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Light storage in atomic ensembles has been implemented successfully, but the retrieval efficiency can be
low. We propose to improve this efficiency with appropriately phase-matched backward propagating retrieval.
This method allows for easy spatial filtering of the retrieved light; in addition, multiple optical modes can be
stored in the transverse momentum of the ensemble. We model walk-off effects with a full numerical simula-
tion, and confirm the applicability of the scheme.
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I. INTRODUCTION

Atomic ensembles represent an increasingly useful tool
for manipulating the propagation �1� and quantum state �2�
of optical fields. In particular, the existence of long-lived
coherences affords the ability to temporarily store a light
pulse as a stationary excitation within an ensemble. This kind
of storage preserves quantum correlations �3–5� and forms a
key component in the technology required for the implemen-
tation of quantum communication protocols �6,7� and quan-
tum computing architectures �8�. The optimization of the ef-
ficiency of storage into, and retrieval from, such a quantum
memory is the subject of intense research �9–11�, since the
utility of the technology ultimately depends on the favorable
scaling of losses for memories operated in series.

In this paper, we present a simple scheme to improve the
efficiency of retrieval from an ensemble quantum memory;
we check our predictions against a full numerical simulation,
and we consider a generalization of the procedure to the
storage of multiple optical modes. We will show that high
efficiency can be achieved provided the optical fields in-
volved are not focused too tightly, and that the use of wide
collimated beams, if sufficient intensity is available, allows
for efficient multimode storage.

First we introduce the standard storage protocol, and we
discuss the factors limiting the efficiency of retrieval from a
memory. In the following, we neglect a class of ensemble
memories based on photon echoes �9,12�, to which our
scheme is not directly applicable �although the problems out-
lined below persist; other techniques are required to address
them �13,14��. We also omit any discussion of continuous
variable quantum memories �15–18�.

II. SYSTEM

A simple system in which light can be stored for extended
periods consists of an ensemble of identical three-level at-
oms with a �-type structure �see Fig. 1�a��. The excited state
�2� is coupled strongly to the electromagnetic field, but is
therefore noisy and short-lived, with a coherence lifetime
characterized by the decay rate �. The metastable state �3�
has no strong couplings to the state �1�, and is long-lived. At
the start of the memory interaction, all the atoms are in state
�1�, which we call the initial state. Later we will see that
certain advantages accrue when �1� lies energetically above

�3�, although this is somewhat nonstandard. An incident sig-
nal pulse is stored as an excitation of the state �3�; the inter-
action is mediated by the state �2�, which provides the strong
coupling necessary for efficient storage. In general, this is
accomplished by the application of an intense auxiliary con-
trol field tuned into two-photon resonance with the signal
field, as shown in Fig. 1�a�. If both signal and control fields
are resonant with the excited state, storage is realized via
electromagnetically induced transparency �EIT� �19–22�, in
which adiabatic reduction of the intensity of the control field
dynamically slows the signal field to a standstill. If the fields
are detuned far from resonance by a common detuning �, the
signal field is coherently absorbed in a two-photon Raman
interaction �11,23–25�. In both cases, the signal field is
mapped to a collective excitation known as a spin wave, with
a wave function whose spatial distribution over the ensemble
depends on the transverse profile and temporal shape of the
control and signal pulses. Some time later, the stored excita-
tion may be converted back into an optical pulse by a second
application of the control field.

For the case in which the signal and control pulses propa-
gate in the same direction, a one-dimensional analysis pre-
dicts the control pulse shape that maximizes the storage ef-
ficiency �24,25�, and this kind of optimization for EIT has
recently been successfully demonstrated in the laboratory
�26,27�. In general, the shape of the spin wave generated by
the optimized storage process is highly asymmetric along the
propagation direction �see the inset of Fig. 1�b��, as might be
expected from Beer’s-law absorption. The spin wave ampli-
tude is large at the input face of the ensemble, but decays
away toward the exit face. By contrast, the retrieval process
is optimized when the spin wave has the complementary

FIG. 1. �Color online� �a� The level structure of the atoms in a
typical ensemble memory. �b� A schematic of the storage process, in
which an incident signal field is converted to a distributed excitation
within the ensemble known as a spin wave.
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shape, with a small initial amplitude growing with propaga-
tion distance, consistent with a description of the retrieval of
the signal field as a straightforward gain process. If retrieval
is attempted in the forward direction, the efficiency is limited
by poor overlap of the generated spin wave with the optimal
one. The above argument suggests that backward retrieval
should be preferable, since in this case the input and exit
faces of the ensemble are switched, and the generated spin
wave is optimal for retrieval. This space-reversal symmetry
is a direct consequence of the time-reversal symmetry of the
Hamiltonian dynamics that govern the interaction �24,25�.

However, a difficulty arises if the energies of the states �3�
and �1� are different. In that case, the frequencies �s, �c of
the signal and control fields differ, and the difference in their
momenta is taken up by the spin wave, which therefore ac-
quires a spatially varying phase. If this phase is not conju-
gated before backward retrieval is attempted, the desired re-
trieval process cannot conserve momentum—that is to say it
is not phase matched—and the efficiency suffers �24,25�.
There are good practical reasons for using systems where
states �1� and �3� are nondegenerate, since this renders the
bright control and weak signal fields spectrally distinct, and
so the above phase-matching issue is relevant to a wide class
of possible storage media.

III. PHASE MATCHING

Here we present a scheme that ameliorates the above dif-
ficulty, while preserving a large overlap of the spin wave
generated by the storage process with the optimal spin wave
for retrieval. This allows for high memory efficiency even
when the states �1� and �3� have a large energy splitting, so
the signal and control fields can be spectrally filtered with
high contrast. Furthermore, an angle is introduced between
the signal and control beams, so that the two fields may also
be spatially filtered.

Phase matching is a well-known problem in nonlinear op-
tics �28�, and although complex in general, it becomes
simple in atomic vapors, where the absence of natural bire-
fringence removes many of the more involved geometric
considerations. Correlations arising from phase-matched
light-scattering in gases are routinely used in biomedical and
industrial sensing �29,30� and have more recently been used
to generate entangled photon pairs �31,32�. We now provide
details of a simple phase-matching scheme for the quantum
storage problem that addresses the issue of momentum con-
servation discussed above while keeping the deviations from
a collinear geometry small. Let the signal field have wave
vectors ks and ks� at storage and retrieval, respectively. The
corresponding control field wave vectors will be denoted by
kc and kc�. The fields need not be collinear, but for simplicity
we restrict them to be coplanar. The spin wave generated by
the storage process acquires a wave vector �=ks−kc. Upon
retrieval, the phase-matching condition ks�=�+kc� defines the
unique direction into which the signal field is emitted with
high efficiency �see Fig. 2�a��. Assuming for the moment that
the frequencies of the control and signal fields are fixed, the
orientation of ks� is completely determined by the angle �
between ks and kc during storage �33�. It is now necessary to

choose this angle so as to maximize the spatial overlap of the
generated and optimal spin waves. That is, we should aim to
approximate as nearly as possible collinear storage, followed
by backward retrieval. In this arrangement, we operate as
close to the dynamic optimum as is compatible with kine-
matic constraints.

Heuristically, it is clear that choosing � so that �ks�cos �
= �kc� comes close to satisfying our requirements �see Fig.
2�b��. Here the signal field is angled so that � is orthogonal
to kc. When the direction of the control is reversed for re-
trieval, no phase mismatch is introduced, and the signal field
is retrieved at the same angle � with respect to the retrieval
control pulse. We also consider the possibility that the stor-
age state �3� is energetically lower than the initial state �1�. In
this case, efficient phase-matched retrieval is achieved by
choosing � so that �kc�cos �= �ks�.

The control field couples states �2� and �3�, whose popu-
lations remain negligible, so it travels at the speed of light c,
and we have �kc�=kc=�c /c. Interaction with the resonance
�2� induces a phase shift on the signal field, however, since it
couples to the populated initial state �1�, so that �ks�=ks
=�s /c−kd, with kd=d�� / ��2+�2�L, where d is the resonant
optical depth of the ensemble �25� and L is the ensemble
length. Dispersion vanishes exactly on resonance, so for EIT
we recover ks=�s /c. For far-detuned Raman storage, the ma-
terial dispersion is generally small but significant. Our pro-
posed scheme for efficient operation of both EIT and Raman
memories is summarized by the choice

� = cos−1�r�, r = min�ks/kc,kc/ks� . �1�

We have not considered the effects of decoherence on the
spin wave during the storage period; in general, it is essential
that dissipative processes be effectively eliminated if quan-
tum memories are to become a viable technology. Nonethe-
less, it should be noted that in memories based on atomic
vapor, diffusion of the atoms tends to wash out high spatial
frequencies in the amplitude of the spin wave. Therefore, the
efficiency of phase-matched retrieval may suffer if ��

=2� / ����D, where D is the distance over which atoms dif-
fuse during the storage time �3,33�. These considerations do
not apply to solid-state ensemble memories, however, since
the absorbers are stationary.

Although we have used the results of one-dimensional
treatments �24,25� to justify the assertion that collinear stor-
age followed by backward retrieval is ideal, we cannot check
the performance of our phase-matching scheme using such
models. In particular, it is clear that as soon as an angle is
introduced between the signal and control fields, walk-off
will limit the size of the region over which the fields overlap,
and therefore the memory efficiency will depend on the rela-

)b()a(

FIG. 2. �Color online� �a� A general phase-matching diagram for
the combined storage and retrieval processes. �b� The phase-
matching diagram for our proposed scheme.
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tive widths of the beams used. To confirm the efficacy of our
approach, we performed numerical simulations of the
memory interaction in two spatial dimensions. Geometric
walk-off, diffraction, and dispersion are correctly modeled,
and the efficiency of the combined storage and retrieval pro-
cess is examined as a function of the splitting �s−�c be-
tween the states �3� and �1� for both Raman and EIT memory
protocols. We present the results below; details of the nu-
merical model can be found in Appendix B.

IV. RESULTS

We simulated storage, followed by retrieval, according to
the geometry specified in Fig. 2�a�, over a range of angles �
between the signal and control, and over a range of energy
splittings between the states �1� and �3�. Below we compare
the angles at which the memory efficiency is maximized with
our prediction in Eq. �1�. We then investigate how these
maximal efficiencies compare with the best efficiencies
achievable using a collinear geometry.

Figure 3 shows the angle � at which the combined effi-
ciency of storage followed by phase-matched backward re-
trieval is optimized, as a function of the phase mismatch
	
	��c−�s�L /c due to nondegeneracy of the initial and
storage states. We borrow parameters from a cesium en-
semble memory, with optical frequencies in the near-
infrared, and an aspect ratio �=L /ws
300, with ws the sig-
nal beam waist. For an ensemble length of L
2 cm, �	
�

4 corresponds roughly to the ground-state hyperfine fre-
quency splitting in cesium, around 10 GHz. The angles in
Fig. 3 are extremely small; this level of sensitivity is typical
of phase-matched processes. But angle tuning with this de-
gree of precision is possible with conventional optical
mounts.

We present the results of two simulation runs: one in
which the control beam waist wc is identical to the signal
waist ws, and one in which the control beam is twice as

wide—with the control pulse energy increased by a factor of
4 so that the control field intensity is the same in both cases.
As might be expected, the phase-matching scheme of Eq. �1�
correctly predicts the optimal angles for the latter case,
where walk-off is mitigated by the loose control focusing.
The prediction is less accurate for the former case. The ma-
terial dispersion in the Raman protocol is responsible for
shifting the results so that an optimal angle of �=0 is ob-
tained for nonzero phase mismatch 	
.

Figure 4 shows the variation in the optimal memory effi-
ciency with phase mismatch, for both EIT and Raman pro-
tocols with both tight and loose control focusing. We used
temporal profiles for the signal fields to be stored that are
predicted, by a one-dimensional treatment, to give optimal
storage efficiency when �=0 �see Appendix A for details�.
Although small improvements over the analytic phase-
matching scheme are possible when the control is tightly
focused, in general use of the scheme produces near-optimal
results. As expected, the memory efficiency is always highest
for 	
 such that �=0, since then walk-off is eliminated. The
efficiency falls as a phase mismatch is introduced, but there
is a marked difference between the behavior for negative and
positive 	
, corresponding to the storage state �3� lying en-
ergetically above and below the initial state �1�, respectively.
More precisely, the important quantity is the momentum mis-
match 	
+kdL; the phase-matching scheme is effective for
positive momentum mismatches 	
�−kdL, but it fails when
the momentum mismatch is negative, 	
�−kdL. In the EIT
protocol, the material dispersion vanishes and effective phase
matching requires 	
�0. For the Raman case shown, the
ensemble refractive index is significant, and phase matching
starts to fail for 	
2. This asymmetry is naturally ex-
plained by considering the spatial distribution of the spin
wave deposited by the signal field as it is stored. In the case
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FIG. 3. �Color online� Comparison of numerical results for the
optimal angle � with the prediction in Eq. �1� �solid line�. The filled
circles correspond to tight control focusing, with wc=ws; the open
diamonds correspond to loose focusing, with wc=2ws. We plot the
results for a typical EIT protocol in �a�: the signal pulse bandwidth
is of order �, the ensemble optical depth is d=30. In �b� we present
equivalent results for a Raman protocol, with the larger optical
depth of d=300. The signal bandwidth is of order 10� and the
detuning is �=150�.
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FIG. 4. �Color online� Memory efficiencies versus the phase
mismatch 	
. �a� and �b� contain the results for the EIT protocol,
with tight and loose focusing, respectively. �c� and �d� report the
results for the Raman protocol for tight and loose focusing. The
solid lines represent the efficiencies achieved if the angles predicted
by Eq. �1� are used. The filled circles are the best efficiencies
achievable. The dotted lines delimit the optimal efficiency attain-
able using collinear backwards retrieval, calculated using the one-
dimensional theory described in Appendix A. The dashed straight
lines denote the efficiencies achieved using collinear forwards
retrieval.
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of positive momentum mismatch, the retrieved signal field
propagates along the same axis as the stored signal field, and
the entire length of the spin wave contributes in the retrieval
process. For negative momentum mismatch, as shown in Fig.
2, the retrieved signal field overlaps only partially with the
spin wave—which occupies a narrow region parallel to the
propagation direction of the stored signal—experiencing
commensurately lower gain.

The straight dashed lines in Fig. 4 indicate the efficiency
achieved if � is set to zero, and retrieval is undertaken in the
forward direction. This efficiency is generally low, due to
poor overlap of the spin wave with the optimal mode for
retrieval, but it is independent of the phase mismatch 	
,
since momentum is automatically conserved in this configu-
ration. Using a one-dimensional analysis, it is possible to
predict the signal pulse shape that optimizes the combined
efficiency of collinear storage followed by forwards retrieval
�25� �see Appendix A for details�. For the EIT protocol, these
“forward” pulse shapes perform better than the “backward”
pulse shapes designed to optimize storage with backward
retrieval, and so the “forward” pulse shapes are used in plots
�a� and �b� of Fig. 4. However, for the Raman protocol
shown, the “forward” pulse shapes perform worse than the
“backward” pulse shapes, and therefore we used the “back-
ward” pulse shapes in plots �c� and �d�. The off-resonant
Raman protocol relies on the intense control to mediate the
coupling of the signal field to the ensemble, so the memory
efficiency is sensitive to diffraction, which reduces the con-
trol intensity toward the ends of the ensemble. This explains
why the “backward” pulse shapes are more effective for the
Raman protocol than the “forward” pulse shapes, since the
latter are designed to redistribute the spin wave so that it has
a large amplitude toward the back end of the ensemble, and
this is precisely where the memory interaction is weakened
by diffraction. For wider control beams, with wc�2.4ws, we
verified that the “forward” pulses do indeed perform better
than the “backward” pulses, since diffraction becomes neg-
ligible. EIT would appear to be less sensitive to diffraction,
since small changes in the control intensity modify the signal
group velocity, but not the strength of its coupling to the
atoms.

The dotted lines in Fig. 4 represent the maximum effi-
ciency achievable for collinear backward retrieval, as pre-
dicted by a one-dimensional analysis �see Appendix A for
details�. This efficiency falls rapidly as the momentum mis-
match increases. In the case of tight control focusing, diffrac-
tion reduces the memory efficiency significantly below the
one-dimensional optimum, even for �=0. When the control
is loosely focused, however, the efficiency rises significantly,
exceeding the best performance possible with any collinear
protocol for large momentum mismatches. Wider control
beams allow efficient storage and retrieval at even greater
angles; in general, an arbitrarily large positive phase mis-
match can be accommodated provided sufficient energy is
available to maintain the control intensity required to effect
the memory interaction.

In Fig. 5, we combine Figs. 3 and 4, and plot the memory
efficiency versus the optimal phase-matching angle. The
above simulations demonstrate that the efficiency of en-
semble memories can be dramatically improved with the use

of noncollinear geometries, and indeed the observed efficien-
cies, obtained using the formula �1�, are close to the best
efficiencies achievable with no phase mismatch in a collinear
geometry, which represent the dynamical extrema. Nonethe-
less, an exhaustive search of all possible geometries for stor-
age followed by retrieval is beyond the scope of this work;
superior configurations may yet be found.

In summary, our simulations showed that the control
should be loosely focused, with a beam waist more than
twice that of the signal. In addition, we found that in general
positive phase mismatches, where the initial state �1� lies
energetically above the storage state �3�, are preferable.

V. ANGULAR MULTIPLEXING

Having demonstrated the advantages of correct phase
matching over collinear operation, namely the combination
of high efficiency with spectral and spatial distinguishability
of signal and control, we move on to examine the possibili-
ties for multimode storage in ensembles.

Multimode quantum memories can be used to improve the
performance of quantum repeaters �34–37�, and the ability to
store multiple spatial modes in an ensemble allows for novel
quantum computing architectures �38�. In the following, we
consider using the strong directional selectivity imposed by
phase-matching constraints to isolate different spatial modes
within the ensemble, such that each mode may be addressed
independently of the others. We do not explicitly model mul-
timode storage, since a correct account of coupling between
modes requires that we abandon the slowly varying envelope
approximation, making the numerics prohibitively time-
consuming. But we make an estimate of the multimode ca-
pacity of an ensemble memory based on the eikonal approxi-
mation that sufficiently different spatial frequencies are
dynamically decoupled.

Suppose we want to store a pair of signal pulses in the
same ensemble. We can use different angles �1 ,�2 between
the control and signal fields for storage, so that the resulting
spin wave momenta �1 ,�2 point in different directions for
the two signals. Given some phase mismatch 	
, the re-
trieval process will be phase matched at correspondingly dif-
ferent angles for the two signals. Provided these angles differ
sufficiently, a retrieval control pulse for the first signal will
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FIG. 5. �Color online� Efficiency versus optimal phase-matching
angle. The solid lines correspond to tight control focusing wc=ws,
the dotted lines to looser focusing, with wc=2ws. Each line has two
“branches”: the upper branch is achieved for positive momentum
mismatch, the lower for negative momentum mismatch. The results
for the EIT protocol are plotted in �a�; those for the Raman protocol
in �b�.
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have a vanishing probability for extracting the second signal,
and vice versa. Therefore, the two signals may be addressed
independently of one another. We can extend this to a larger
number of signal modes, each stored with a different angle,
and so obtain a multimode memory.

To demonstrate the selectivity afforded by phase match-
ing, we simulated an EIT memory where the storage geom-
etry is determined by our scheme Eq. �1�, but where at re-
trieval the control field angle deviates from the optimal one
by �d. The variation of the memory efficiency with �d is
plotted in Fig. 6�a� for the cases 	
=0 and 1. In the former
case, the spin wave momentum � vanishes, and all retrieval
angles are phase matched, so the memory efficiency is only
limited by walk-off. We used a wide control with wc=9ws so
the efficiency remains high over a large range of angles. For
the case 	
=1, the spin wave momentum becomes impor-
tant, and the efficiency falls quickly as the deviation �d is
increased. Due to the linearity of the memory, this example
suffices to show that tuning the angle of the retrieval control
field can “switch off” the read-out of one mode, and equally
well “switch on” the read-out of another mode. For this ex-
ample, we should choose ��2−�1�=�d�0.02. Near identical
results are reproduced if a Raman protocol is used—in this
case, the spin wave momentum vanishes when 	
=−kdL.

In accordance with the results of Sec. IV, the storage ef-
ficiency for a given phase-matching angle is maximized for a
particular wave vector ks, which is to say a particular signal
frequency �s. Signal modes with larger angles may be stored
more efficiently by adjusting their center frequencies appro-
priately. Using the formula �1�, we have �s=�c cos���+ckd
�for the case �s��c, which is preferable for phase match-
ing�. This type of optimization for multimode storage is eas-
ily accommodated in the Raman configuration, where the
memory efficiency changes slowly with detuning; for EIT
storage, such fine-tuning of the mode frequencies is incom-
patible with the requirement of exact resonance with the state
�2�.

In order to resolve signal fields propagating at different
angles, each signal mode should have an angular divergence
smaller than the angular separation 	� of the modes �see Fig.
6�b��. The angular divergence is limited by diffraction,
whence we obtain the condition 	�
�s /ws, where �s
=2� /ks is the signal field wavelength. The angular separa-

tion should also be sufficient to ensure that there is no
“cross-talk” between neighboring modes. This requirement
amounts to the condition wsks	�
2� on the transverse op-
tical phase, which again implies 	�
�s /ws. We therefore
find that the multimode capacity of a Raman memory is
bounded by the number of diffraction-limited signal modes
that can be efficiently stored. For the example in Fig. 6�a�,
we have 	�
0.01, which is a reasonable estimate of the
angle beyond which efficient retrieval fails when 	
�0.

A simple estimate of the multimode capacity for a quan-
tum memory multiplexed in this way is found by taking the
ratio N=�� /	�, where ��
wc /L is the largest angle � for
which efficient storage is possible, as limited by walk-off.
We then find that N
wcws /�sL
F, with F=�FcFs the
geometric mean of the Fresnel numbers of the regions illu-
minated by the control and signal fields. The Fresnel number
is known to characterize the number of optical modes sup-
ported within a thin pencil-like volume �39�. For the example
in Fig. 6�a�, we calculate N
3. The preceding discussion
suggests that both signal and control beams should be
loosely focused to achieve a large multimode capacity, with
Rayleigh ranges much longer than the ensemble length. Our
numerical results show that we should have wc�2ws for
efficient storage, however, so that the signal modes should
always be more tightly focused than the control.

The feasibility of such a multimode memory depends on
the ability to produce control pulses of sufficient energy that
the coupling remains high even when the control is loosely
focused. As a concrete example, consider an ensemble con-
sisting of 
2 cm of atomic cesium vapor at 50 °C, with an
optical depth 
103 on resonance with the D2 line at 852 nm.
Raman storage is robust to the deleterious effects of Doppler
and pressure broadening in this kind of medium, by dint of
its large detuning from the optical resonance. The control
field is taken from a train of 10 nJ pulses output from a
Ti:sapphire oscillator, corresponding to an average power of

1 W with a typical repetition rate of 80 MHz. If the control
is focused down to a spot of diameter 
7 mm over the en-
semble length, with ws=wc /3, we calculate a multimode ca-
pacity of 
100 signal modes, with an average efficiency
�90% �corresponding to C�2, see Appendix A�. A more
conservative estimate might revise this number downwards
by a factor of 10, but this still represents a considerable leap
in parallelism over single mode storage.

VI. SUMMARY

In conclusion, we have highlighted a phase-matching
problem relevant to all ensemble-based memories that has
received little attention in the literature �but see �25��. We
have presented a simple solution based on noncollinear stor-
age and retrieval, and examined its applicability numerically.
We found good agreement with analytic predictions, and a
marked improvement in efficiency over the un-phase-
matched case. In addition, we considered the feasibility of
multimode storage by angular multiplexing, and found that a
large number of modes may be stored with reasonable pa-
rameters. As experimental techniques for dealing with en-
semble memories mature, we expect these results to be of
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FIG. 6. �Color online� �a� Memory efficiency versus deviation
angle �d for an EIT protocol with a wide control beam wc=9ws. The
dotted line corresponds to zero phase mismatch, the solid line to
	
=1. �b� Angular multiplexing. Different signal fields may be
stored with different angles �. Provided the difference 	� in angle
between adjacent modes is large enough, the modes are “holo-
graphically isolated” and may be addressed, and resolved, indepen-
dently. The largest angle �� for which the memory protocol is
acceptably efficient sets a limit to the multimode capacity of such a
multiplexed memory.
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use in optimizing the performance and capacity of this tech-
nology.
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APPENDIX A: OPTIMIZATION

It has been shown previously how to optimize the storage
efficiency of an ensemble memory in both the Raman and
EIT limits �24,25,40�. Here we use an approach that unifies
these results. A detailed exposition of the method is reserved
for a future work. For now, we simply introduce the principle
behind the optimization, and the result. Our aim is to find the
optimal temporal profile for an incident signal field, such that
it is stored, and then retrieved, with the highest possible
probability by given control fields. In practice, it is desirable
to solve the reverse problem—to find the optimal temporal
profile for the control fields, such that a given signal field is
optimally stored and retrieved. This is done in the works
mentioned above, but it is a slightly harder problem to solve,
and solution of the former problem is sufficient for the pur-
poses of our simulations: it is no more difficult to shape the
signal than it is the control. To obtain a closed-form expres-
sion for the optimal signal profile, we consider propagation
in one dimension with �=0. The memory interaction is linear
�as it should be for a quantum memory capable of storing
coherent superpositions�. Therefore, we may express the
temporal profile Aout of the retrieved signal field as a function
of time � in terms of the linear mapping,

Aout��� = �
−�

�

K��,���Ain����d��, �A1�

where Ain is the temporal profile of the incident signal field,
and the integral kernel K is the Green’s function for the
combined processes of storage and retrieval. In general, K
can always be constructed by numerical solution of the equa-
tions of motion. In fact, the present discussion applies
equally well to a three-dimensional treatment, with trans-
verse coordinates added appropriately, but the numerical
construction of a full 3D Green’s function remains computa-
tionally impractical at present. The efficiency of the memory
is given by the modulus square of Aout, integrated over all
time. The optimization problem, therefore, is reduced to
finding the input Ain that maximizes the norm of Aout. The
problem is solved by considering the singular value decom-
position �41� of the kernel K,

K��,��� = 
j

� j���� j� j
*���� . �A2�

This decomposition exists for any complex bivariate func-
tion, provided it is not too pathological, and extremely effi-

cient algorithms exist for finding it. The optimal efficiency is
achieved by choosing Ain to be the “right singular function”
�1��� that is associated with the largest singular value �1 of
K. Making use of the adiabatic approximation �24,25�, we
can obtain an explicit expression for the optimal signal input
mode. We introduce the complex detuning �=�+i�
=i���e−i�. We then define the dimensionless coupling C
=�d�W / ���, and the dimensionless balance R=�W /d�,
where W=���→�� is the long-time limit of the integrated
Rabi frequency ����=�−�

� �������2��, with ���� the time-
dependent Rabi frequency of the control field. The optimal
input mode is then given by

�1��� = ei�����/���2�����1�C�1 − ����/W�� , �A3�

where �1 is the right singular function associated with the
largest singular value of the integral kernel,

K̃�y,y�� = �
0

C

k�y,x�k�x,y��e2i�	
+kdL�x/Cdx , �A4�

with

k�x,y� = e−sin����x/R+Ry�J0�2ei��xy� , �A5�

where x and y are dimensionless coordinates running from 0
up to C, and where J0 denotes a zeroth-order Bessel function
of the first kind. The complex exponential in Eq. �A4� ac-
counts for the momentum mismatch between the stored spin
wave and the spin wave mode that correctly phase matches

the retrieval process. The kernel K̃ is related to the Green’s
function K by a unitary transformation, and therefore the
singular values � j of K are the same as the singular values of

K̃.
The formula �A3� is valid under adiabatic conditions for

arbitrary detunings, so that it can be used in both EIT and
Raman protocols. Adiabaticity requires that the bandwidth 	
and the peak Rabi frequency � of the control field are not
too large, so that “ringing” effects, such as oscillations be-
tween the states �2� and �3�, are eliminated. For a Raman
memory, the detuning guarantees adiabaticity, provided that
we have �� ,	���. For EIT, the condition becomes �� ,	�
�d�. It can be shown that both of these conditions are ful-
filled, in general, if we ensure that d��	 �25�, which con-
dition is satisfied throughout this paper. Equation �A3� re-
duces to the results in �24� in the off-resonant limit ��1,
with �C�R�1 /�C. The results in �25� are reproduced in
the limit of large control pulse energy, R�1, with R
�1 /�C. The phase factor in Eq. �A3� accounts for the dy-
namic Stark shift induced by the control field; it vanishes on
resonance, but it can be important for Raman storage. The
dotted lines in Fig. 4 are generated by calculating the effi-
ciency �coll=�1

2 for each value of the phase mismatch 	
.
They represent the best efficiency achievable by a collinear
protocol with backward retrieval.

The temporal profile of the signal pulses used for phase-
matched backward retrieval in the simulations is set by using
Eq. �A3� with the phase factor in Eq. �A4� omitted; the
phase-matching scheme of Eq. �1� eliminates the momentum
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mismatch so this choice of input profile is close to optimal,
notwithstanding diffraction and walk-off effects, which are
neglected in the above treatment.

In the case of collinear storage followed by forward re-
trieval, the predicted optimal pulse shape is given by Eq.
�A3�, except that the second kernel in the integrand of Eq.
�A4�, k�x ,y��, is replaced by k�C−x ,y��, and the exponential
phase factor is omitted. As mentioned in the main text, these
“forward” pulse shapes are of limited value for the Raman
protocol operated with a tightly focused control, due to dif-
fraction effects unaccounted for in this one-dimensional
model.

APPENDIX B: NUMERICAL MODEL

To proceed with a numerical analysis of the quantum
memory interaction, we consider the propagation of signal
and control fields in the �x ,z� plane in the presence of a
�-type atomic medium �33,42�. Quantum fluctuations
�43,44� do not influence the efficiency of the memory, so the
dynamics are adequately described by classical equations of
motion. The z axis is defined by the direction of propagation
of the signal field. We transform to a frame moving with the
signal pulse and define the local time �= t−z /v, where t is
the time in the laboratory frame and v is the signal pulse
velocity. The linearized Maxwell-Bloch equations describing
the quantum memory interaction are then given, in the
slowly varying envelope approximation, by �24,25,43�

� �2

2ik̄s

�x
2 + �z�A = i�d�P ,

��P = − �P + i�d�A + i�B ,

��B = i�*P . �B1�

Here A and B are the slowly varying amplitudes of the signal
field and spin wave, respectively. The slowly varying Rabi
frequency � represents the control field envelope and P de-
notes the slowly varying amplitude of the atomic polariza-
tion on the �1�↔ �2� transition. The various constants are
defined as follows. d is the resonant optical depth of the
ensemble along the z axis, 2� is the homogeneous linewidth
of the �1�↔ �2� transition, �=�+i� is the complex detuning,
�=L /ws is the aspect ratio of the ensemble, with L its length
along the z axis, and ws is the beam waist of the signal field.

k̄s= �ks�L is the dimensionless magnitude of the signal field
wave vector, and the signal pulse velocity v=cTc /L is the
dimensionless speed of light, with Tc a time scale set by the
duration of the control field. The frequencies �, �, and � are
all rendered dimensionless by expressing them in units of
1 /Tc. In accordance with the above normalizations, the co-
ordinates are scaled so that the longitudinal position z, the
transverse position x, and the local time � are expressed in
units of L, ws, and Tc, respectively. In these units, z runs from
− 1

2 to 1
2 ; x and � both from around −3 to 3—a limit chosen to

be sufficiently large to capture all significant dynamics,
while small enough to obtain results in practicable time.

The coupled system �B1� is solved by finite differences
using the method of lines �45�. We employ spectral colloca-
tion to approximate the spatial derivatives �x and
�z—replacing them with Chebyshev differentiation matrices
�46�. The time evolution is then generated using a second-
order partially implicit Runge-Kutta formula. We discretize
the �x ,z� plane on a 21�21 grid, which affords accuracy to
machine precision. We use around 500 time steps, which
guarantees convergence and provides accuracy to around
10−3. We verified that near identical results are achieved with
a 9�9 spatial grid, and 100 time steps. We use a Gaussian
tranverse spatial profile for the signal field to be stored; the
temporal profile is determined using the one-dimensional op-
timization described previously in Appendix A. The signal
field at the input face of the ensemble is given by

A�z = −
1

2
,x,�� = exp�− � x

Ws�−
1

2
��

2

+
ik̄sx

2

2Rs�−
1

2
��

� �1��� , �B2�

where Ws�z�=�1+ �z /zs�2 is the signal beam size, Rs�z�
=�2z�1+ �zs /z�2� is the signal phase curvature, and zs

= k̄s / �2�2� is the signal Rayleigh range. Note that the ampli-
tude of A is arbitrary, since the system �B1� is manifestly
linear. We use Gaussian temporal and spatial profiles for the
storage and retrieval control pulses. The control pulse is
launched with amplitude �0 at an angle � to the z axis,

��z,x,�� = �0 �
wc

Wc�z��
exp�− � x�

Wc�z��
�2

+
ik̄cx�2

2Rc�z��
�

� exp�− �� − �0 + �z − z��/v�2� , �B3�

where x� and z� are transformed coordinates given by

x� = cos���x + � sin���z ,

z� = cos���z −
sin���

�
x , �B4�

where the factors of � appear to account for the different
normalizations of the longitudinal and transverse coordi-

nates. Here k̄c= �kc�L is the dimensionless magnitude of the
control field wave vector, Wc�z�=wc

�1+ �z /zc�2 is the control
beam size, Rc�z�=�2z�1+ �zc /z�2� is the control phase curva-

ture, and zc= k̄cwc
2 / �2�2� is the control Rayleigh range, with

wc the control beam waist, expressed in units of ws. �0 sets
the control pulse timing, in units of Tc; we adjust �0 so that
the signal field, whose temporal profile is determined from
the control via Eq. �A3�, is centered in the temporal domain
of our simulations. In the simulations presented in the main
text, the control amplitude was set to �0=5. We used L
=2 cm and Tc=300 ps for Raman storage, and Tc=3 ns for
EIT, with 1 /�=3 ns in both cases.

The storage efficiency is calculated as the ratio of stored
to incident energy,
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�store =

�
−�

� �
−1/2

1/2

�B�x,z,� → ���2dzdx

�
−�

� �
−�

� �A�x,z = −
1

2
,���2

d�dx

. �B5�

Having simulated the storage process, we transform our co-
ordinate system so that the z axis for the retrieval process
coincides with the direction in which the signal field genera-
tion is phase matched. The spin wave at the start of the
retrieval process is related to the spin wave at the end of the
storage process by the transformation

�B�z,x,� → − ���retrieval = �B�z�,x�,� → ���storage, �B6�

where z�, x� are as defined in Eq. �B4�, except that the angle
� is replaced by

�� = − 2 sin−1� k̄c sin���
�k̄s

2 + k̄c
2 − 2k̄ck̄s cos���

� . �B7�

As can be seen from Fig. 2�a�, the retrieval control field is
launched at an angle −� to the z axis for the retrieval process.
The retrieval efficiency is calculated as the ratio of retrieved
to stored energy,

�retrieve =

�
−�

� �
−�

� �A�x,z =
1

2
,���2

d�dx

�
−�

� �
−1/2

1/2

�B�x,z,� → − ���2dzdx

. �B8�

Finally the total efficiency �total for storage followed by re-
trieval �neglecting, as we have, any decoherence of the spin
wave� is just given by the product of the separate efficien-
cies, �total=�store�retrieve.
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