog of this system with m the mass of the particle
and H the classical Hamiltonian within the billiard. It has
been found �9,12� that, if lz+lz−
0 then 	
2mf2E and the
classical trajectory of the particle repeatedly touches an el-
lipse characterized by cosh ulim=	 /2mf2E. While, if lz+lz−

�0 the trajectory always lies between the focii touching a
hyperbola determined by cos vlim=	 /2mf2E. In that case 	
is a positive number and lz+lz− has a lower limit given by
−2mf2E.

The normalized amplitude of the scalar wave function
��u ,v� is illustrated in Fig. 1 for positive and negative values
of l�z+�l�z−�. Notice that, in analogy to the classical particle
problem, for l�z+�l�z−�
0 ellipses can be observed where the
amplitude is approximately constant while for l�z+�l�z−��0
hyperbolic patters of similar amplitude are clearly distin-
guished.

III. DYNAMICAL VARIABLES OF AN ELLIPTIC
ELECTROMAGNETIC MODE

Given a complete set of scalar solutions ���	 of the wave
equation, a joint set of complete electromagnetic modes can
be obtained by considering the scalar functions �� as Hertz
potentials �13,14�. In Coulomb gauge, any solution of the

wave equation for the vector electromagnetic field A� �r� , t�

�2A� �r�,t� = �ct
2 A� �r�,t� �10�

can be written as a superposition of modes

A� ��r�,t� = A�
�TE��ct�� � �êz���

+ A�
�TM���� ���� · êz��� − êz��

2 ��� , �11�

where � denotes the labels that characterize a given scalar
solution ��. The constants A�

�TE� and A�
�TM� are proportional

to the amplitude of the transverse electric �TE� and trans-
verse magnetic �TM� EM fields as can be directly seen from

their connection with the associated electric E� and magnetic

B� fields,

E� = − �ctA� , B� = �� � A� . �12�

As usual, although expressions may involve complex func-
tions, just the real part of them defines the corresponding

FIG. 1. �Color online� Normalized even Mathieu’s functions �a�
��u ,v��p=e,n=9,q=10� and �b� ��u ,v��p=e,n=9,q=80�. The corresponding
values of the parameter b are 81.6283 and 124.1067, so that
l�z+�l�z−�=61.6283 and l�z+�l�z−�=−44.1067, respectively. The half fo-
cal distance establishes length units, f =1.
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physical quantities. In the case of propagation invariant elec-
tromagnetic fields in elliptic coordinates

A� ��r�,t� = A�TE�M� �� + A�TM�N� ��, �13�

where the vector operators are given by the expressions

M� =
1

h
�ct�êu�v − êv�u�, N� =

1

h
�z�êu�u + êv�v� − êz��

2 .

�14�

As a consequence,

E� ��r�,t� = − A�TE��ctM� �� − A�TM��ctN� ��,

B� ��r�,t� = A�TE��ctN� �� − A�TM��ctM� ��. �15�

In general, it is expected that the electromagnetic modes
given by Eq. �11� inherit symmetries of the scalar field with
analogous dynamical variables. For the elliptic-cylindrical
case, invariance under space reflection with respect to the Y
axis leads to parity conservation. Meanwhile, invariance un-
der spatial translation along the main direction of propaga-
tion of the mode is reflected in the fact that the field momen-
tumlike integral

Pz
�i,�,��� =

1

4�c

 d3x��E� �

�i� � B� ��
�i��z�, i = TE,TM �16�

integrated over the whole space is independent of time. Time
homogeneity implies that the energylike integral

E�i,�,��� =
1

4�

 d3x�E� �

�i��r�,t� · E� ��
�i��r�,t� + B� �

�i��r�,t� · B� ��
�i��r�,t��

�17�

is also constant. In fact, Pz
�i,�,��� and E�i,�,��� are proportional

with ckz /�, the constant of proportionality. By construction
k�=��2 /c2−kz

2 would yield the magnitude of the trans-
verse component of the momentum which determines the
separation constant q, Eq. �7�.

Standard quantization rules require a proper normalization
selection for the EM modes so that each photon carries an
energy �. Using Eq. �12a� from Ref. �15�



−�

�

dz

0

�

du

0

2�

dvhuhv���u,v,z�����u,v,z�

= 2�2f2s���kz − kz����q − q���n,n�, �18�

se,2n,q =
Ve,2n,q�0�Ve,2n,q��/2�

A0
�2n� ,

se,2n+1,q = −
Ve,2n+1,q�0�Ve,2n+1,q� ��/2�

q1/2A1
�2n+1� ,

so,2n+2,q =
Vo,2n+2,q� �0�Vo,2n+2,q� ��/2�

qB2
�2n+2� ,

so,2n+1,q =
Vo,2n+1,q� �0�Vo,2n+1,q��/2�

q1/2B1
�2n+1� , �19�

where Am
�n� and Bm

�n� are the standard Mathieu coefficients
�6,7�, this normalization is trivially performed. Defining now
the generalized number operator:

N̂�
�i� =

1

2
�â�

�i�†â�
�i� + a�

�i�â�
�i�†�, �a�

�i�,a��
�j�†� = �i,j��,��, �20�

the quantum energy and the momentum along z operators
take the form

Ê = �
i,�

�N̂�
�i�, P̂z = �

i,�
kzN̂�

�i�, �21�

allowing the identification of kz and � with the photon
momentum along z and the photon energy, in that order.

For scalar fields and in the case of space-time continuous
symmetries, the generators of infinitesimal transformations
become good realizations of the corresponding dynamical
operator. In that sense, the rotationlike operator B can be
related to the product of angular momenta l�z+�l�z−� and the
eigenvalue equation B��,kz,p,n=b��,kz,p,n is interpreted as a
manifestation of the scalar wave function ��,kz,p,n carrying a
well-defined value of that angular momentum product.

The standard procedure to find the electromagnetic analog
of l�z+�l�z−� would be to apply Noether theorem to the field
Lagrangian

LEM = �1/4����A� − ��A�����A� − ��A�� �22�

for the transformation generated by B on space variables and
on the electromagnetic fields A�. Standard Noether theorem
�16� concerns first order differential operators as generators
of continuous symmetries, so that, if under an infinitesimal
transformation that modifies the coordinates and field func-
tions by

�x� = �
�

X�
� ���, �A� = �

�

��
� ���, �23�

the Lagrangian is left invariant, the current

��
� = − �

�

�L
�A�,�

���� − �
�

A�,�X�
�� − LX�

� �24�

has zero divergence ����
�=0. As a consequence ��

0 can be
considered as the density of a dynamical variable whose in-
tegrated value over a volume can change only due to the flux
of the current ��

i through a surface. For the circular cylin-
drical problem, the assumption of isotropy of space via the

effects of the infinitesimal rotation generator �r���� �z on A�

and x� leads to the identification of

Jz =
1

4�c



V
�

i

Ei�r� � �� �zAid
3x +

1

4�c



V
�E� � A� �zd

3x ,

�25�

as the z component of the angular momentum of the electro-
magnetic field in a volume V �16�. The first integral involves

the anti-Hermitian differential operator �r���� �z=�� and is
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associated to the orbital angular momentum �notice that the

standard Hermitian angular momentum operator is L̂z=
−ı���. The second integral is independent of the choice of
origin, arises from the field variation �A�, and is directly
related to the polarization of the field. It has been identified
with the field helicity �17,18�. It can be shown that in the
Coulomb gauge �19�

J� =
1

4�c



V
r� � �E� � B� �d3x −

1

4�c
�

S
E� ��r� � A� � · n̂�d2x ,

where S is the surface enclosing the volume V.
Since the electromagnetic field A� has a well-defined

transformation rule under rotations which is independent of
the origin of space coordinates, the second term in Eq. �25�,

Sz =
1

4�c



V
�E� � A� �zd

3x , �26�

is the fourth dynamical variable associated to the Mathieu
electromagnetic field. This can be directly verified by substi-
tuting the general expression for the vectors E� and A� in terms
of the elliptic modes. As usual, for a given value of mode
indices �, the helicity Sz is different from zero only if the
amplitudes A�TM� and A�TE� are complex. The concept of
circular and linear polarization of Mathieu waves is analyzed
in Ref. �20� classically. The quantum analysis can be carried
out in complete analogy with the study in Ref. �18� for
Bessel fields so that

Ŝz = �
�

ıkzc

2�
�âm

�TE�†âm
�TM� − âm

�TE�âm
�TM�†� . �27�

In the problem treated here, the generator of the transfor-
mation B is a Hermitian second order differential operator
obviously related to the isotropy of space. It depends on the
position of the two focii of the elliptic transversal coordi-
nates and in that sense should be analogous to Lz. The pro-
posal is to identify the electromagnetic dynamical variable
related to B with the integral

B =
1

4�c



V
�

i

EiıBAid
3x , �28�

in complete analogy with Eq. �25�.
In order to corroborate that B is the fifth dynamical vari-

able directly associated to Mathieu electromagnetic waves,
notice that

�
i

Ai
��BAi

� = bA� �� · A� � + �k�kA��
�TE�A�

�TE� + kz�kzA��
�TM�A�

�TM��

���� · C� − �����
2 ��� , �29�

where the vector C� =−2�M�����r��N� ����+���N
�

���

—with N� �= 1
h�z�êu�u+ êv�v�.

Evaluating the integral in Eq. �28� over a volume V, using

Eq. �29�, the first resulting term is proportional to bE� �� ·A� �

involving the same integrals appearing in the energylike den-
sity, Eq. �17�. The second term defines a flux of B through
the surface around the integration volume V. The third term

adds up to the last term in the expression of operator B, Eq.
�9�. Equation �29� supports the identification of B as the
electromagnetic dynamical variable linked to the generator
B.

In the quantum realm the corresponding operator is writ-
ten as

B̂ = �
�

�b + 1�N̂�
�TE� + �b +

kz
2c2

�2 �N̂�
�TM�. �30�

In the paraxial limit, the helicitylike factor kzc /�1 so that

B̂��i,��b+1�N̂�
�i�.

Notice that the dynamical variable B̂ for a photon has
units of , although for material particles the quantum vari-
able associated to lz+lz− has as a natural unit 2. The inter-
pretation of a dynamical variable for the EM field is usually
linked to the interchange of this mechanical variable with

charged particles or atomic systems. The measurement of B̂
is expected to be related to changes in values of lz+lz− al-
though they have different units. It is thus essential to clarify
how the absorption and/or emission of a Mathieu photon by
a particle alters its motion.

IV. MECHANICAL EFFECTS ON ATOMS

Theoretical and experimental analysis on the interaction
between light and microscopic particles, as well as analysis
on the interaction of light and cold atoms, have yielded very
important results in the last 3 decades. In these areas, the use
of structured light beams with peculiar dynamical properties
plays an increasingly important role �21�. In the particular
case of Mathieu-like beams, it is possible to generate an
elliptical orbital motion of trapped microscopic particles
�22�. A detailed theoretical description of this phenomenon
requires the exhibition of a clear link between the observed
motion and the parameters that characterize the beam, which
are directly related to the mechanical properties of the field
described here.

The mechanical effects of a Mathieu electromagnetic
wave on a cold atom shall briefly be described under the
assumption that the atom kinetic energy is low enough to be
sensitive to light forces but large enough to admit a descrip-
tion in terms of Newton equations. The standard semiclassi-
cal approach is taken, as in the pioneering works by
Letokhov �23� and Gordon and Ashkin �24�. In this approxi-
mation, a monochromatic electromagnetic wave describable
by a coherent state couples to the dipole moment of an atom.
This dipole moment �� 12 is related to the electromagnetic
transitions between the atom levels that, for simplicity sake,
will be taken to have just two accessible options. The gradi-

ent of the coupling g= ı�� 12·E� /= �g�eı� determines the ex-
plicit expression for the average semiclassical velocity de-

pendent force through the vectors �� =�� log��g�� and 	� =�� �
�24�. The nonlinear Newton equations for Mathieu waves
have a rich structure that deserves a deep study on its own.
Here, just some results that illustrate the relevance of the
parameter b are reported. Atomic transitions with changes in
the atomic internal angular momentum �m= �1 are propor-
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tional to ê� ·E� �r� , t�. For Mathieu waves, this factor is propor-
tional to �� /c�A�TE�� ıkzA�TM� reinforcing the interpretation
of the latter expression as a signature of circular polarization.
In order to induce transitions with �m= �1 with equal prob-
ability, and to avoid any complication arising from a compo-
nent of the electric field along z, it will be assumed that
A�TM�=0. Under these conditions,

�� =
êu

h
� �v��uv

2 � + �u��u
2�

��u��2 + ��v��2 −
sinh 2u

cosh 2u − cos 2v
�

+
êv

h
� �u��uv

2 � + �v��v
2�

��u��2 + ��v��2 −
sin 2v

cosh 2u − cos 2v
� ,

�31�

	� =
êu

h
� �u��uv

2 � − �v��u
2�

��u��2 + ��v��2 −
sin 2v

cosh 2u − cos 2v
�

−
êv

h
� �v��uv

2 � − �u��v
2�

��u��2 + ��v��2 −
sinh 2u

cosh 2u − cos 2v
� .

�32�

The expression for the average semiclassical velocity depen-
dent force �24� valid for both propagating and standing
beams is

�f�� =
����v� · �� ��1 − p��1 + p�−1 + �/2�	� + ��v� · 	� � − ����� 	

�1 − p��p�−1� + 2v� · �� �1 − p/p� − p��1 + p�−1

�33�

with � the Einstein coefficient, �=4k3��� 12�2 /3, �� the de-
tuning between the wave frequency � and the transition fre-
quency �0, ��=�−�0, p=2�g� � / ��� /2�2+��2� a parameter
linked to the difference D between the populations of the
atom two levels, D=1 / �1+ p�, and finally p�=2�g�2 / ����2,

with ��= �v� ·�� ��1− p��1+ p�−1=� /2+ ı�−��+ �v� ·	� ��.
This brief study is focused on the red detuned far-off reso-

nance light case so that nonconservative terms arising from
the velocity dependence of the force are not dominant �25�.
This regime is particularly relevant in the context of optical
lattices �26�. Following Ref. �25�, the laser beam is consid-
ered with a 67 nm detuning to the red of the 5 2S1/2–5 2P1/2
transition at 795 nm; a 6�105 W /cm2 irradiance is as-
sumed. The trajectories of the atoms are described taking the
laser wavelength as the unit of length and as the unit of time
the inverse of the Einstein coefficient � which is 3.7
�107 s−1 for the state 5 2P1/2 of 85Rb.

Since Newton equations are highly nonlinear, it is ex-
pected that the motion of the particles will not have a simple
structure. Nevertheless, there are some general characteris-
tics of the atom motion that can be predicted without making
a numerical analysis. Thus, since the z-dependence of the
beam is just on its phase, kzz, no longitudinal confinement is
expected. In the standard paraxial regime, k��kz, a corre-
spondingly small transfer of radial momentum to the atom
will occur. Under these conditions, the atom would be con-
fined by transversal light potential wells whenever its height
is larger than the initial atom kinetic energy. Conversely, if

k�kz the atom may dwell around different transverse
wells. Typical trajectories are shown in Figs. 2 and 3 �31�.

Using several numerical simulations �28�, the correlations
between the time average value of the atomic

l+l− = �lz+lz−�t = m2���r� + f êx� � v��z��r� − f êx� � v��z�t

and the b value of the light mode were studied.
As illustrated in Fig. 4, in general, the variable lz+lz− ex-

hibits large fluctuations in an initial transitory stage. For
paraxial beams, there is a time T such that the time average
l+l− over any interval t0� t� t0+T becomes independent of t0
whenever t0
T. The order of magnitude of T is typically
104�. A rich structure, consistent with the frequent atomic
recoils due to the light potential wells, could be observed at
lower scales. As expected, the specific numerical results de-
pend on all the involved variables. Once q and f are fixed,
and for the same atomic initial conditions, a monotonic non-
linear increase of l+l− as a function of b is observed in gen-
eral �29� as illustrated in Fig. 5. For nonparaxial modes the
time average l+l− is highly dependent on the time interval
considered due to the persistent increase of the radii of the
atom motion illustrated in Fig. 3.

FIG. 2. �Color online� Trajectory of an atom driven by an even
Mathieu beam of order n=0 in the paraxial regime with half focal
distance f =�, and beam parameters q=0.0984 and b=−0.0048. The
initial conditions for the atom are u0=1.5�, v0=� /4, z0=0�, u̇0

=0.1��, v̇0=−0.001�, and ż0=0.001��.

FIG. 3. �Color online� Trajectory of an atom driven by an odd
Mathieu beam or order n=1 with half focal distance f =�, and beam
parameters q=3.5531 and b=−3.5924. The initial conditions for the
atom are u0=1.5�, v0=� /4, z0=0�, u̇0=0.1��, v̇0=−0.001�, and
ż0=0.001��. Notice that the particle dwells on bright zones of the
field.
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V. CONCLUSIONS

The electromagnetic modes with elliptic-cylindrical sym-
metry are characterized by their polarization and the ex-
tended set of parameters �= �� ,kz , p ,q ,b	, that is the field
frequency � and wave vector axial component kz related to
the energy E and z component of the linear momentum Pz;
the parity p of Mathieu functions and the parameter q which,
as in the scalar case, is related to the perpendicular compo-
nent of the wave vector in units of the focal distance. It has
been proposed and shown that the transformation generator
B arising from elliptic symmetry is related to the dynamical
EM variable B of the electromagnetic field, giving a physical
significance to b.

It has been exhibited that the motion of cold atoms in
Mathieu beams can be used to “measure” B since a strong
correlation between the particle product of angular momenta
l+l− and the parameter b can be approximately isolated by
using paraxial TE modes in the far off-resonance regime.

The use of light beams with elliptical-cylindrical symme-
try has potential applications in controlling the mechanical

motion of atomic systems which could include nanoparticles.
Nowadays, it is well-recognized that laser-driven nanopar-
ticles have a variety of uses in nanofluidics, nanobiotechnol-
ogy, and biomedicine. However, although the possibility of
optically trapping gold nanoparticles was demonstrated in
1994 �30�, developing tweezers for nanoparticles is not
straightforward. The gradient forces with conventional
beams fall off with particle size. The geometry of elliptical
beams adds the focal distance 2f as a parameter to tailor
gradient forces besides opening the possibility of using the
mechanical variable B to select over a wider kind of motions.

The inclusion and further study of this new dynamical
variable could also help elucidate modern concerns on the
“twisted” properties of light, such as why Mathieu functions
are intelligent states for the conjugate pair exponential of the
angle-angular momentum �27�.
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