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It is shown that any Bose-Einstein-condensed fluid in its ground state will exhibit macroscopic single-
particle quantum behavior �MSPQB�. That is, �1� the many-particle wave function ��r1 , . . . ,rn� factors into a
single-particle product �n��rn�; �2� the function ��r� extends over macroscopic length scales and obeys the
usual quantum equations for particle flux in a single-particle system; and �3� ��r� obeys a nonlinear single-
particle Schrödinger equation. The latter equation reduces to the Gross-Pitaevskii equation when interactions
are weak and determines the density distribution of the fluid and the time development of this distribution. The
arguments used rely only on elementary concepts of probability theory and many-particle wave mechanics and
are valid even in strongly interacting fluids such as superfluid 4He. It is shown that Bose-Einstein condensation
implies that the N-particle wave function � is delocalized. That is, if one considers a single-particle coordinate
r, then for all values that occur of the other N−1 coordinates, � is a nonzero function of r over a region of
space proportional to V, where V is the total volume within which the fluid is contained. MSPQB is a
consequence of this delocalization and the absence of long-range correlations between particle positions in
fluids. The results are accurate provided that only averages over regions of space containing many particles are
considered. For averages over volumes of space containing N� particles, inaccuracies due to quantum fluctua-
tions are �1 /�N�.
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I. INTRODUCTION

Arguably the most important property possessed by Bose-
Einstein-condensed systems is macroscopic single-particle
quantum behavior �MSPQB�—that is, every particle appears
to occupy the same single-particle quantum state, with a
wave function that extends over macroscopic length scales.
There is clear experimental evidence for MSPQB in Bose-
Einstein-condensed systems, such as superfluidity and quan-
tized vortices in liquid 4He and quantized vortices and inter-
ference effects observed in overlapping clouds of ultracold
Bose-Einstein-condensed gases �1�. However, there is no
generally applicable theoretical proof from first principles
that Bose-Einstein condensation �BEC� implies MSPQB.
This paper supplies such a proof.

Interest in the microscopic origin of MSPQB has been
stimulated by the many new experimental results obtained in
gases of Bose-Einstein-condensed ultracold atoms �1–3�. It
has been recently shown �4–6� that MSPQB occurs in the
ground state of weakly interacting Bose-Einstein-condensed
systems and that the single-particle wave function obeys the
Gross-Pitaevskii �GP� equation. However, the origin of
MSPQB in strongly interacting systems such as liquid 4He is
still unclear. If all particles occupy the same single-particle
state with wave function ��r�, the many-particle wave func-
tion ��r1 , . . . ,rN� can be expressed as the product

��r1,r2, . . . ,rN� = �
n=1

N

��rn� . �1.1�

Equation �1.1� is exactly true only when there are no inter-
actions between particles. One would expect that it remains
approximately true when interactions are sufficiently weak,

but it is not clear how it can be even approximately true in
strongly interacting systems such as liquid 4He.

It is argued here that the link between BEC and MSPQB
can be understood rather simply, for any strength of particle
interaction, using only elementary concepts of probability
theory and many-particle wave mechanics. It is shown that
MSPQB is a consequence of two properties of Bose-
Einstein-condensed fluids. �1� Correlations between atomic
positions do not extend further than a few atomic spacings.
This is true basically by definition in any fluid. �2� The
many-particle wave function is delocalized in the sense de-
fined in the Abstract and in more detail in Sec. IV. Most
fluids do not have a delocalized wave function and hence do
not display MSPQB. However, it will be shown that delocal-
ization of the wave function and hence MSPQB are a neces-
sary consequence of BEC.

Section II contains definitions and specifies the notation
used. Section III reviews the properties of a well-known
model of the ground-state wave function of a Bose-Einstein-
condensed system. It is shown that the model wave function
possesses certain properties and it is argued in Secs. IV and
V that these properties are possessed by the ground-state
wave function of any Bose-Einstein-condensed fluid. In
Secs. VI–VIII it is shown that these properties imply
MSPQB. The nonlinear Schrödinger equation obeyed by the
wave function ��r� of the single-particle state is derived in
Sec. VII. Section VIII derives the equation determining the
time evolution of the density of a Bose-Einstein-condensed
gas in its ground state, when its confining potential is
switched off and the gas is allowed to expand. In Sec. IX it is
shown that, in the limit of weak interactions, the single-
particle equations derived in Secs. VII and VIII reduce to the
time-dependent and time-independent Gross-Pitaevskii equa-
tions. Section X discusses the limits of validity of the results.
Section XI contains a summary and conclusions.
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II. DEFINITIONS AND NOTATION

We take as the definition of Bose-Einstein condensation
that the single-particle momentum distribution n�p� contains
a peak of fractional weight f , centered at zero momentum,
and of width �� /L, where L is the linear dimension of the
entire system �see Fig. 1�. The “condensate fraction” f is
independent of the number of particles N when N is very
large.

This is not the most general definition of BEC �7�, but all
other definitions imply that this is true in the ground state of
any Bose-Einstein-condensed system. The presence of a con-
densate peak in n�p� is actually the accepted experimental
proof of BEC. Such peaks have been observed by neutron
scattering from superfluid helium �8� and light scattering
from ultracold clouds of atoms �1–3�. In ultracold gases it
has been shown experimentally �9� that the width of the con-
densate peak in momentum space is �� /L, in agreement
with the definition used here. In superfluid helium, where
samples are truly macroscopic, the width is too small to mea-
sure.

We consider the ground-state wave function ��r1 , . . . ,rN�
of a system of N particles, contained at uniform density
within a volume V�L3, with periodic boundary conditions.
The wave function is normalized.

� 	��r1, . . . ,rN�	2dr1 ¯ drN = 1. �2.1�

We denote the coordinate of one of the particles as r and the
coordinates of the other N−1 particles as s. Which coordi-
nate is singled out in this way is immaterial due to the Bose
symmetry of ��r1 , . . . ,rN� under particle interchange, but
for definiteness r1 is denoted as r and r2 , . . . ,rN as s through-
out.

The standard physical interpretation of the wave function
is that 	��r ,s�	2 is the probability distribution function
�PDF� for the positions r ,s of the N particles. We define the
function

P�s� =� 	��r,s�	2dr . �2.2�

It follows from the above interpretation of 	��r ,s�	2 that
P�s� is the PDF of the positions s of N−1 particles. Equa-
tions �2.1� and �2.2� imply that, as is consistent with this
interpretation,

� P�s�ds = 1. �2.3�

We define the function

�s�r� = ��r,s�/�P�s� . �2.4�

�s�r� is written with s as a subscript to emphasize that, wher-
ever it is used, we consider the dependence on one coordi-
nate r for a given value of s. However, it should be stressed
that to within a constant factor �s�r� simply describes the
dependence of the many-particle wave function ��r ,s� on a
single coordinate r, given the values s of the other N−1
coordinates. �s�r� is a convenient function to deal with as it
can be treated in many ways as the “conditional wave func-
tion” �10–15� of a single particle, given the positions s of all
other particles.

For example, it follows from the probability interpretation
of 	��r ,s�	2 that 	�s�r�	2 is the conditional PDF for the co-
ordinate r, given s. It follows from Eqs. �2.1�–�2.4� that, as is
consistent with this interpretation, �S�r� is a normalized
function of r:

� 	�s�r�	2dr = 1. �2.5�

The overall probability that particle 1 is at r is found by
averaging 	�s�r�	2 over the probability distribution for differ-
ent s:

��r� =� 	��r,s�	2ds =� P�s�	�s�r�	2ds . �2.6�

Since all particles are equivalent, the average number of par-
ticles per unit volume at r is N��r�.

The conditional probability of momentum p given s also
has a form analogous to the single-particle case �11�,

ns�p� =
1

�3
� �s�r�exp�ip · r/�3�dr
2

. �2.7�

The measurable single-particle momentum distribution is
again given by the weighted average over s,

n�p� =� P�s�ns�p�ds . �2.8�

The condensate fraction is the fraction of particles in the
zero-momentum state,

f =� P�s�fsds , �2.9�

where fs is a dimensionless number,

FIG. 1. �Color online� Bose-Einstein condensation. The atomic
momentum distribution n�p� contains a condensate peak of weight f
and width � /L, where L is the linear dimension of the system.
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fs =
ns�0�

V
=

1

V

� �s�r�dr
2

. �2.10�

With periodic boundary conditions in a cube of side L, par-
ticles in the condensate peak are equally likely to have any
momentum within a cube of side � /L, centered at p=0. With
other boundary conditions and in systems where the density
is not uniform, the shape of the condensate peak is modified
�see Appendix B�, but its width is still �� /L, where L is the
linear dimension of the system.

It should be stressed that Eqs. �2.6�–�2.10� are essentially
just a formal rewriting in different notation of standard rig-
orous results from N-particle wave mechanics. However,
when written in this form they can be given a new physical
interpretation. Many observable physical properties are de-
termined by some quantity Qs, which is an integral over r of
a functional of �s�r�. To obtain the observable property, an
average of Qs over s is performed, weighted by the probabil-
ity P�s� that s will occur. Examples are the density, momen-
tum distribution, condensate fraction, total kinetic and poten-
tial energy, and fluid flow—see Eqs. �2.6�, �2.8�, �2.9�,
�5.15�, and �8.1�.

III. FEYNMAN-PENROSE-ONSAGER MODEL OF THE
GROUND STATE OF 4He

Penrose and Onsager �16� used a simple model suggested
by Feynman �17� to give the first realistic estimate of the
condensate fraction in the ground state of liquid 4He. The
ground-state wave function was assumed to be zero if the
hard cores of any two atoms overlap and to have the same
value C for all other configurations of atoms. That is,

��r1, . . . ,rN� = �0 if 	rn − rm	 � a for any n,m, n � m ,

C otherwise.
�

�3.1�

a is the hard-core diameter of a helium atom and the constant
C is determined by the normalization condition on � in Eq.
�2.1�. At densities equal to those in the ground state of liquid
helium, the Feynman-Penrose-Onsager �FPO� model gives
f �8% �16�, very close to the value of �7	1�% observed in
state of the art measurements �8�.

It has previously been shown numerically �10,11� that the
FPO model of 4He implies that values of fs cluster about the
mean value f �0.08, with a distribution that has a closely
Gaussian form with standard deviation �f /�N �18�. That is,

fs = f�1 	 � 1/�N� . �3.2�

This is illustrated in Fig. 2 for N=192 atoms. Some non-
Gaussian behavior is present in Fig. 2, but as N increases
calculations show �11� that the distribution of fs values be-
comes steadily more Gaussian. This implies that in a large
system all s that occur give almost the same value for fs. For
example, with N=1022, the probability of fs differing from f
by more than one part in 109 is �exp�−10 000�. Clearly such
s will never occur �19�—that is �effectively�, P�s�=0 for
such s. The FPO model implies that �s�r� has the r depen-
dence,

�s�r� = �0 if for any m � 1 	r − rm	 � a ,

c otherwise.
� �3.3�

The constant c is determined by the normalization condition
in Eq. �2.5�.

The form of �s�r� in the FPO model is illustrated in two
dimensions in Fig. 3. �s�r� is nonzero only at points at least
a distance a from the center of any black circle �the white
regions in Fig. 3�. This has a simple physical interpretation.
In the FPO model �s�r� is nonzero only at points where the
center of an impenetrable sphere could be inserted, without
overlap with any of the N−1 impenetrable spheres, centered
at positions s=r2 , . . . ,rN.

IV. DELOCALIZATION

It is a simple mathematical consequence of the form of
�s�r� in Eq. �3.3� that �s�r� is nonzero within exactly a frac-

FIG. 2. Distribution of fs values obtained in a numerical calcu-
lation �11� using the FPO model at the packing density and hard-
core diameter of liquid 4He at zero temperature. fs was calculated
for 20 000 configurations s, obtained by use of a random number
generator and the values binned. The solid line is a Gaussian func-
tion with the same mean and standard deviation as the points.

FIG. 3. �Color online� Two-dimensional illustration of the form
of �s�r� for the FPO model. �s�r� is nonzero only within the white
regions. The black circles represent N−1 hard-core atoms of diam-
eter a at positions s=r2 , . . . ,rn. The two cells referred to in Sec. V
are also shown.
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tion fs of the total volume V �20�. Hence the FPO model
implies that �s�r� is a “delocalized” function of r. The term
“delocalized” as used in this paper means that the function
�s�r�, defined in Eq. �2.4�, is a nonzero function of r within
a volume proportional to the total volume of the fluid. This is
�8% of the total volume of the fluid in the FPO model. The
origin of delocalization is obvious in the FPO model �see
Fig. 3�. �s�r� is nonzero in any space in the fluid large
enough to accommodate another particle without hard-core
overlap. Clearly the total volume of these spaces is propor-
tional to the size of the system. It also follows from Eq. �3.2�
and the distribution illustrated in Fig. 2 that in the FPO
model �s�r� is delocalized within �8% of the total fluid
volume for every s that occurs.

The basic premise of this paper is that �s�r� is a delocal-
ized function of r for every s that occurs in the ground state
of any Bose-Einstein-condensed system. The necessity for
delocalization of �s�r� can be understood from the definition
of BEC in Sec. II and elementary Fourier transform theory. If
ns�p� in Eq. �2.7� contains a peak of width �� /L, then �s�r�
must be a nonzero function of r over length scales �L. This
inverse relation between widths in r and p space is well
known. For example, it is used in standard derivations of the
uncertainty principle and to interpret the widths of peaks in
diffraction data.

The FPO model actually gives the minimum delocaliza-
tion for a given value of fs. It has been shown more generally
�11� that �s�r� must be a nonzero function of r within a
volume 
fsV. Hence, it is true in any system that, if fs�0,
�s�r� must be delocalized. For reasons discussed at the end
of the following section it is assumed that in the presence of
BEC all particle configurations s that occur give fs�0, and
hence that �s�r� is delocalized for all s that occur when BEC
is present.

V. FLUCTUATIONS IN THE GROUND STATE

The results of this section follow from three properties of
a Bose-Einstein-condensed fluid.

�1� The function �s�r� is a delocalized function of r. This
is true in the presence of BEC, but not usually true when
BEC is absent.

�2� Correlations between particle positions extend only
over distances d��V /N�1/3, the average spacing between
atoms—this is essentially the definition of a fluid.

�3� Interactions between particles also extend only over
distances �d. This assumption is implicit in assumption 2.

The key to understanding MSPQB is that these three
properties imply that integrals over r of functionals of �s�r�
are almost the same for all s that occur, provided the integra-
tion volume is sufficiently large. In order to demonstrate this
we first consider the simplest such integral

Is = �
V

�s�r�dr , �5.1�

where the integral is taken over the entire volume of the
system. It is a well-known result of quantum mechanics that
the ground-state wave function of any Bose system can be

chosen as real and positive �21�. Hence both �s�r� and Is are
real and positive. The variation in Is with s can be character-

ized in terms of its deviation from the mean value Ī, where

Ī =� P�s�Isds . �5.2�

The fluctuation in Is is defined as

�Is = Is − Ī . �5.3�

In the rest of the paper the term “fluctuation” is used in this
sense—that is, the deviation from the mean as s is varied.
Clearly these are quantum fluctuations, associated with the
fact that ��r ,s� determines only probability distributions for
physical properties other than the ground-state energy.

We first consider a fluid of uniform density and divide the
total volume V into N equal microscopic cells, each contain-
ing on average a single particle. The contribution of cell i to
the integral Is is defined as the integral of �s�r� over r within
cell i,

gis = �
i

�s�r�dr . �5.4�

Is can then be formally written as the sum of contributions
from different cells,

Is = 
i=1

N

gis. �5.5�

In a system of uniform density, where all cells are equivalent,

every cell makes the same contribution to Ī. Hence the aver-
age over s of giS has the same value for every cell �22�,

ḡi =� P�s�giSds = ḡ = Ī/N . �5.6�

The cell fluctuation from this average is

�gis = gis − ḡ . �5.7�

It follows from Eqs. �5.3�–�5.7� that �Is is the sum of cell
fluctuations,

�Is = 
i=1

N

�gis. �5.8�

We consider two cells i , j separated by many atomic spac-
ings d, as illustrated in Fig. 3. Property 2 implies that the
arrangement of atoms near �that is, within �d of� cell i is
uncorrelated with that near cell j. Property 3 implies that
�s�r� within a cell is determined by the arrangement of at-
oms only near the cell. Hence the microscopic form of �s�r�
within cell i must be uncorrelated with that in cell j. It fol-
lows that fluctuations in the integrals of �s�r� over cells i and
j are also uncorrelated. In other words the signs of the fluc-
tuations �gis ,�gjs are uncorrelated, provided the cells i, j are
sufficiently widely separated.

The magnitude of the cell fluctuations is determined by
the strength of particle interactions. At the packing density
and atomic size in liquid 4He, the hard-core diameter a com-
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parable to the size of a cell. It is obvious that in this case gis
will depend strongly upon s. For example gis will be signifi-
cantly different for s giving one atom within cell i than for s
giving no �or two� atoms within the cell �see Fig. 3�. It fol-
lows that in liquid 4He cell fluctuations are �ḡ. That is,

gis = ḡ 	 � ḡ . �5.9�

With weaker interactions, such as those in dilute gases, fluc-
tuations are smaller and the results that will be derived are
more accurate, but for purposes of discussion we assume the
worst case estimate given by Eq. �5.9�.

It follows from Eqs. �5.8� and �5.9� that the fluctuation
�Is is the sum of N terms with uncorrelated signs and of
modulus �ḡ. This is equivalent to a random walk in one
dimension with step lengths �ḡ. For large N, values of �Is
will therefore be distributed about zero according to a Gauss-
ian distribution of standard deviation,

� ḡ�N = Ī/�N . �5.10�

It follows that values of Is are distributed about Ī, according

to a Gaussian distribution of width �Ī /�N,

Is = Ī�1 	 � 1/�N� . �5.11�

It follows from the definitions of fs and Is that fs=V	Is	2.
Hence this argument explains Eq. �3.2� and the Gaussian
shape of the distribution shown in Fig. 2 for the FPO model.
However, the arguments are valid not just for the FPO
model, but for any fluid satisfying conditions 1–3 above. In
particular they are valid for any Bose-Einstein-condensed
fluid in its ground state.

Furthermore, although the derivation above was given for
a system of uniform density, fluctuations in Is are also pro-
portional to 1 /�N in systems where the density is not uni-
form. In any fluid with the properties listed at the start of this
section Is can be expressed as a sum of N cell contributions
gis, which each fluctuate independently about a mean value
ḡi. If the density is nonuniform, ḡi will be different in differ-
ent cells. However, it still follows from the central limit theo-
rem �23� that values of Is are distributed about their mean

value Ī=ḡi, according to a Gaussian distribution of width
proportional to 1 /�N. This is true provided the following
conditions are satisfied.

�a� Fluctuations �gis in different cells are uncorrelated—
this is true in a fluid, but not a crystalline system.

�b� N is sufficiently large—�s�r� must be delocalized for
this to be true. This is not usually true in the absence of BEC,
but is implied by the presence of BEC.

�c� The PDF describing the distribution of gis values in
any cell i has a finite variance �23�. This is clearly always the
case since the cell size is finite.

The same arguments can be applied to other quantities Q
that can be expressed in the form

Q = N� P�s�Qsds , �5.12�

where

Qs =� F��s�r��dr �5.13�

and F is a functional of �s�r�. For example, the total poten-
tial energy of the system is

V� =� 
n


m�n

v�rn − rm�	��r1,r2, . . . ,rN�	2dr1dr2 ¯ drN.

�5.14�

The Bose symmetry of the wave function implies that all
terms in the sum over n make the same contribution to V�.
Hence, using the definition of �s�r�, V� can be expressed as

V� = N� P�s�vsds , �5.15�

where

vs =� 
m�1

v�r − rm�	�s�r�	2dr . �5.16�

Like the integral Is, vs can be divided into the sum of N cell
contributions which each fluctuate independently about a
mean value as s varies. Hence the same arguments used to
justify Eq. �5.11� imply that in a large system vS is almost the
same for all s that occur,

vs = v�1 	 � 1/�N� , �5.17�

where v=V� /N is the average single-particle potential en-
ergy.

Similarly the total kinetic energy of the fluid can be ex-
pressed as �11�

K = N� P�s��sds , �5.18�

where

�s = �
V

�s
*�r�

− �2

2m

�2�s�r�
�r2 dr . �5.19�

By the same arguments �s is almost the same for all s that
occur in a large system,

�s = ��1 	 � 1/�N� , �5.20�

where � is the mean kinetic energy per particle.
To conclude this section we return to the assumption

given in Sec. IV that �s�r� is a delocalized function of r for
all s that occur. We first note the obvious fact that in the
presence of BEC fs must be nonzero for some s and that
�s�r� must therefore also be delocalized for some s. Further-
more, it has just been shown that if �s�r� is delocalized, then
to within terms �1 /�N, fs= f . It follows that only s for
which fs� f or fs�0 can occur in the presence of BEC.
Clearly, particle configurations s giving fs� f will give a
significantly lower value for �s than those for which fs�0.
However, in the ground state, it follows from the definition
of �s�r� and the fact that ��r ,s� is an eigenstate of energy
that �s and vs are linked by the relation

ORIGIN OF MACROSCOPIC SINGLE-PARTICLE QUANTUM… PHYSICAL REVIEW A 78, 033618 �2008�

033618-5



�s + vs = E/N , �5.21�

where E is the total ground-state energy. Hence s for which
fS�0 can also occur only if the increase in �s is exactly
compensated by a decrease in vs. This is mathematically pos-
sible, but physically seems extremely unlikely.

Furthermore, if s for which fs� f and fs�0 both occur,
this would imply fluctuations �1 in the condensate fraction
and hence the Bose order parameter �see Appendix C�. Both
are thermodynamic properties of a macroscopic system and
would be expected to have fluctuations �1 /�N. According
to Eq. �3.2� this is true if all s that occur give fs� f , but not
if s giving fs�0 also occur. Fluctuations in the total kinetic
energy K of the fluid would also be �1. The fluctuation in K
is

�K2 = N� P�s���s − ��2ds . �5.22�

Clearly, s for which fs� f will give �s lower by �� than s
for which fs�0. Thus if both occurred with appreciable
probability this would imply �K�K. However, K is an ad-
ditive property �that is, proportional to N� of a macroscopic
body and it is a very general result of statistical physics �24�
that fluctuations in such quantities are �1 /�N. This again
implies that in the presence of BEC all s that occur give fs
� f .

VI. COARSE-GRAINED AVERAGES

We next consider an element of volume �, centered at the
point r as illustrated in Fig. 4. We assume that � is small
compared to the total volume V, but that the element contains
many atoms. Provided �s�r� is delocalized, the argument ap-
plied to the whole volume V in the previous section can be
applied to the element. If the element contains on average N�

atoms, fluctuations in integrals of functionals of �s�r� over
the element, such as �5.1�, �5.16�, and �5.19�, will be
�1 /�N� �25�.

We define the “coarse-grained average” �CGA� of �s�r� as
the average over such a volume � centered at r,

�s�r� =
1

�
�

��r�
�s�r��dr�. �6.1�

The CGA is a smoothing operation which removes structure
on length scales �d, leaving only structure varying over
length scales �1/3d. In the rest of the paper a bar over an
expression denotes the CGA. It follows from the previous
discussion that �s�r� is the same to �1 /�N� for all s that
occur,

�s�r� = �̄�r��1 	 � 1/�N�� . �6.2�

The symbol � is henceforward used to denote equality to
within terms �1 /�N�. That is, Eq. �6.2� is equivalent to

�s�r� � �̄�r� . �6.3�

It is shown in Appendix C that �̄�r� can be identified as the
thermodynamic order parameter of the system.

By the same arguments the CGA of 	�s�r�	2 is also the
same for all s that occur to within terms �1 /�N�,

	�s�r�	2 =
1

�
�

��r�
	�s�r��	2dr� � �̄�r� . �6.4�

It follows from Eqs. �2.6� and �2.3� that �̄�r� is the coarse-
grained average of the particle density ��r�,

�̄�r� =
1

�
�

��r�
��r��dr�. �6.5�

It is clear that �̄�r� is just the macroscopic thermodynamic
particle density in the fluid.

A visual understanding of Eqs. �6.3� and �6.4� can be
obtained from the FPO model, for which the CGAs �s�r� and
	�s�r�	2 are both proportional to the total volume within the
element ��r�, where �s�r� is nonzero �the white regions in
Fig. 4�. The total volume of these regions lying within ��r�
is the same to within �1 /�N� for all particle arrangements s
that occur. This is true for basically the same physical reason
that the total number of particles within ��r� is the same to
within �1 /�N� for all particle arrangements that occur.

The CGA over N coordinates of 	��r1 ,r2 , . . . ,rN�	2 is
similarly defined as

	��r1,r2, . . . ,rN�	2 =
1

�N�
��r1�

dr1��
��r2�

dr2� ¯

��
��rN� �

drN� 	��r1�,r2�, . . . ,rN� �	2. �6.6�

In this case the CGA smooths the structure in all coordinates.
It follows from the definition of �s�r� and Eq. �6.4� that

	��r1,r2, . . . ,rN�	2 � P̄�r2, . . . ,rN��̄�r1� , �6.7�

where P̄�r2 , . . . ,rN� is the CGA of P�r2 , . . . ,rN� over N−1
coordinates,

FIG. 4. �Color online� The square illustrates a particular ele-
ment, centered at r and of volume �.

J. MAYERS PHYSICAL REVIEW A 78, 033618 �2008�

033618-6



P̄�r2, . . . ,rN� =
1

�N−1�
��r1�

dr2� ¯ �
��rN�

drN� P�r2�, . . . ,rN� � .

�6.8�

Due to the Bose symmetry of the wave function, Eq. �6.7�
could equally well be written in any of the forms

	��r1,r2, . . . ,rN�	2 � P̄�r1,r3, . . . ,rN��̄�r2�

� P̄�r1,r2,r4, . . . ,rN��̄�r3�, etc.

�6.9�

Since the functions 	�	2, P̄, and �̄ are all well-defined math-
ematical functions, Eq. �6.9� can be satisfied only if

	��r1,r2, . . . ,rN�	2 � �
n=1

N

�̄�rn� . �6.10�

Equation �6.10� also implies that

P̄�r2, . . . ,rN� � �
n=2

N

�̄�rn� . �6.11�

VII. CGA OF THE SCHRÖDINGER EQUATION

We next multiply the N-body Schrödinger equation by �*

and perform a CGA of each side over N coordinates,

�*
n=1

N �−
�2

2m

�2�

�rn
2 + ��rn�� + 

m�n
v�rn − rm���

= − i��*
��

dt
. �7.1�

��rn� is the applied potential and 2v�rn−rm� is the potential
energy of interaction between particles n and m. Considering
first the term associated with the potential energy of interac-
tion between particles,


n


m�n

v�rn − rm�	�	2 =
1

�N�
��r1�

dr1��
��r2�

dr2� ¯

��
��rN�

drN�
n=1

N


m�n

v�rn� − rm� �	�	2.

�7.2�

It follows from the definition of �s�r� that the term n=1 can
be written as


m�1

v�r1 − rm�	�	2 =
1

�N−1�
��r2�

dr2� ¯

��
��rN�

drN� P�r2�, . . . ,rN� �
1

�

��
��r1�


m�1

v�r1� − rm� �	�s�r1��	
2dr1�.

�7.3�

By the arguments of Secs. V and VI the integral over r1� in
Eq. �7.3� is the same for all s that occur to within terms
�1 /�N�. Hence it is determined only by r1 and can be ex-
pressed in the form

�
��r1�


m�1

N

v�r1� − rm�	�s�r1��	
2dr1� � ��̄�r1�v̄�r1� . �7.4�

It is shown in Sec. IX that v̄�r� is the average potential
energy per particle within the element ��r�.

It follows from Eqs. �7.4� and �7.3� that


m�1

v�r1 − rm�	�	2 � P̄�r2, . . . ,rN�v̄�r1��̄�r1�

� �
m�1

N

�̄�rm�v̄�r1��̄�r1� , �7.5�

where Eqs. �6.8� and �6.11� have been used. All other terms
in the sum over n can be treated in an identical fashion. Thus
Eq. �7.2� reduces to


n


m�n

v�rn − rm�	�	2 � 
n=1

N

�
m�n

�̄�rm��*�rn�v̄�rn���rn� ,

�7.6�

where ��r� is defined as

��r� = ��̄�r� . �7.7�

The kinetic energy term can be treated similarly. It is shown
in Appendix A that, provided the density and hence ��r�
vary slowly with r,

1

�
�

��r�
�s

*�r��
− �2

2m

�2�s�r��
�r2 dr�

�
− �2

2m
�*�r�

�2��r�
�r2 + �̄�r��̄�r� . �7.8�

The first term on the left in Eq. �7.8� is the contribution made
to the kinetic energy by the slow variation of ��r� over mac-
roscopic length scales and is the kinetic energy associated
with the net momentum of particles in the element ��r�.
�̄�r� is the average kinetic energy per particle within ��r�
after subtraction of the “center of mass” kinetic energy asso-
ciated with the first term.

It follows from Eq. �7.8�, by a similar argument to that
used in the derivation of Eq. �7.6�, that


n

−
�2

2m
�*

�2�

�rn
2 � 

n=1

N

�
m�n

�̄�rm��*�rn��−
�2

2m

�2��rn�
�rn

2

+ �̄�rn���rn�� . �7.9�

It follows by use of Eqs. �6.10� and �7.7� that, provided that
the variation of ��r� over the volume � is negligible, the
term involving the external potential can be written as
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n=1

N

��rn�	�	2 � 
n=1

N

�
m�n

�̄�rm��*�rn���rn���rn� .

�7.10�

Adding Eqs. �7.6�, �7.9�, and �7.10�, it follows that to within
terms �1 /�N� the left-hand side of Eq. �7.1� reduces to


n=1

N

�
m�n

�̄�rm��*�rn�� �2

2m

�2

�rn
2 + Veff�rn� + ��rn����rn� ,

�7.11�

where

Veff�rn� = �̄�rn� + v̄�rn� . �7.12�

It follows by use of Eqs. �7.7� and �6.10� that the right-hand
side of Eq. �7.1� can be written in the form

− i��*
��

dt
= E	�	2 � 

n=1

N

�
m�n

�̄�rm��*�rn����rn� .

�7.13�

E is the total ground-state energy and �=E /N is the average
energy per particle. Equating Eqs. �7.11� and �7.13�, it fol-
lows that to within terms �1 /�N� the particle n obeys the
equation

�2

2m

�2��rn�
�rn

2 + �Veff�rn� + ��rn����rn� � ���rn� .

�7.14�

It follows that for averages over macroscopic regions of
space, the system behaves as if every particle occupies the
same single-particle state with a wave function ��r� satisfy-
ing Eq. �7.14�.

VIII. TIME DEVELOPMENT OF THE WAVE FUNCTION

In experiments on trapped Bose gases, measurements of
the atomic momentum distribution are made by switching off
the confining potential and measuring the expansion of the
cloud over time. Once the potential is switched off, the sys-
tem is no longer in its ground state and the wave function
can develop a phase that depends upon the coordinates r, s.
The variation of density with time also implies that a non-
zero flow of particles must develop within the fluid.

It is assumed that the wave function remains delocalized
after the potential is switched off. It seems clear on physical
ground that this must be the case, since any localization
would require a macroscopic amount of energy. For example,
if �s�r� becomes localized within a volume �r3, the conden-
sate peak will be broadened by �� /�r �see Appendix B�.
Hence the kinetic energy of atoms in the condensate would
change from the ground-state value of Nf�� /L�2 /2m to
Nf�� /�r�2 /2m—a macroscopic change if N is macroscopic.
Any phase variation over length scales ��r would give a
similar increase in the kinetic energy of the fluid. Hence it is
also assumed that any phase that develops has an insignifi-
cant variation over the averaging volume �. For simplicity

of exposition, the wave function is still denoted as ��r ,s�
although � is no longer strictly the ground-state wave func-
tion.

It has been shown previously �11� that in any Bose system
of identical particles, described by a wave function ��r ,s�,
the particle flux at r can be expressed in the form

F�r� = N� P�s�Fs�r�ds , �8.1�

where

Fs�r� =
�

m
	�s�r�	2 � �s�r� �8.2�

and �s�r� is the phase of �s�r�.
Since Eqs. �8.1� and �8.2� are of the form given in Eqs.

�5.12� and �5.13�, it follows that the CGA of Fs�r� is the
same to within terms �1 /�N� for all s that occur,

1

�
�

��r�
Fs�r��dr� � F�r� . �8.3�

Writing F�r� in the form

F�r� � �̄�r�
�

m
� �̄�r� �8.4�

implies that �� /m�� �̄�r� can be interpreted as the velocity of
an element ��r� of density �̄�r�. It follows from Eq. �8.2�
and the definition of �̄�r� in Eq. �6.4� that ��̄�r� is the aver-
age of ��s over ��r�, weighted by the probability distribu-
tion 	�s�r�	2,

��̄�r� = �
��r�

	�s�r��	2 � �s�r��dr���
��r�

	�s�r��	2dr�.

�8.5�

Note that Eqs. �8.1� and �8.2� are valid in any Bose system of
identical particles, but that Eqs. �8.3�–�8.5� are valid only if
�s�r� is delocalized.

The presence of a slowly varying average phase �̄�r� can
be incorporated by generalizing Eq. �7.7� to

��r� = ��̄�r� exp�i�̄�r�� . �8.6�

It is shown in Appendix A that Eq. �7.9� is still valid with
��r� given by Eq. �8.6�, provided that �s�r� is delocalized

and both �̄�r� and �̄�r� vary slowly with r, as assumed. The
derivation of Eqs. �7.6� and �7.10� is unaffected by the pres-
ence of a phase factor in ��r�. Hence the left-hand side of
Eq. �7.1� still reduces to the form given by Eq. �7.11�.

With the substitution of � by Eq. �1.1� the right-hand side
of Eq. �7.1� reduces to

i��*
��

dt
� �

n=1

N

�
m�n

�̄�rm��*�rn��i�
�

�t
��rn� . �8.7�

Equating �8.7� and �7.11�, it follows that, to within terms
�1 /�N�, Eq. �7.1� is satisfied by substitution in Eq. �1.1�,
provided that each particle coordinate satisfies
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�2

2m

�2��rn�
�rn

2 + Veff�rn���rn� + ��rn���rn� � i�
�

�t
��rn� .

�8.8�

To within terms �1 /�N�, the fluid therefore again behaves
as if every particle occupies the same single-particle state,
with a wave function ��r� satisfying a single-particle
Schrödinger equation.

IX. THE GROSS-PITAEVSKII EQUATIONS

According to Eq. �7.12� the effective single-particle po-
tential Veff�r� in Eqs. �7.14� and �8.8� is the sum of �̄�r�,
defined in Eq. �7.8�, and v̄�r�, defined in Eq. �7.4�. v̄�r� is the
contribution made by the element ��r� to the potential en-
ergy integral in Eq. �5.16�. It follows by use of Eq. �5.15�
that, to within terms �1 /�N�, N��̄�r�v̄�r� is the total po-
tential energy of particles within ��r�. Since the element
contains �N��̄�r� atoms, v̄�r� is the average potential en-
ergy per particle within the element. It is shown in Appendix
A that �̄�r� is the average kinetic energy per particle within
��r�, after subtraction of the kinetic energy associated with
the net momentum of the element.

Hence the effective single particle potential is

Veff�r� = ����r�� , �9.1�

where � is the average energy per particle within an element
��r� with zero net momentum. The density within the ele-
ment can be taken as constant and equal to the value ��r� at
the center of the element. In the ground state the total energy
has its minimum value and this will be obtained when atoms
within each element have minimum energy. Hence � is the
ground-state energy per particle at the local density.

It follows from the definition of ��r� in Eqs. �7.7� and
�8.6� that Eqs. �7.14� and �8.8� are nonlinear equations for
��r�. Furthermore, it is a standard result of calculations on
the dilute Bose gas that � is proportional to � at low density.
Hence, with weak interactions, Veff�r�� 	��r�	2 and Eqs.
�7.14� and �8.8� reduce to the time-independent and time-
dependent GP equations. However, with Veff�r� given by Eq.
�9.1�, Eqs. �7.14� and �8.8� are valid for any strength of par-
ticle interaction. Any nonlinearity in the relation ���� will
lead to deviations from the predictions of the GP equation.
The dependence of � upon the density can be calculated by a
variety of methods, even with strong interactions. Hence cor-
rections to the GP equation could also be calculated and, if
sufficiently accurate measurements could be made, the accu-
racy of Eqs. �7.14� and �8.8� could be experimentally tested.

X. LIMITS OF VALIDITY

It should first be stressed that the arguments of Secs.
V–IX are valid only if the wave function is delocalized. A
physical example of a system that does not have a delocal-
ized wave function is a close-packed fluid �see Fig. 5�.

If particle configurations r1 , . . . ,rN that occur in the
ground state contain no space large enough to accommodate
another particle, then configurations s of N−1 particles that
occur will contain only a single space. Loosely speaking, if a

particle is removed it can be replaced only in the space left
by its removal. Hence, in a sufficiently close-packed fluid,
�s�r� is localized within a single space of dimension �d.

The arguments given in Secs. V–VIII fail in a number of
ways in this case. Integrals such as �5.1�, �5.16�, and �5.19�
cannot be expressed as the sum of many cell contributions,
since only �1 cell will give a nonzero contribution. The
CGA is not a useful operation, since there can be no long-
range averaged structure in expressions containing �s�r�.
Furthermore, coarse-grained averages are not even approxi-
mately independent of s. For example, if s is such that �s�r�
is localized within the element ��r�, as is the case on the
right in Fig. 5, CGAs over the element are nonzero. For s
where �s�r� is localized outside ��r�, as on the left in Fig. 5,
they are zero. Hence, if �s�r� is localized, none of the argu-
ments in Secs. IV–VIII are valid and the single-particle equa-
tions �7.14� and �8.8� are not even approximately accurate.

Localization of �s�r� to within distances �d also implies
that BEC is not present, since it follows from standard Fou-
rier transform theory that any peak in ns�r� must then have a
minimum width of �� /d. Delocalization of �s�r� and hence
MSPQB are usually present only in the presence of BEC. It
is worth noting, however, that BEC is not strictly necessary
for MSPQB to occur. BEC implies that the wave function is
delocalized over a distance comparable to the macroscopic
dimension �L of the entire sample. All that is required for
MSPQB to occur is that the wave function is delocalized
over distances much greater than a typical interatomic spac-
ing.

It should also be stressed that the results are accurate only
when behavior over macroscopic length scales is considered.
For example, they do not accurately describe measurements
that resolve spatial structure on very short length scales. The
uncertainties are �1 /�N�, where N� is the number of atoms
within the averaging or resolution volume. This failure is due
to the probabilistic nature of the many-particle wave function
and appears to be an unavoidable consequence of quantum
fluctuations. These dominate over length scales �d, the av-
erage spacing between atoms. In particular, this implies that
the results are valid only if the macroscopic density �̄�r�,
flow velocity �� /m�� �̄�r�, and external potential ��r� vary
negligibly over length scales comparable to the interatomic
spacing.

FIG. 5. �Color online� Two different possible configurations s of
N−1 hard-sphere particles in a close-packed system. �s�r� is local-
ized within a single space of dimension �d surrounding the cross in
the figures. A particular element � is also illustrated. In the left-
hand figure �s�r� is localized outside the element and CGAs over
the element are zero. In the right-hand figure �s�r� is localized
inside the element and CGA’s over the element are nonzero.
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This is not a serious limitation for describing macroscopic
behavior, since similar constraints apply to all macroscopic
thermodynamic variables. These are defined as averages over
volumes containing many atoms and are always uncertain to
within terms �1 /�N�, where N� is the number of atoms
within the volume over which the macroscopic average is
taken. Hence Eqs. �7.14� and �8.8� describe macroscopic
thermodynamic behavior to the same degree of accuracy that
thermodynamic variables can be defined. Note that the deri-
vation of the GP equation in Sec. IX is similarly valid only to
within terms �1 /�N�. This is consistent with the generally
accepted view that the GP equations is not accurate over
length scales �d.

XI. SUMMARY AND CONCLUSIONS

It has been shown that macroscopic single-particle quan-
tum behavior will occur in the ground state of any Bose-
Einstein-condensed system, irrespective of the strength of
interactions between particles. This is essentially a conse-
quence of two properties of Bose condensed fluids. �1� The
ground state wave function is delocalized in the sense dis-
cussed in Sec. IV. �2� In any fluid there are no correlations
between the positions of atoms separated by distances much
greater than a typical interatomic spacing.

The conclusions are valid provided that only macroscopic
properties are considered—that is, averages over regions of
space containing many atoms. Inaccuracies due to quantum
fluctuations are �1 /�N�, where N� is the number of par-
ticles within the volume over which the average is taken. To
within terms �1 /�N�, the averaged many-particle wave
function can be factorized into a product of single-particle
wave functions ��r� as in Eq. �1.1�. The function ��r� satis-
fies the usual considerations of particle flux given in Eq.
�8.4� and obeys the single-particle Schrödinger equations
given in Eqs. �7.14� and �8.8�. Equation �7.14� determines
the macroscopic particle density in the ground state of Bose-
Einstein-condensed systems. Equation �8.8� gives the time
evolution of this density when a gas in its ground state is
released from a trap. These equations reduce to the time-
dependent and time-independent Gross-Pitaevskii equations
when interactions are weak, but are valid for any strength of
interaction between particles. Observed deviations from the
predictions of the GP equation could be used to experimen-
tally test the validity of Eqs. �7.14� and �8.8�.

All the results derived are valid only if �s�r� is a delocal-
ized function of r. In Bose-Einstein-condensed systems �s�r�
must be delocalized over length scales comparable to the
system size, that is, �L. In the absence of BEC �s�r� is
usually localized within a region of dimension comparable to
the interatomic spacing and MSPQB does not occur. Hence
Bose-Einstein-condensed fluids exhibit macroscopic single-
particle quantum behavior, whereas most other fluids do not.

APPENDIX A: KINETIC ENERGY

The total kinetic energy is given by Eqs. �5.18� and
�5.19�. The CGA of the integrand in �5.19� is

�s�r� = �
��r�

�*
s�r��

− �2

2m

�2�s�r��
�r�2 dr�. �A1�

We define the function

�s�r� = �s�r�/��r� . �A2�

��r� is defined by Eq. �7.7� in the ground state and Eq. �8.6�
in the time-dependent case. It follows from the definition of
�s�r� and Eq. �6.4� that

�
��r�

	�s�r��	2dr� � 1. �A3�

The phase of �s�r� is

�s��r� = �s�r� − �̄�r� , �A4�

where �̄�r� is defined in Eq. �8.5� and �s�r� is the phase of
�s�r�. It follows from Eq. �8.5� that the average value of
��s��r� over the element ��r� is zero. Hence �s�r� can be
regarded as the conditional wave function of a system at
constant density and with zero net flow.

We assume that ��r� varies sufficiently slowly with r that
�̄�r� and its first and second derivatives can be approximated
by their values at the center of the element. Then these func-
tions can be taken outside the integral over ��r� and

�s�r� � 	�̄�r�	2�
��r�

�s
*�r��

− �2

2m

�2�s�r��
�r�2 dr�

+ �̄*�r�
��̄�r�

�r
�

��r�
�s

*�r��
− �2

2m

��s�r��
�r�

dr�

+ �̄*�r�
− �2

2m

�2�̄�r�
�r2 �

��r�
	�s�r��	2dr�. �A5�

Physically, the transformation in Eq. �A2� separates long-
range-averaged structure in the particle density and flow
from the random structure on length scales �d. The micro-
scopic momentum density is

p�r� = ��/i��s
*��s/�r �A6�

and it has a sign that varies randomly over length scales �d.
The long-range-averaged momentum density is

P�r� = ��/i���̄/dr �A7�

and it has an almost constant value P within an element.
Dividing the element ��r� into microscopic cells, each of

size d3, where d is the average distance between atoms, the
integral in Eq. �A1� can be expressed as the sum over N� cell
contributions. The transformation �A2� subtracts P from the
momentum pn of each cell. Hence the kinetic energy is


n=1

N� �pn − P�2

2M
= 

n=1

N� �pn
2 − 2pn · P + P2

2M
� . �A8�

The three terms in �A8� correspond to the three terms in
�A5�. Physically the first term in each equation is the kinetic
energy due to the random motion on length scales �d. By
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the arguments of Sec. VI this is independent of s to within
terms �1 /�N�,

− �2

2m
�

��r�
�s�r��

�2�s�r��
�r�2 dr� � �̄�r� . �A9�

The third term is the kinetic energy due to the net momentum
of the element. The second term in Eqs. �A8� and �A5� av-
erages to zero to within terms �1 /�N�, due to the random
variation in the direction of the pn. Hence, to within terms
�1 /�N� and using Eqs. �A3� and �A9� Eq. �A1� reduces to

�s�r� � �̄*�r�
− �2

2m

�2�̄�r�
�r2 + 	�̄�r�	2�̄�r� . �A10�

APPENDIX B: MOMENTUM DISTRIBUTION OF ATOMS
IN THE CONDENSATE

In systems where the particle density varies with position,
it follows from Eq. �A2� that �s�r� can be regarded as the
product of �s�r� with an “envelope” function ��r�. It follows
from the convolution theorem that the Fourier transform of
�s�r� is

�̃s�p� = �̃�p� � �̃s�p� , �B1�

where

�̃s�p� =� �s�r�exp�ip · r�dr , �B2�

with similar expressions for �̃�p� and �̃s�p�.
In the presence of BEC, �s�r� can be regarded as a func-

tion that is nonzero as r→� and �̃s�p� therefore contains a �
function peak ��p�. However, since ��r� is nonzero only
over a finite region of dimension �L, �̃�p� has a minimum
width �� /L. After convolution with the � function in �̃s�p�,
this gives a condensate peak with width �� /L and a distri-
bution of momenta 	�̃�p�	2. For example, with a density dis-
tribution ��r��exp�−r2 / �2�2��, the momentum distribution
of atoms in the condensate peak is a Gaussian of standard
deviation 1

2� /�.

APPENDIX C: THE ORDER PARAMETER

The single-particle density matrix is defined in terms of
the wave function as

�1�r,r�� =� �*�r,s���r�,s�ds =� P�s��s
*�r��s�r��ds ,

�C1�

where the definition of �s�r� in Sec. II has been used. The
CGA of �1�r ,r�� over the two coordinates r, r� can be de-
fined in a similar way to Eq. �6.6�:

�̄1�r,r�� =
1

�2�
��r�

�
��r��

�1�r�,r��dr�dr�

=� P�s��s
*�r��s�r��ds . �C2�

It follows by use of Eqs. �6.3� and �2.3� that

�̄1�r,r�� � �̄*�r��̄�r�� . �C3�

This should be compared with the standard �16� criterion for
the presence of BEC,

�1�r,r�� → ��̂�r����̂*�r��� for 	r − r�	  d . �C4�

Note that the condition 	r−r�	d does not appear in Eq.
�C3�. The nonconstant part of �1�r ,r�� generally decays to
zero for 	r−r�	� �d. Hence the contribution to �̄1�r ,r�� of
the region excluded in Eq. �C4� is �1 /N� and the CGA of
Eq. �C4� is satisfied to within terms �1 /N� even when r
=r�.

��̂�r�� in Eq. �C4� is generally identified with the order
parameter, a new thermodynamic variable created when the
BEC forms. It follows by comparison between Eqs. �C3� and
�C4� that the order parameter can also be identified as �̄�r�.
The inexact equality in Eq. �C3� reflects the fact that, as
defined in Eqs. �6.1� and �6.2�, �̄�r� has fluctuations
�1 /�N�. This is consistent with the status of the order pa-
rameter as a macroscopic thermodynamic variable. It is eas-
ily shown that, if �s�r� is localized within a region �d3, �̄�r�
is zero to within terms �1 /�N�. Again this is consistent
with the interpretation of �̄�r� as the order parameter.

It is also worth noting that this definition of the order
parameter is compatible with that given previously �11�,

���r�� =� P�s��s�r�dr . �C5�

It follows from Eqs. �6.2� and �2.3� that the CGA of Eq. �C5�
is

���r�� � ��r� . �C6�

Hence, provided only averages over regions of space con-
taining many atoms are considered, the two definitions are
equivalent.
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