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We derive a controlled expansion into mean field plus fluctuations for the extended Bose-Hubbard model,
involving interactions with many neighbors on an arbitrary periodic lattice, and study the superfluid-supersolid
phase transition. Near the critical point, the impact of �thermal and quantum� fluctuations on top of the mean
field grows, which entails striking effects, such as negative superfluid densities and thermodynamical instabil-
ity of the superfluid phase—earlier as expected from mean-field dynamics. We also predict the existence of
long-lived “supercooled” states with anomalously large quantum fluctuations.
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I. INTRODUCTION

The question of whether macroscopic quantum coherence
can prevail in the presence of periodic order, ultimately lead-
ing to the existence of a supersolid, has been intensely de-
bated for five decades �1–3�. Of late, this topic has seen a
renewed surge of interest, partly due to the observations in
�4� indicating potential signatures of a supersolid phase of
4He. Because of the inherent complexity of 4He, it is useful
to gain further understanding by studying supersolid phases
in other systems such as the Bose-Hubbard model, which can
be realized experimentally via cold bosonic atoms in optical
lattices �5�. For on-site interactions only, the phase diagram
at T=0 contains the superfluid and the Mott insulator state
�6,7�. Adding interactions across sites �next nearest or
higher� in a so-called extended Bose-Hubbard model, a
superfluid-supersolid phase transition may occur �8–12� in
addition to further Mott-type phases. Here the term super-
solid is associated to an order parameter �with a well-defined
phase� which is, in contrast to the homogeneous superfluid
ground state, not the same for all lattice sites, but periodi-
cally modulated. At the heart of supersolid formation is the
generic phenomenon that an instability towards density
modulations occurs if the excitation spectrum dips below
zero for a finite wave vector.

Within mean-field theory, i.e., neglecting all fluctuations,
properties of the supersolid phase were studied in �13�. How-
ever, the evanescent excitation energies at the transition sug-
gest that �thermal and quantum� fluctuations should play an
important role near the critical point. The impact of these
fluctuations can be taken into account with quantum Monte
Carlo simulations �see, e.g., �8,12��. Despite the strength of
this method, these simulations are always restricted to a spe-
cific �low-dimensional� lattice of finite size and a small
sample of the full Hilbert space. In the following, we con-
sider an arbitrary periodic lattice and develop an analytic
expansion into mean-field plus fluctuations where the size of
the fluctuations and the validity of the expansion is con-
trolled by a small parameter. Therefore, our derivation is
complementary to other numerical and analytical approaches
using, for example, duality to vortex field theory �14�. To the

end of devising a controlled mean-field expansion, we begin
by introducing the concept of weighted operator sums in the
next section.

II. WEIGHTED OPERATOR SUMS

We consider the extended Bose-Hubbard model on an ar-
bitrary lattice as described by the Hamiltonian

Ĥ = �
��

�T��â�
† â� +

1

2
V��â�

† â�
† â�â�� , �1�

where � ,� label the lattice sites and â�
† , â� are the associated

bosonic creation or annihilation operators. The kinetic term
is determined by the hopping matrix T�� and the interaction
part by V��. �Both matrices are real and symmetric.� Since
the above Hamiltonian cannot be diagonalized analytically,
we have to employ some approximations. To this end, we
introduce the concept of weighted operator sums defined via

X̂S�f� =
1

�S� ���S

f��â�
† , â�� , �2�

with a set S�N of �S� elements ��S and a function f� of
order one, i.e., which does not scale with �S�. Hence the limit

lim�S�→� X̂S�f� exists �in an appropriate sense, e.g., as a weak
limit� while all single addends are suppressed by 1 / �S� for
large �S�. Examples for the form �2� include all �local� one-

site operators such as X̂	�
�1�= â� for �S�=1 as well as the
�global� Fourier components ��â� exp	ik�
 /L= âk /�L with
�S�=L being the total number of sites for a one-dimensional
chain S= �1,L�. Now, considering the commutator between
two such weighted operator sums

†X̂S�f�,X̂S��f��‡ =
�S � S��
�S� � �S��

X̂S�S��f�� , �3�

with f���â�
† , â��= �f��â�

† , â�� , f���â�
† , â���, we find that they are

suppressed for large �S� due to �S�S���min	�S� , �S��
. Hence

the limit lim�S�→� X̂S�f� commutes with all other weighted
operator sums �including all local operators� and can thus be
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approximated by a c number within the relevant Hilbert
space generated by weighted operator sums acting on the
ground �or thermal� state. This motivates the following
asymptotic expansion for large �S��1,

X̂S�f� = Ĉ0�f� +
Ĉ1/2�f�
��S�

+
Ĉ1�f�

�S�
+ ¯ , �4�

where the leading term Ĉ0�f� can be approximated by a c

number and the subleading operators Ĉ1/2�f� and Ĉ1/2�f��
generate the commutator �3�, of order 1 / �S�.

Applying the concept of weighted operator sums to opera-

tors like X̂��1�=��â� /L or other Fourier components, we
arrive at the mean-field expansion

â� = �� + 	̂� + O�1/�L� , �5�

where �� denotes the mean field and corresponds to the lead-

ing parts Ĉ0�f� in Eq. �4� while the fluctuations 	̂� with
�	̂�=0 incorporate the noncommuting remainders. Note that
�in contrast to �15�� the filling n�= �â�

† â�= ���
2 �+ �	̂�

† 	̂� is
here not assumed to be large; ���

2 � is the condensate part and
�	̂�

† 	̂� is the remaining thermal or quantum depletion. Hence
the fluctuations 	̂� are not necessarily small compared to the
mean field ��: e.g., for half-filling n�=1 /2, the variance is
obviously of order one. In order to simplify the full equation
of motion derived from Eq. �1� �
=1�,

i�tâ� = �
�

�T��â� + V��n̂�â�� , �6�

we assume that the interaction V�� involves a large number
D�1 of sites � on a roughly equal footing. This could be the
case, for example, for long-range interactions or for a large
number of spatial dimensions. For normalized potentials
��V���V�=O�1�, we may then apply the concept of
weighted operator sums �2� to the term ��V��n̂� and obtain

�
�

V��n̂� = �
�

V���n̂� + O�1/�D� �7�

from Eq. �4�. However, one must be careful: simply replac-
ing n̂� by n� in Eq. �6�, we would lose the phonon modes.
The subleading term O�1 /�D� can only be neglected if there
is no other small �or large� term involved. This is precisely
the case for modes with long wavelengths over many lattice
sites, where the sum over T��â�, for example, is also very
small and hence the O�1 /�D� contributions become relevant.
In order to describe long-wavelength modes correctly, we
insert Eq. �5� into Eq. �6� to obtain the Gross-Pitaevskii
equation

i�t�� = �
�

�T���� + V�������2 + �	̂�
† 	̂����� , �8�

where we have replaced ��V��	̂�
† 	̂� by its expectation value

according to the above arguments, plus the remaining
fluctuation part

i�t	̂� = �
�

	T��	̂� + V�������2 + �	̂�
† 	̂��	̂�

+ V����
�
*	̂� + ��	̂�

†���� + 	̂��
 . �9�

Again, the second line is suppressed by O�1 /�D� and will
only be relevant for long-wavelength modes, which involve a
sum over many sites �. In this case, however, the c-number
term ���� will dominate the fluctuation term ��	̂� in view
of Eq. �4� and hence we may approximate the bracket ���

+ 	̂�� in the second line by ��, arriving at a linear operator
equation

i�t	̂� = �
�

�T��	̂� + V�������2 + �	̂�
† 	̂��	̂�

+ V����
�
*	̂� + ��	̂�

†���� + O�1/�D� , �10�

which corresponds to the Bogoliubov-de Gennes equations
for the fluctuations. Note that the approximation from Eq. �9�
to Eq. �10� neglects the exchange of particles between the
condensate ���

2 � and the thermal or quantum depletion
�	̂�

† 	̂�. This exchange is governed by the subleading term
��V���

�
*�	̂�	̂�, which could be added to Eq. �8�.

III. QUASIPARTICLE MODES

In order to introduce quasiparticle modes, we assume
translational invariance, i.e., that T�� and V�� only depend
on the distance �−� and that the condensate density is ho-
mogeneous ����= ���. Nevertheless, we may still have a con-
stant phase gradient � in our sample, i.e., we set ��

= ���exp	−i�t+ i��
. In this case, we may diagonalize Eq.
�10� via a Fourier transformation

i�t	̂k = �Tk+� + V�n + Vk��2��	̂k + Vk�
2	̂−k

† . �11�

Note that in more than one spatial dimension, � and � as
well as k and � will be multi-indices �labeling the real and
the inverse lattice, respectively� and �� is a scalar product.
Assuming reflection invariance Tk=T

k
*=T−k and Vk=V

k
*

=V−k for the lattice, we see that this symmetry k→−k is
broken for the modes 	̂k by the phase gradient �. The qua-
siparticle Hamiltonian

Ĥ	 = �
k
�	̂k

†�Tk+� + V�n + ���2Vk�	̂k +
Vk

2
��2	̂k

†	̂−k
† + H.c.��

= �
k

k
+b̂k

†b̂k, �12�

can be diagonalized via the Bogoliubov transformation 	̂k

=ukb̂k+vkb̂−k
† with �uk

2�− �vk
2�=1. This yields the Bogoliubov

coefficients

uk =
1

1 − lk
2 , vk =

lk

1 − lk
2 ,

lk = �wk
2 + 2wk − 1 − wk, wk =

T̄k

Vk��2�
. �13�
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For wk=−2, the coefficients diverge due to lk=1 �leading to
the instability for �=0, to be discussed below�. The quasi-
particle frequencies obey the dispersion relation �Tk=0=0�

k
� =

1

2
�Tk+� − Tk−�� � �T̄k

2 + 2���2VkT̄k, �14�

where T̄k= �Tk+�+Tk−�� /2 and thus the branches are con-
nected by k

+=−−k
− .

In the continuum limit, i.e., for small k�1, we may ap-
proximate Tk�k2 / �2m� due to Tk=T

k
*=T−k and Tk=0=0 with

the mass m being determined by the hopping rates. For small
phase gradients ��k�1, we then reproduce the usual Ga-
lilei shift

�k
� + vk�2 = ��2�Vk

k2

m
+

k4

�2m�2 , �15�

where v=� /m is superfluid velocity. Now, even for purely
positive V��, the Fourier transform Vk may become negative
for some k and hence the dispersion relation may develop
dips �similar to the roton dip in superfluid 4He�. If Vk is
sufficiently negative �compared to Tk�, the dispersion curve
k may even dive below zero. Ignoring the fluctuations dis-
cussed below, the onset of instability, k=0, marks the end
of the �homogeneous� superfluid phase and the beginning of
the supersolid phase where ���� is periodic, i.e., inhomoge-
neous. The phase gradient � favors the supersolid phase, i.e.,
the transition superfluid→supersolid occurs earlier for non-
vanishing �. For �=T=0, the frequencies k=�k

*
at the roton

wave number become imaginary beyond the critical point
and hence these modes start to grow exponentially. For �
�0 and T=0, the transition occurs earlier and is slower since
the frequency k=+k

*
becomes negative, but not imaginary.

Hence only the coupling to some environment �fixed by the
lattice� induces an instability of these quasiparticle modes.
On the other hand, the depletion �	̂�

† 	̂� due to thermal or
quantum fluctuations favors the superfluid phase since it re-
duces �for a fixed filling n� the condensate fraction ��2� and
thus weakens the term ��2�Vk in Eq. �14� responsible for the
roton dip. Ergo, heating up the supersolid state may yield the
superfluid phase �as long as the condensate does not disap-
pear altogether �=0�, which will become important for the
discussion of “supercooled” states which we turn to in Sec.
V.

IV. SUPERFLUID DENSITY

Now let us study the response of the system to a small
phase gradient â�→ â� exp	i��
, which determines the su-
perfluid fraction. The interaction part 1

2V��â�
† â�

† â�â� of the
Hamiltonian �1� does not change, but the kinetic term yields

�Ĥ

��
= − i�

��

T���� − ��â�
† â�, �16�

which is a measure for the total current �Ĥ /��� Ĵ, cf. the
Fourier expansion in Eq. �12�. For example for T�����,�+1

+��,�−1−2��,� �15�, we get the usual expression Ĵ
� i�â�+1

† â�−H.c.�. In the continuum limit of Tk�k2 / �2m�, we
obtain

Ĵ �
�Ĥ

��
=

1

m
�

k

����2� + k	̂k
†	̂k� → J� + Ĵ	, �17�

where the first term ���2� in the parentheses is the conden-

sate �i.e., mean-field� contribution J� and the second one, Ĵ	,
stems from the fluctuations. Inserting the Bogoliubov trans-

formation 	̂k=ukb̂k+vkb̂−k
† , we find

�	̂k
†	̂k0 =

T̄k + ��2�Vk

2�T̄k
2 + 2T̄k��2�Vk

−
1

2
= �	̂−k

† 	̂−k0, �18�

i.e., the expectation value of the fluctuation part in the

ground state vanishes �Ĵ	0=0. Even though the quasiparticle
frequencies are different in opposite directions for a nonva-
nishing phase gradient �, k�−k, the Bogoliubov coeffi-
cients are still symmetric �uk�= �u−k� and �vk�= �v−k�. Because
of the symmetry lk= l−k, from Eq. �13�, quantum depletion
does not contribute to the current �17�.

In a thermal ensemble, as described by the density matrix

�̂=exp	−Ĥ	 /T
 /Z, however, quasiparticle modes with k
�−k will have different occupation numbers and hence we
do get a contribution to the total flux from the fluctuations

�Ĵ��k����2�+k�b̂k
†b̂k�. Clearly, near the superfluid-

supersolid phase transition, the major contributions occur
around the roton minima at �k*. Here, we consider for sim-
plicity one spatial dimension only, but the main results apply
to higher dimensions as well. Let us first study the case �
=0. In the continuum limit k�1, we may use a Taylor
expansion

k
2 = 2Tk��2�Vk + Tk

2 � *
2 + �2�k − k*�2, �19�

around the roton minimum at the critical wave number k*
�1, where � is the curvature of the roton dip. Approaching
the phase transition corresponds to the limit *

2 →0 and for
small * with *�T, the leading term scales as

1

L
�

k

�b̂k
†b̂k = O�T ln *

�
� . �20�

At the critical point *=0, the k integral over the thermal

distribution �b̂k
†b̂k�T /k becomes weakly divergent near

the roton dip at k* where k���k−k*�, leading to the loga-
rithmic singularity ln *.

Now, adding a small phase gradient, one roton minimum
is lifted and the other one approaches the =0 axis even
closer. Hence the thermal quasiparticle occupation numbers

EFFECT OF FLUCTUATIONS ON THE SUPERFLUID-… PHYSICAL REVIEW A 78, 033604 �2008�

033604-3



�b̂k
†b̂k react in opposite ways and induce a net current, which

is opposite to the condensate flux ���2�. The change due to
*→*�vk* scales as

�Ĵ	 �
1

L
�

k

k�b̂k
†b̂k = O�Tvk*

2

*�
� . �21�

For small enough * or, alternatively, for large enough tem-

peratures T�Tcr=O�*m���2� /k*
2 �, the current induced by

the thermal fluctuations can easily compensate the conden-
sate �mean-field� contribution ���2�. Thus, the superfluid
fraction can be significantly reduced and may even become
negative �which is also occurring in �-Josephson junctions

�16��, i.e., the phase gradient � entails a net current �Ĵ in the
opposite direction.

Such a negative superfluid density induces a thermody-

namical instability �18�: As discussed before, the current �Ĵ
is a measure for the response of the system to a phase gra-

dient ��Ĥ /��. Inserting the canonical ensemble �̂

=exp	−Ĥ /T
 /Z, we see that the expectation value ��Ĥ /��
=�F /�� equals the change of the free energy F=E−TS

= �Ĥ+T�ln �̂. Since a stable equilibrium state in an isother-
mal environment corresponds to a minimum of the free en-

ergy, a negative superfluid density ��Ĵ /���0 shows that
the system is unstable against the spontaneous generation of
local phase gradients �since �=0 is a maximum of the free
energy�.

Note that a negative superfluid density does not require a
large thermal depletion: as we may infer from Eq. �20�, the

thermal occupation number �k�b̂k
†b̂k scales merely logarith-

mically with * and hence it can be much smaller than the
condensate fraction ��2� �e.g., for T�� and k*
�1�k* ln *�1�. Of course, in addition to thermal occu-
pation, the condensate is also depleted by quantum effects.
This quantum depletion survives at zero temperatures and is
given by Eq. �18� via �	̂�

† 	̂�=�k�	̂k
†	̂k /L. With the same

approximations as in Eq. �20�, we get again merely a loga-
rithmic dependence

�	̂�
† 	̂�0 = O� k*

2 ln *

m�
� . �22�

Consequently, a vanishing superfluid density ��Ĵ /��
=O���, which marks the end of the �homogeneous� super-
fluid phase may occur even when the total �thermal plus
quantum� depletion is very small, ���2� �	̂�

† 	̂�, and hence
the condensate fraction is still near one. Note that this behav-
ior is opposite to �bulk� superfluid 4He, where the superfluid
fraction �near 100% for low temperatures� strongly exceeds
the condensate part �of order 10%�.

V. “SUPERCOOLED” STATES

Although the depletion was small, ���2� �	̂�
† 	̂�, in the

cases under consideration, we would like to stress that the
presented controlled mean-field expansion �5� can also be

applied to the case of large depletions �	̂�
† 	̂�=O����2�. This

generalization can be achieved by demanding that Vk is
strongly peaked at the origin Vk=0=V�=O�1� and much
smaller otherwise V�k��k0

�1 such that the width k0 of the
peak at the origin is much smaller than the typical k values
�position k* and breadth 1 /��� associated with the roton dips
�where �	̂k

†	̂k yields the major contribution�. To see how this
works, let us compare ��V��	̂�, which must be small within
our approach, with the depletion �	̂�

† 	̂�=�k�	̂k
†	̂k /L. Calcu-

lating the squared norm ����V��	̂��2, we get
�k�Vk

2��	̂k
†	̂k /L. Similarly, higher orders yield a sum over

several wave numbers containing Fourier components at lin-
ear combinations of roton wave numbers Vk�k�. Conse-
quently, all these terms are suppressed even though the quan-
tum depletion may be large.

Given these requirements, one may obtain “supercooled”
states, which are long-lived superfluid phases in a parameter
region where the true ground state is supersolid. In order to
demonstrate the main idea, let us consider the following
gedanken experiment: We start in the superfluid phase at T
=0, where 90% of the particles are in the condensate ��2� and
10% in the quantum depletion �	̂�

† 	̂�. Now we remove 80%
of the particles �e.g., by a Raman transition with no momen-
tum transfer incurred� by decreasing the condensate part ��2�
only, i.e., we leave the modes with k�0 forming the quan-
tum depletion untouched. Simultaneously, we increase the
interaction strength Vk �e.g., via a Feshbach resonance� such
that the product ��2�Vk remains constant, leaving the quasi-
particle spectrum intact. After that procedure, half of the re-
maining particles are in the condensate ��2� and the other half
are in the quantum depletion �	̂�

† 	̂�= ��2�. These anoma-
lously large quantum fluctuations are caused by the increased
interaction Vk, which is so strong that the true ground state
�with this filling n= ��2�+ �	̂�

† 	̂��, having significantly
smaller depletion, is supersolid. However, the immediate
transition to the supersolid state is prevented by the fact that
only half the particles are in the condensate. Because the
quasiparticle modes have the same positive energies as be-
fore, the system is linearly stable. Similar to the thermody-
namical instability caused by a negative superfluid density,
the decay to the true supersolid ground state is mediated by
the subdominant term ��V���

�
*�	̂�	̂�. Ergo, the predicted

supercooled state is long lived and thus might be accessible
to an experimental verification.

VI. CONCLUSION

In summary, by means of a controlled expansion into
powers of the small parameter 1 /�D, yielding the mean field
� plus �thermal and quantum� fluctuations 	̂�, we are able to
study the impact of these fluctuations onto the superfluid-
supersolid phase transition analytically. In addition to the
instabilities indicating the end of the �homogeneous� super-
fluid phase known from mean-field dynamics, which occur
when the roton dip touches the =0 axis, the fluctuations
induce a thermodynamic instability even before reaching the
classical critical point *=0. This breakdown of the homo-
geneous superfluid is associated with a negative superfluid
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density and occurs rather slowly, since changes of the mean
field � induced by fluctuations 	̂� are governed by the sub-
dominant term ��V���

�
*�	̂�	̂� in Eq. �10�, which is effec-

tively a O�1 /�D� correction to the Gross-Pitaevskii equation
�8�. Finally, even though the thermodynamical instability ef-
fect is governed by thermal fluctuations, quantum fluctua-
tions do also generate intriguing phenomena near the critical
point like supercooled states.
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