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We propose a method for observation of the quasistationary states of neutrons localized near a curved mirror
surface. The bounding effective well is formed by the centrifugal potential and the mirror Fermi potential. This
phenomenon is an example of an exactly solvable “quantum bouncer” problem that can be studied experimen-
tally. It could provide a promising tool for studying fundamental neutron-matter interactions, as well as
quantum neutron optics and surface physics effects. We develop a formalism that describes quantitatively the
neutron motion near the mirror surface. The effects of mirror roughness are taken into account.
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I. INTRODUCTION

The “centrifugal states” of neutrons is a quantum analog
of the so-called whispering gallery wave, the phenomenon
which in brief consists of the wave localization near the
curved surface of a scatterer. It has been known in acoustics
since ancient times and was explained by Rayleigh in his
Theory of Sound �1,2�. The whispering gallery wave in optics
has been an object of growing interest during the last decade
�3,4�. In the following we will be interested in the matter-
wave aspect of the whispering gallery wave phenomenon:
namely, the large-angle neutron scattering on a curved mir-
ror. Such a scattering can be explained in terms of states of a
quantum particle above a mirror in a linear potential—the
so-called “quantum bouncer” �5–11�. The neutron quantum
motion in the Earth’s gravitational field above a flat mirror is
another example of such a quantum bouncer, which was ob-
served recently �12�. We will show that the centrifugal quan-
tum bouncer and the gravitational quantum bouncer have
many common features. Therefore we compare these two
phenomena and discuss the motivation for their study.

Experimental observation and study of the gravitational
states is a challenging problem which brings rich physical
information for searches for extensions of the standard
model or for studying the interaction of a quantum system
with a gravitational field �13–26�, for constraining spin-
independent extra short-range forces �27–29�, hypothetical
axion-mediated spin-matter interactions �30�, and in surface
physics. Indeed any additional interaction between the mirror
bulk and neutron with the characteristic range of the gravi-
tational states of a few micrometers would modify the quan-
tum states and thus could be detected.

A natural extension of the mentioned experimental activ-
ity consists in approaching ultimate sensitivity for extra in-

teractions at shorter characteristic ranges. Evidently, the
quantum-state characteristic size has to be decreased. To
achieve this goal one needs to study novel approaches �31�.
We will show that the promising method consists in localiza-
tion of cold neutrons near a curved mirror surface due to the
superposition of the centrifugal potential and the Fermi po-
tential of the mirror. In such a case the quasistationary “cen-
trifugal” quantum states play an essential role in the neutron
flux dynamics. In the limit where the centrifugal quantum-
state spatial size is much smaller than the curved mirror ra-
dius, this problem is reduced to the simple case of a quantum
particle in a linear potential above a mirror. Measurement of
the gravitationally bound and centrifugal quantum states of
neutrons could be considered as a kind of confirmation of the
equivalence principle for a quantum particle �32–36�. Both
problems �gravitational and centrifugal ones� provide a per-
fect experimental laboratory for studying neutron quantum
optics phenomena, quantum revivals, and localization
�37–44�. Evident advantages of using cold neutrons consist
in much higher statistics attainable and broad accessibility of
cold neutron beams as well as in a crucial reduction of many
false effects compared to experiments with gravitationally
bound quantum states of neutrons due to approximately
�105 times higher energies of the quantum states involved.

The phenomenon of the centrifugal quantum states of
neutrons and the method of their experimental observation
are described in Sec. II. In Sec. III we develop the formal-
ism, which describes neutron motion near the curved mirror
surface; the properties of the centrifugal quantum states are
discussed in Sec. IV. We will show that cold neutrons with a
velocity of �103 m /s are well suited for such experiments.
A time-dependent approach is considered in Sec. V. The ef-
fects of mirror roughness are taken into account in Sec. VI.

II. PRINCIPLE OF OBSERVATION

If the neutron energy is much larger than the scatterer
Fermi potential, most neutrons are scattered in small angles.*nesvizhevsky@ill.eu
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However, some neutrons could be captured into long-living
centrifugal quasistationary states localized near the curved
scatterer surface and thus could be detected at large deflec-
tion angles. The curved mirror surface plays the role of a
waveguide, and the centrifugal states play the role of radial
modes in such a waveguide. The spectral dependence of the
transmission probability is determined by the existence of
the centrifugal states in such a system.

Similarly, in the gravitational-state experiment one mea-
sures the slit-size dependence of the transmission probability
of the waveguide between a mirror and the above-placed
absorber �45–54�. The characteristic energy scale of the
gravitational-state problem is �0=0.6 peV, and the character-
istic length scale is l0=5.87 �m. The mirror Fermi potential
could be considered as infinitely high and sharp. This ap-
proximation is justified as far as l0 is much larger than the
characteristic range of the Fermi-potential increase �typically
�1 nm� and �0 is much smaller than the characteristic value
of the mirror Fermi potential �typically �10−7 eV�. The
methods for experimental observation of the gravitationally
bound quantum states of neutrons are based on a relatively
large value of the characteristic length l0, which allowed di-
rect measurement of the shapes of the neutron density distri-
bution in the quantum states using two following comple-
mentary methods. The first approach consisted in scanning
the neutron density above the mirror using a flat horizontal
scatterer/absorber at variable height. The second method is
based on use of position-sensitive detectors of UCN with
high spatial resolution of �1 �m.

In analogy with the gravitational well the centrifugal
quantum well is formed by an effective centrifugal potential
and repulsive Fermi potential of a curved mirror as shown in
Figs. 1 and 2. The effective acceleration near the curved
mirror surface could be approximated as a=v2 /R, where v is
the neutron velocity and R is the mirror radius. We have
significant freedom to choose values of v and R. In particu-
lar, it would be advantageous to increase the neutron velocity
and to decrease the mirror radius in order to get higher cen-
trifugal acceleration a. In such a case the quantum well that
confines the radial motion of neutrons near the curved mirror
surface becomes narrower, while the energy of radial motion

in the corresponding quantum states increases. This enables
us to eliminate many possible systematic effects. The radial
motion energy could be as high as the mirror Fermi potential.
In this case, we could use the Fermi potential of a mirror as
a “filter” for the quantum states. For an ideal cylindrical
mirror with perfect shape and zero roughness made of low-
absorbing material, neutron losses in such quasistationary
quantum states occur via tunneling of neutrons through a
triangle potential barrier shown in Fig. 2. The lifetime of
deeply bound states is long. The lifetime of the quasistation-
ary quantum states with energy close to the barrier edge is
short; such neutrons tunnel rapidly into the mirror bulk. If we
vary continuously the centrifugal acceleration �by means of
changing the neutron velocity�, we will vary the height and
the width of the triangle barrier correspondingly and so far
the lifetime of the quasistationary quantum states. Due to the
very fast �exponential� increase of the mentioned lifetime as
a function of the barrier width, we will get a stepwise depen-
dence of the neutron flux parallel to the mirror surface as a
function of the neutron velocity. An analogous stepwise de-
pendence of the total neutron flux as a function of the slit
size was observed in case of the gravitationally bound quan-
tum states. An alternative method for the observation and
study of the centrifugal quantum states consists in measuring
the velocity distribution in the quantum states using a
position-sensitive neutron detector, placed at some distance
from the curved mirror. Such a method was used as well in
experimental studies of the gravitationally bound quantum
states of neutrons.

It is natural to chose the neutron velocity within the range
of maximum intensity of standard neutron sources �neutron
reactors or spallation sources� around �103 m /s. The cylin-
drical mirror radius has to be equal to a few centimeters in
this case, which is just optimal for its production. Neutron
beams with high intensity are available in many neutron cen-
ters around the world; they could be angularly and spatially
collimated; time-of-flight and polarization analyses are avail-

FIG. 1. A scheme of the neutron centrifugal experiment. 1, the
classical trajectories of incoming and outcoming neutrons; 2, the
collimators; 3, the cylindrical mirror; 4, the detector. Cylindrical
coordinates �−� used throughout the paper are shown.
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FIG. 2. �Color online� A sketch of the effective potential in the
mirror surface vicinity. The potential step at z=0 is equal to the
mirror Fermi potential in units �0= ��2Mv4 / �2R2��1/3. The potential
slope at z�0 is governed by the centrifugal effective acceleration
a=v2 /R.
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able at standard neutron-scattering instruments. Evidently,
the characteristic size of the centrifugal quantum states is
much smaller than the mirror radius and the effective cen-
trifugal acceleration could be approximated as constant with
high accuracy. On the other hand, the Fermi potential of a
mirror cannot be considered as infinitely high—just the op-
posite: the quantum-state energy is close to the value of the
Fermi potential. Therefore in contrast to the gravitationally
bound quantum states, neutrons tunnel deeply into the mirror
�compared to the characteristic size of the wave functions�.
This phenomenon has to be taken into account. Another es-
sential difference is related to the effects of surface rough-
ness: as far as the characteristic scale of the centrifugal quan-
tum states is much smaller, the roughness effects are much
larger; therefore constraints for the cylindrical mirror surface
are even more severe than those for flat mirrors in gravita-
tional experiments. We will show rigorously in the following
sections that the centrifugal quantum states could be de-
scribed in a very similar way as the gravitational quantum
states, although they are formed by completely different
physical potentials. The large difference in the characteristic
scales of the quantum states in the two cases requires differ-
ent approaches for their experimental observation and study.

III. FORMAL SOLUTION

Neutrons with given energy E, scattered by a curved mir-
ror, obey the following Schrödinger equation in cylindrical
coordinates:

�−
�2

2M
� �2

��2 +
1

�

�

��
� −

�2

2M�2

�2

��2 + U��,�� − E	���,�� = 0.

�1�

Here M is the neutron mass, � is the radial distance, mea-
sured from the center of mirror curvature �see Fig. 1�, � is
the angle, and U�� ,�� is the mirror Fermi potential. We will
use the following steplike dependence for the mirror Fermi
potential:

U��,�� = U0��� − R������ − ��� − �0�� ,

where R is the mirror curvature radius and the angle �0 is
determined by the mirror length Lmirr and the mirror curva-
ture radius R via

�0 =
Lmirr

2	R
.

In Eq. �1� we omitted the trivial dependence on the z coor-
dinate along the curved mirror axis. By standard substitution
��� ,��=
�� ,�� /
�, Eq. �1� is transformed to the following
form:

�−
�2

2M
� �2

��2� −
�2

2M�2� �2

��2 +
1

4
� + U��,�� − E	
��,�� = 0.

�2�

Now the problem is formulated as follows. The incoming
neutron flux is known at the curved mirror entrance. We have
to find the neutron flux at the exit of the mirror with the

angle coordinate �0. The measured neutron current compo-
nent, parallel to the mirror surface, is

J��,�� =
i�

2M�
����,��

��*��,��
��

− �*��,��
����,��

��
� .

�3�

We start with the formal solution of Eq. �1� in the domain
0����0. We express a solution of Eq. �1� as a series ex-
pansion in the complete set of basis functions ����� �55–58�:


��,�� = �
�

������c� exp�i��� + d� exp�− i���� , �4�

where c� and d� are the expansion coefficients. The basis
functions ����� are solutions of the following eigenvalue
problem:

�−
�2

2M
� �2

��2� + U0��� − R� − E	�����

= −
�2��2 − 1/4�

2M�2 ����� , �5�

���� → 0� = 0, �6�

���� → � = sin�
2ME� + ��� . �7�

Here �2�1 /4−�2� / �2M��−�2�2 / �2M� is the eigenvalue and
�� is the scattering phase. � plays the role of the angular
momentum. Let us note that the energy E is a fixed param-
eter in Eq. �5�, while � is the angular momentum eigenvalue
to be found.

For the above-mentioned eigenvalue problem �5�–�7�,
self-adjointness of the corresponding Hamiltonian of radial
motion is required for completeness of the basis set �� �59�.
One can prove that this requirement and the boundary con-
ditions �6� and �7� are equivalent to the following condition
for the eigenstates phases:

��� − �� = 	k , �8�

where k is integer. In this case, the functions �� are orthogo-
nal to each other with the weight of 1 /�2 on the interval
�0,�.

Note that there is no uniqueness condition for the wave
function as long as �0�2	. So far, � is no longer an integer
value in our problem.

For a given positive energy E�0, the values � form a
discrete spectrum of real values if �2�0 and a continuum
spectrum of complex values if �2�0.

The flux �3� through a band with radial coordinates
��1 ,�2� orthogonal to the mirror surface in the mentioned
basis can be expressed as
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F��� = 
�1

�2

J��,��d�

=
�

M
Re �

�,��
�

�1

�2 �
��
* ��������

�2 d����

��c�c
��
* exp�i�� − �����−d�d

��
* exp�− i�� − ������ .

�9�

In the following we will be interested in the flux F��� evo-
lution as a function of the angle �, which indicates the neu-
tron density along the curved mirror. The neutron density is
“initially” �i.e., for �=0� localized by the collimator near the
surface of the mirror in the band ��1 ,�2�. Due to “dephasing”
of �-dependent exponents in expression �9� the neutron den-
sity within the band ��1 ,�2� decays rapidly when � in-
creases. We will find the rate of such a decay in the following
sections. In particular, we will show that such a rate is deter-
mined by the lifetime of the quasistationary states formed by
the superposition of the centrifugal potential and the Fermi
potential of the mirror.

IV. CENTRIFUGAL QUASISTATIONARY STATES

To study the neutron states localized near the mirror sur-
face, we will expand expression for the centrifugal energy in
Eq. �5� in the vicinity of �=R. We introduce the deviation
from the mirror surface, z=�−R, and get the following equa-
tion in the first order of the small ratio z /R:

�−
�2

2M

�2

�z2 + U0��z� + �2�n
2 − 1/4
2MR2 �1 − 2z/R� − E	�n�z� = 0.

�10�

We will be interested in those solutions with different an-
gular momenta �n, which correspond to the states of neutron,
moving parallel to the mirror surface. Such neutrons with
given energy E=Mv2 /2 possess angular momentum �n close
to the classical value �0=MvR /�. Let us mention that the
value of �0 is extremely high, �0�5�108, if v=1000 m /s
and R=2.5 cm �parameters which can be realized in the ex-

perimental setup�. Introducing new variables �n=�0−�n,
where �n��0 and �n=�2�0�n / �MR2�, and keeping leading
terms in �0, we get the following equation:

�−
�2

2M

�2

�z2 + U0��z� −
Mv2

R
z − �n	�n�z� = 0. �11�

Let us mention that the eigenvalue �n plays the role of
energy in the above equation only formally. In fact, it defines
the angular momentum eigenvalue

�n = �0 −
�nMR2

�0�2 , �12�

while the neutron energy E is a fixed parameter in our prob-
lem. The value �n can be interpreted as the radial motion
energy within the above used linear expansion of the cen-
trifugal potential in the vicinity of the curved mirror radius
R.

Equation �11� describes the neutron motion in a constant
effective field a=−v2 /R superposed with the mirror Fermi
potential U0��z�. The sketch of corresponding potential is
shown in Fig. 2.

The regular solution of Eq. �11� is given by the well-
known Airy function �60�

�n�z� � �Ai�z0 − z/l0 − �n/�0� if z � 0,

Ai�− z/l0 − �n/�0� if z � 0.
� �13�

Here

l0 = ��2R/�2M2v2��1/3 �14�

is the characteristic distance scale of the problem and

�0 = ��2Mv4/�2R2��1/3 �15�

is the characteristic energy scale, z0=U0 /�0. For the typical
experimental setup parameters U0=150 neV, v=1000 m /s,
and R=2.5 cm, the above-mentioned scales are l0
=0.04 �m, �0=15.3 neV, and z0�10.

The above-mentioned effective potential supports exis-
tence of the quasistationary states. They correspond to the
solution of Eq. �11� with the outgoing wave boundary
condition

�̃n�z� � �Bi�z0 − z/l0 − �n/�0� + iAi�z0 − z/l0 − �n/�0� if z � 0,

Ai�− z/l0 − �n/�0� if z � 0.
� �16�

The complex energies of such quasistationary states can be
found from the matching of the logarithmic derivative at z
=0:

�n � �0�n, �17�

Ai��− �n��Bi�z0 − �n� + iAi�z0 − �n��

= Ai�− �n��Bi��z0 − �n� + iAi��z0 − �n�� . �18�

The real and imaginary parts of the eigenvalue �, obtained
by numerical solution of Eq. �18� for two lowest states, are
shown as a function of dimensionless variable z0 in Figs. 3
and 4.

One can get a semiclassical approximation for the widths
of the centrifugal quasistationary states if ��n � �1 and z0
� ��n� �49�. In this case one can use the asymptotic expres-
sions for the Airy functions of large argument to get the
following equation:
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 �n

z0 − �n
tan�2

3
�n

3/2 − 	/4� = 1 − 2i exp�− 4/3�z0 − �n�3/2� .

�19�

Also one can get a semiclassical approximation for the width
�n and �n from the above expression, valid for large n:

�n � �3

4
	�2n − 1/2��2/3

−
 �3

4
	�2n − 1/2�	2/3

z0 − �3

4
	�2n − 1/2�	2/3

,

�20�

�n � 4�0


z0 − �n

z0
exp�− 4/3�z0 − �n�3/2� . �21�

In the above expressions, n=1,2 , . . .. is an integer number.
The angular momentum eigenvalue, corresponding to the

complex energy �n of the quasistationary states, obtains a
positive imaginary part, according to �12�:

Im �n =
�nR

2�v
. �22�

The energy and the width of the quasistationary states de-
pend strongly on the centrifugal acceleration �a � =v2 /R. A
small acceleration a results in a broad barrier, which sepa-
rates the states in the effective well from the continuum.
Indeed, z0=U0 /�0=U0��2R2� / ��2Mv4��1/3 increases if v de-
creases. The widths of the quasistationary states decrease
exponentially as is seen from expression �21�. Besides that,
the effective well becomes broader and new quasi-stationary
states appear with decreasing of a �in analogy with the ap-
pearance of new bound states with increasing the size of the
well�. Equation �19� enables us to estimate the critical values
of the neutron velocity vc, which corresponds to the appear-
ance of new states in the effective well:

z0 = �n
0 = �3/2	�n − 3/4��2/3.

Taking into account that z0=U0 /�0 we conclude that

vc
n = � U0

3

�3/2	�n − 3/4��2

2R2

�2M
	1/4

. �23�

The accuracy of the above approximation increases with n.
The lifetime of the two lowest quasistationary quantum

states as a function of the neutron velocity, obtained from
solving Eq. �18� is shown in Fig. 5 for the mirror with the
Fermi potential U0=150 neV �sapphire� and in Fig. 6 for the
mirror with the Fermi potential U0=54 neV �silicium�. The
critical velocity values scale with the Fermi potential as
vc�U0

3/4.
The above-mentioned quasistationary states play an es-

sential role in neutron density evolution near the mirror sur-
face as a function of �. We will show that under certain

.
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FIG. 3. �Color online� The real part of two lowest eigenvalues �
as a function of z0 obtained by numerical integration of Eq. �18�.
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FIG. 4. �Color online� The imaginary part of the two lowest
eigenvalues � as a function of z0 obtained by numerical integration
of Eq. �18�.

(

(

FIG. 5. �Color online� The lifetime of the two lowest neutron
centrifugal quasistationary states is shown as a function of the neu-
tron velocity. The mirror curvature radius equals R=2.5 cm, the
mirror length is 5 cm, and the mirror Fermi potential is U0

=150 neV. The nearly horizontal solid line indicates the time of
flight along the curved mirror.

CENTRIFUGAL QUANTUM STATES OF NEUTRONS PHYSICAL REVIEW A 78, 033616 �2008�

033616-5



conditions the expansion �9� can be substituted by a few
effective terms, corresponding to the contribution of quasis-
tationary states. To clarify the role of quasistationary states, it
would be more convenient to use a time-dependent formal-
ism.

V. TIME-DEPENDENT APPROACH

Let us return to the expansion �9� for the neutron current
through the band of dimension h=�2−�1�R, orthogonal to
the mirror surface. Taking into account very large values of
the angular momenta of the neutron “near-surface” states
����0�5�108�, we can use the semiclassical character of
motion along the � variable. It is characterized by the con-
tribution of fast oscillating exponents exp�i���. This enables
us to treat � as a classical variable. Namely, we will assume
that neutrons follow a classical “trajectory” along �:

� = �t =
vt

R
.

The evolution along � is then substituted by the evolution of
the time-dependent wave function. Taking into account the
relation between the angular momentum and the energy ei-
genvalues �12�, we come to the following expression:

F�t� =
v
R

Re �
n,n�

�
�1

�2

�
n�
* ����n���d��

��cnc
n�
* exp�i��n� − �n�t/��� , �24�

with the functions �n��� being solutions of �11�. In the above
expression we neglected backscattering and put coefficients
dn=0. Also we took into account the size of the band,
�2−�1=h�R, where the neutron density is measured.

Thus we arrive at the problem of the time evolution �in-
stead of the angular variable � evolution� of an initially lo-

calized wave packet in the band with radial dimension
h=�2−�1, which moves in the effective homogeneous field
a=v2 /R. As was shown in �61� the integration over energies
in �24� results in two terms. One term reflects the existence
of S-matrix poles in the complex energy plane, which are
situated close to the real axis and correspond to the complex
energies of quasistationary states. So far, this term describes
the decay of the quasistationary states and the characteristic
time scale is given by the corresponding widths �n=� /�n.

The second term reflects the nonresonant contribution of
all other energies �which do not match with energies of the
quasistationary states�. The characteristic time �cl=
2hR /v2

for such neutrons is equal to the classical time of passage of
distance h with constant acceleration v2 /R. This time of pas-
sage is much smaller than the time that the neutron spends in
the quasistationary states �cl��n.

For the times �cl� t��n the quasistationary-state contri-
bution is dominant. This enables us to neglect the nonreso-
nant contribution in the expansion �24� and to take into ac-
count only the quasistationary-state contribution:

F�t� �
v
R
�
n�

�Cn��
2 exp�− �n�t� . �25�

Here n� indicates the quasistationary state number and �Cn��
2

is the initial population of a given quasistationary state.
The sharp increase in the quasistationary-state lifetime

�21� with decreasing the velocity below vn �23�, can be used
for experimental observation of such states. Indeed, when the
neutron velocity decreases the contribution of new quasista-
tionary states increases rapidly. This results in the steplike
dependence of the deflected neutron flux as a function of v.
There are no quasistationary states for v�vc

1, and therefore
all neutrons traverse the mirror without being deflected.
There are many quasistationary states in the opposite limit
v�vc

1, and therefore we deal with the classical reflection
from the curved mirror. In Fig. 7 the flux of deflected neu-
trons is shown as a function of the neutron velocity. Under
the assumptions made above the problem of deflection of
cold neutrons �v�103 m /s� by the curved mirror is analo-
gous to the problem of the passage of ultracold neutrons
through the slit between a horizontal mirror and an absorber
in the presence of Earth’s gravitational field, studied in detail
in �45–52�. In the cited experiments the spatial density of
neutrons in the gravitational states was scanned by changing
the position of the absorber above the mirror. In the case of
neutron motion along the curved mirror surface, the initial
velocity variation results in changing the spatial dimension
of the effective well, which bounds the neutron near the sur-
face, ensuring the “scanning” of the quasistationary states.

The experimental observation of the centrifugal states of
neutrons could be, however, complicated by the diffuse scat-
tering of neutrons from the the mirror surface roughness.
Below we will estimate the additional broadening of the cen-
trifugal states due to the scattering on a rough surface.

VI. EFFECT OF ROUGHNESS

The effect of roughness consists in transferring the high
neutron velocity parallel to the mirror surface into a velocity

(

(

FIG. 6. �Color online� The lifetime of the two lowest neutron
centrifugal quasistationary states is shown as a function of the neu-
tron velocity. The mirror curvature radius equals R=2.5 cm, the
mirror length is 5 cm, and the mirror Fermi potential is
U0=54 neV. The nearly horizontal solid line indicates the time of
flight along the curved mirror.
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component normal to the surface. As a result, the quasista-
tionary centrifugal states acquire additional “ionization”
width. The detailed theory of neutron rough-surface interac-
tions can be found in �50,51�. To obtain a simple estimation
of such a width we will follow the method developed in �49�.
Namely, in the frame related to the neutron the mirror rough-
ness appears as a time-dependent variation of the mirror po-
sition. We will start by treating a simple case of harmonic
dependence:

U�z� = U0�„z + br sin��rt�… .

Here br is the roughness amplitude and �r is the roughness
frequency, which can be related to the angular velocity of
neutrons, �, the mirror curvature radius R, and the charac-
teristic length of roughness, lr, via �r=�R / lr. Then the equa-
tion describing the evolution of initially localized wave
packet gets the time-dependent right-hand side:

i�
d��z,t�

dt
= �−

�2

2M

�2

�z2 + U0�„z − br sin��rt�…

−
Mv2

R
z	��z,t� . �26�

A solution of such an equation could be expanded in the
set of eigenfunctions of the right-hand-side Hamiltonian,
taken at instant t:

�−
�2

2M

�2

�z2 + U0�„z − br sin��rt�… −
Mv2

R
z − �n�t�	un�z,t�

= 0. �27�

The corresponding expansion is

��z,t� = �
n

Cn�t�un�z,t�exp�− i
0

t

����/�d�� . �28�

Substitution of �28� into �26� yields in the coupled equa-
tion system for the time-dependent amplitudes Cn�t�

dCn�t�
dt

= − �
k

�un�
d

dt
�uk�Ck�t�exp�− i�nk�t�� . �29�

Here �nk�t�=�0
t ��k���−�n���� /�d�. It follows directly from

�27� that

�un�
d

dt
�uk� =

�un�
dU

dt
�uk�

�n − �k
.

In the following we will consider the roughness small
enough so that U�z , t��U0��z�+U0br�r cos��rt���z�. The
coupling matrix elements are

�un�
dU�z,t�

dt
�uk� = brU0�r cos��rt�un�0,t�uk�0,t�

� brU0�r cos��rt�un�0,t = 0�uk�0,t = 0� .

Using an analog of the Fermi “golden rule,” we get the fol-
lowing expression for ionization probability of centrifugal
state n per unit of time:

Pion =
2	br

2U0
2�un�0,t = 0�uf�0,t = 0��2

�
���n + ��r − Ef�dkf .

�30�

Here the index f labels the eigenstate of the final state of the
continuum spectrum with energy Ef and wave number kf. We
assume that Ef ��n for the neutron velocity v�103 m /s and
for realistic roughness parameters. This enables us to use the
free-wave expression uf =1 /
2	 exp�ikfz� for the final-state
wave function. Taking into account the explicit form of un
given by �16� and its semiclassical asymptotic, we get a
simple estimation for Pion of the nth quasistationary state:

Pion
n �

br
2U0

2

�2Rl0�z0 − �n�
2MEf

. �31�

Taking into account the explicit expressions for the charac-
teristic length, Eq. �14�, and energy, Eq. �15�, scales of the
problem, we get for the case z0��n

Pion �
br

2U0v
2M2

�2R
2MEf

. �32�

To get the ionization width of the centrifugal state one
should integrate the obtained probability with the spectral
function of roughness f���, which provides the square of
roughness amplitude as a function frequency:

�i = �
0

 br
2f���U0v

2M2

�2R
2M��n + ���
d� =

br
2U0v

2M2

�R
2MEf

. �33�

Here br
2 is the mean-square roughness and Ef is the mean

ionization energy in the sense defined.
An important feature of the obtained result is the square

dependence of ionization width on the neutron velocity and
the roughness amplitude �for the case of small amplitudes,

FIG. 7. �Color online� The relative flux of neutrons, deflected by
the curved mirror, as a function of the neutron velocity. F0 is the
flux calculated at v=1200 m /s. The mirror curvature radius is
R=2.5 cm, the mirror length is Lmirr=5 cm, and the mirror Fermi
potential is U0=150 neV.
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studied above�. It constraints severely the roughness ampli-
tudes acceptable for observation of the centrifugal states. In
Fig. 8 we plot the neutron flux deflected by the curved sap-
phire mirror in the presence of roughness with amplitudes
br=1 nm and br=2 nm. Figure 9 demonstrates the neutron
flux deflected by the curved silicon mirror in the presence of
roughness with amplitudes br=1 nm and br=3 nm. Thus the
effect of roughness is reduced if the Fermi potential is low.
Indeed, according to �23� and �33� we expect the following
scaling law:

Pion � U0
17/8.

So the roughness amplitude of a sapphire mirror surface
should be smaller than 1 nm �and 4 nm for a silicon mirror�
to allow observation of the centrifugal states.

VII. CONCLUSIONS

We proposed a method for observation of the quasista-
tionary states of neutrons, localized near a curved mirror
surface. The effective bounding well is formed by a super-
position of the centrifugal potential and the mirror Fermi
potential. Reduction of the initial neutron velocity results in

a spatial size increase of such a centrifugal trap, which, in its
turn, results in the appearance of the quasistationary states in
the spectrum of the system. This could be observed via a
steplike dependence of the deflected neutron flux. We show
that several centrifugal states can be observed, for instance,
with a sapphire mirror �Fermi potential U0=150 neV�, with
curvature radius R=2.5 cm, length Lmirr�5 cm, and surface
roughness amplitude �1 nm. The critical velocities corre-
sponding to the steps in the deflected flux are v1
=1700 m /s and v2=1350 m /s. The characteristic spatial di-
mension of the mentioned centrifugal states is l0�0.04 �m.
In the case of a silicon mirror with the same shape �Fermi
potential U0=54 neV� the corresponding critical velocities
values are v1=810 m /s and v2=650 m /s . Such neutron
states could provide a promising tool for studying different
types of neutron-matter interactions with the characteristic
range of a few tens of nanometers.
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