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The photoelectron spectra produced in the photodetachment of H− �treated in the single-active-electron
approximation� by strong high-frequency laser pulses with adequately chosen laser parameters in the stabili-
zation regime are theoretically studied for elliptic polarization over an extended parameter range. An oscillating
substructure in the above-threshold ionization peaks is observed, which confirms similar findings in the one-
dimensional �1D� �K. Toyota et al., Phys. Rev. A 76, 043418 �2007�� and 3D calculations for linear polariza-
tion �O. I. Tolstikhin, Phys. Rev. A 77, 032712 �2008��. The mechanism is an interference between the
photoelectron wave packets created in the rising and falling parts of the pulse which is specific to the stabili-
zation regime. We thus conclude that this interference substructure is robust for any polarization and over a
wide range of the laser parameters, and hence should be observable experimentally.
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I. INTRODUCTION

Recent experimental developments in high-order-
harmonic generation �1� and free-electron lasers �2,3� pro-
vide us with coherent light sources in the x-ray range, where
the wavelength and intensity can reach up to tens of nanom-
eters and �1014 W /cm2, respectively �1�. Such new light
sources experimentally opened up the so-called high-
frequency regime, and revealed interesting dynamics of at-
oms and molecules �4–7�. Experimentalists may further as-
pire to develop an ultraintense laser pulse to reach the
stabilization regime in future. Stabilization is a phenomenon
in which the total ionization yield decreases once the laser
intensity exceeds a certain critical value. It was first pre-
dicted by theory �see �8,9� for the history and detailed dis-
cussion of stabilization�. However, as far as we know, theo-
retical studies in this regime usually concentrate on the
ionization rate or total ionization probability �see, e.g., �10�;
see also the review articles �11,12� and references therein�.
Such gross characteristics are important, but describe only
one aspect of the dynamics. To gain insight into further de-
tails, it is essential to consider the photoelectron spectrum,
which is a more sensitive characteristic and may bear various
signatures of the dynamics not revealed by the total ioniza-
tion probability. To provide a look at one general feature of
the dynamics of ionization by laser pulses in the stabilization
regime via analysis of the photoelectron spectra is one of the
goals of this paper.

Even though seldom acknowledged explicitly, it is not
straightforward to reliably calculate photoelectron spectra.
Conventional methods based on zero boundary conditions or
absorbing potentials lead to a spectrum contaminated by un-
physical reflections from the boundary, so the resolution of
the high-energy region is limited. This difficulty
has been resolved in a recently developed Siegert-state ex-
pansion approach �13–16�. The Siegert states �SSs� are the
solutions of the stationary Schrödinger equation which sat-
isfy the outgoing-wave boundary condition. The idea was
originally introduced by Siegert in 1939 �17�; more recently,

Tolstikhin et al. �18� introduced Siegert pseudostates which
became a powerful tool in practical calculations. The theory
of SSs has been developed systematically in �19–22�. The
SSs have already found many applications in atomic physics
in the time-independent framework �23–28�. The use of SSs
as a means to eliminate unphysical reflections from the
boundary in time-dependent studies of stationary systems
was initiated in �29–31�. Further extension of this approach
to nonstationary systems �13–16� made its applications to the
laser-atom interaction problem possible. One of the main ad-
vantages of the approach is that it enables one to accurately
calculate photoelectron spectra with any desired resolution.
This was demonstrated by calculations for model one-
dimensional �1D� systems �14,32� and for linear polarization
in the 3D case �16�. A demonstration of the SS expansion
approach for elliptic polarization in the 3D case is another
goal of this work.

In the 1D calculations �32�, we found an oscillating sub-
structure in the above-threshold ionization �ATI� �33� peaks
produced in photoionization �or rather photodetachment� of
the hydrogen negative ion H− by strong high-frequency laser
pulses. It was shown that this is due to an interference be-
tween photoelectron wave packets created in the rising and
falling parts of the pulse and that stabilization plays a key
role. Subsequently, the effect was confirmed by 3D calcula-
tions for linear polarization �16�. Here, we follow these pre-
vious papers but consider a general elliptic polarization and
vary the laser parameters to show that our findings are ro-
bust. We give an interpretation of the effect in terms of an
adiabatic version of the high-frequency Floquet theory
�HFFT� �34�. Although this analysis is similar to that in �32�,
the generalization to the 3D case is not straightforward, and
it is not evident a priori that such a simple approximation
applies to the 3D case as well.

The paper is thus organized as follows. Section II recalls
basic equations of our approach. In Sec. III, we present and
discuss our numerical results for the photoelectron spectra
from H−—this system seems to be more easily amenable to
the high-frequency strong-field regime of interest here. The
oscillating substructure in the ATI peaks indeed appears in a
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wide range of laser parameters. In Sec. IV, we interpret these
results and reconstruct the oscillating substructure, if ap-
proximately, in terms of the HFFT. Section V concludes the
paper. Atomic units are used throughout.

II. THEORETICAL APPROACH

We consider a negative hydrogen ion H− interacting with
a laser pulse. The ion is treated in the single-active-electron
approximation. The time-dependent Schrödinger equation
�TDSE� describing the system in the laboratory frame �L� in
the length gauge reads

i
��L�rL,t�

�t
= �−

1

2
�L + V�rL� + rL · F�t���L�rL,t� , �1�

where V�r� is the atomic potential and F�t� is the electric
field. The potential is modeled by �16�

V�r� = − V0 exp�− r2/r0
2� �2�

with V0=0.383 108 7 and r0=2.5026. This potential supports
only one bound state with energy E0=−0.027 751 0 and is
characterized by the s-wave scattering length 5.965, thus
yielding accurate variational results for H−. We have tried
several soft-core model potentials with different asymptotic
behavior; the results reported below only weakly depend on
the model as long as the bound-state energy and �impor-
tantly� scattering length are reproduced correctly. The field
F�t� is assumed to vanish beyond the time interval 0� t�T.
Let us introduce a classical trajectory of an electron moving
under the influence of only the electric field,

�̈�t� = − F�t� , �3a�

�̇�0� = ��0� = 0 , �3b�

where the overdot denotes the derivative with respect to
time. The Kramers-Henneberger �KH� transformation is de-
fined by �35,36�

rL = rKH + ��t� , �4a�

�L�rL,t� = exp�i�̇�t� · rL −
i

2
�

0

t

�̇2�t��dt���KH�rKH,t� .

�4b�

Substituting these equations into Eq. �1�, one obtains the
TDSE in the KH frame,

i
��KH�rKH,t�

�t
= �−

1

2
�KH + V„	rKH + ��t�	…��KH�rKH,t� .

�5�

The transformed potential combines the effect of the atomic
potential and the laser field and is called the KH potential.
The interaction between the electron and the laser field is
thus described by a quiver motion of the KH potential along
the classical trajectory. An important advantage of this rep-
resentation is that the KH potential is well localized within
the bound of this quiver motion. Indeed, let a be the radius of

the atomic potential, i.e., in numerical calculations one can
set V�r�a�=0 without modifying the results; a
6 for the
present model �2�. Then the KH potential in Eq. �5� vanishes
for rKH�R=a+�, where �=max ��t� is the maximum ex-
cursion amplitude of the classical trajectory as measured
from the origin and ��t�= 	��t�	. Vanishing of the potential in
the TDSE beyond some radius is required for the application
of the SS expansion approach �13–16�, therefore the use of
the KH frame is the representation of choice for this ap-
proach. We solve Eq. �5� using the procedure described in
�16�. This procedure is rather simple in implementation for
soft-core potentials; it is equally applicable to potentials with
the Coulomb singularity at the origin, although the calcula-
tion of the matrix elements in this case is complicated by the
quiver motion of the singularity. This method incorporates
the outgoing-wave boundary condition exactly at rKH=R;
therefore only a very limited spatial region rKH�R is to be
considered. Nevertheless, all the interactions are fully taken
into account and the method is capable of producing accurate
photoelectron spectra with any desired resolution. A true la-
ser pulse must satisfy �10,11�

�̇�T� = ��T� = 0. �6�

In this case the spectra in the L and KH frames coincide,
which simplifies the calculations. In the following, condi-
tions �6� are applied.

III. PHOTOELECTRON SPECTRA
IN THE STABILIZATION REGIME

A. Laser pulse

For an elliptically polarized pulse, we assume that the
polarization vector lies in the xz plane. The components of
the electric field F�t� are represented by �0� t�T�

Fx�t� = �F0f�t�sin �t , �7a�

Fz�t� = F0f�t�cos �t , �7b�

where �, F0, �, and T are the ellipticity, amplitude, fre-
quency, and duration of the pulse, respectively. The pulse
envelope f�t� is defined by

f�t� = �1 −
noc

2 − 4

noc
2 − 1

cos2 	t

T
�sin2 	t

T
, �8�

where noc=�T /2	 is the number of optical cycles in the
pulse. Equation �8� differs from a frequently used sin2 enve-
lope by the factor in parentheses. This factor does not quali-
tatively modify the bell-like shape of the envelope and is
introduced in order to satisfy conditions �6�. Indeed, one can
easily verify that for a pulse defined by Eqs. �7� and �8� with
integer noc
3 Eqs. �6� hold for any value of �.

In the following, we concentrate on a regime character-
ized by high frequencies �� 	E0	 and sufficiently large field
amplitudes F0 for stabilization to occur. Let us define the
parameters of a reference laser pulse in this regime: F0
=0.5 �I=cF0

2 /8	=8.8�1015 W /cm2�, �=	 /10 �8.55 eV�,
and T=600 �14.4 fs�; hence noc=30. The results reported be-
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low are obtained with the cutoff radius R=12 and the number
of primitive radial basis functions used to construct the
partial-wave Siegert pseudostates N=40 �16,22�. The maxi-
mum angular momentum included in the partial-wave expan-
sion is L=5.

B. Numerical results

The general structure of the photoelectron spectrum in the
stabilization regime is illustrated in Fig. 1. These results are
obtained for the reference laser pulse with circular ��=1�
polarization. They look similar to those for the linear polar-
ization case �16�. The partial-wave energy distributions are
obtained by summing over the magnetic quantum number,
and the total is the sum over all partial-waves. One can
clearly see a train of ATI peaks �33� located around the
n-photon absorption energies E0+n�, n=1,2 , . . .. The peak
associated with absorption of n photons will be called the nth
peak. The nth ATI peak consists of the partial waves with
angular momenta l=n ,n+2,n+4, . . . of the same parity as n,
with the dominant contribution coming from l=n. Thus, e.g.,
the first peak is dominated by the partial wave with l=1. This
may seem to be a trivial consequence of the standard pertur-
bation theory and dipole selection rule. However, the total
ionization probability for the present pulse is 0.972, so the
situation is very far from the perturbation regime. One can
notice also a peak located at zero energy which is dominated
by the partial wave with l=0; we shall call it the zeroth peak.
The contribution of this peak to the total ionization probabil-
ity is 0.263, so it represents a prominent feature that cannot
be neglected. The zeroth peak arises from a quite different
mechanism; its origin requires a separate discussion not con-
gruous with the purpose of the present paper and is thus
postponed till future. The contributions of higher partial
waves to the total ionization probability are 0.637, 0.465
�10−3, 0.206�10−3, 0.378�10−4, and 0.108�10−4 for l
from 1 through 5, respectively. Thus the partial-wave expan-
sion rapidly converges.

A map of the 3D momentum distribution of the photode-
tached electron in the xy plane �perpendicular to the polar-

ization plane xz� for the same pulse as in Fig. 1 is shown in
Fig. 2. The bright disk at the center is the zeroth peak men-
tioned above. The series of bright rings correspond to the
ATI peaks. For the present case of circular polarization the
momentum distribution looks axially symmetric about the y
axis �the direction of propagation of the laser pulse�, al-
though this symmetry is not exact. We recall that in the linear
polarization case the distribution is exactly axially symmetric
about the polarization axis �16�. The cut of ATI rings at kx
=0 reflects their partial wave contents in terms of the mag-
netic quantum number. It is explained by the fact that the
dominant contribution to the nth peak comes from the partial
wave with l=n and the maximum projection of the angular
momentum on the y axis. This feature is in accordance with
the absorption of n circularly polarized photons and again
may seem to be a trivial consequence of the standard pertur-
bation theory in the L frame, although the situation is highly
nonperturbative. In fact, we shall see below that the problem
can be treated perturbatively, but this must be done in the
KH frame within the HFFT �34�.

An oscillatory substructure in ATI peaks is clearly seen in
Fig. 1; it is also noticeable as ripples within ATI rings in Fig.
2. This substructure was first found in the 1D calculations
�32�. It was shown to be due to an interference between
photoelectron wave packets created in the rising and falling
parts of the laser pulse �32�. A similar interference substruc-
ture is also found in the 3D calculations for linear polariza-
tion �16�. In the rest of the paper, we discuss this substructure
and clarify the underlying interference mechanism, focusing
on the first ATI peak. In doing so, we follow a train of
thought similar to that in �16,32�, but deal with circular and
elliptic polarizations to show that the effect is robust for any
polarization and under variations of the laser parameters.

First, we discuss the dependence of the spectrum on the
field amplitude. We consider circularly polarized pulses with
�=	 /10 and T=600 and different values of F0 �see Fig. 3�.
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FIG. 1. �Color online� The partial wave and total photoelectron
spectra for the reference laser pulse with the parameters �=1, F0

=0.5, �=	 /10, and T=600. The multiphoton absorption energies
E0+n� are shown by arrows. Note that the total spectrum is mul-
tiplied by 10 to separate it from the other curves.

FIG. 2. �Color online� Momentum distribution of the photode-
tached electron in the xy plane for the same �circularly polarized in
the xz plane� pulse as in Fig. 1.
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The dynamics can be understood with the help of the classi-
cal trajectory ��t�. The maximum of the excursion amplitude
��t� for the pulse �7� is achieved somewhere near t=T /2 and
can be estimated as �
F0 /�2. It is important to realize that
there exists a critical amplitude �c associated with the onset
of stabilization. One may expect that the ionization rate �t�
grows �decays� in the rising �falling� part of the pulse, be-
cause the electron becomes more loosely �tightly� bound as
the excursion amplitude increases �decreases� with the varia-
tion of the field envelope. In this case, the function �t� has
a bell-like shape centered at t=T /2; only a single photoelec-
tron wave packet is created near the maximum of the pulse,
and hence no interference substructure is expected to appear.
This picture is correct for ���c. However, the situation is
different for ���c. In this case, �t� first grows in the rising
part of the pulse, in the interval 0� t� tc where ��t���c.
When the excursion amplitude exceeds �c, the electron be-
haves as almost free. It is well known that a free electron
cannot absorb a photon. Hence �t� decays in the interval
tc� t�T /2, where the field envelope continues to rise and
the excursion amplitude satisfies ��t���c. This behavior is
repeated in the inverse order in the falling part of the pulse:
�t� first grows �T /2� t�T− tc� and then decays �T− tc� t
�T�. Thus the function �t� has two humps; hence two pho-
toelectron wave packets are created whose interference may
produce an oscillating substructure in the spectrum. As can
be seen from Fig. 3, for F0=0.1 the first ATI peak has a
simple bell-like shape centered near the one-photon absorp-
tion energy E0+�, as one would expect in the perturbation
regime �for the present parameters noc=30, so the pulse is
rather monochromatic�. However, a pronounced oscillating
substructure appears for larger values of F0. The threshold
value of the field amplitude for which this substructure be-
comes clearly visible is estimated to be F0
0.2, which cor-
responds to �c
2.

Second, we discuss the dependence of the spectrum on the
duration of the pulse. We again consider circularly polarized
pulses with �=	 /10, with a fixed field amplitude F0=0.5
and the different values of T �see Fig. 4�. In these calcula-
tions �
5.07, which is definitely larger than �c as estimated
above. The interference substructure of the first ATI peak can
be clearly seen in the figure. The frequency of the oscilla-
tions grows with T, because the interference phase is propor-
tional to T as is shown below. However, the contrast of the

fringes deteriorates as T grows. This is explained by the fact
that for a good contrast the two interfering wave packets
must have comparable amplitudes. Meanwhile, for too long
pulses, complete depletion of the initial state occurs in the
rising part of the pulse, so the amplitude of the second wave
packet becomes much smaller than that of the first one.

Finally, we discuss the dependence of the spectrum on the
laser polarization. We consider pulses with F0=0.5, �
=	 /10, and T=600 for the polarization varying from linear
�=0 to circular �=1 �see Fig. 5�. In all cases, a pronounced
oscillating substructure can be clearly seen. We thus con-
clude that this substructure is robust for all possible polariza-
tions. The variance of the position of the interference fringes
is due to the difference of the corresponding classical trajec-
tories.

Summarizing, the range of the laser parameters for the
interference substructure is identified as follows: �a� arbitrary
polarization, �b� sufficiently high frequency, �� 	E0	, �c� suf-
ficiently high intensity, �
F0 /�2��c, and �d� a pulse
length T not too small, to have at least a few fringes within
the width of the ATI peak, but neither too large to have a
good contrast.

IV. DISCUSSION OF THE INTERFERENCE MECHANISM

A. Numerical experiment: Adiabatic rotation
of the polarization axis

The oscillating substructure discussed above results from
an interference of the photoelectron wave packets created in
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FIG. 3. �Color online� The first ATI peak for pulses with �=1,
�=	 /10, and T=600 and three values of the field amplitude F0
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FIG. 4. �Color online� The first ATI peak for pulses with �=1,
F0=0.5, and �=	 /10 and four values of the duration of the pulse
T=200, 400, 600, and 800.
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FIG. 5. �Color online� The first ATI peak for pulses with F0
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the rising and falling parts of the pulse. This does not provide
yet an explanation of the physical mechanism, but suggests a
basis on which a more detailed understanding of the dynam-
ics can be constructed. In this section we discuss a numerical
experiment which unambiguously confirms this basis. Let us
consider a laser pulse defined by �cf. Eqs. �7��

Fx�t� = �1 − s2�t − T/2��F0f�t�cos �t , �9a�

Fz�t� = s�t − T/2�F0f�t�cos �t , �9b�

where f�t� is the envelope function �8� and s�t� is a switching
function which smoothly varies from 1 to 0 as t passes
through zero in the positive direction. The effect of introduc-
ing the switching function is to adiabatically rotate the po-
larization axis from z to x within a few laser cycles near the
center of the pulse, t=T /2. The photoelectron wave packets
created in the rising and falling parts of the pulse in this case
propagate in different directions, along the z and x axes,
respectively. Hence they do not interfere and the oscillating
substructure in the spectrum should not appear. Figure 6
compares the first ATI peak for linear polarization �LP�, i.e.,
Eqs. �7� with �=0, and in the case where the polarization
axis is adiabatically rotated �AR�, in the manner of Eqs. �9�.
The laser parameters in these calculations are F0=0.5, �
=	 /10, and T=600. Indeed, one can see clear oscillations in
the spectrum in the LP case, but none in the AR case. The
AR spectrum reveals the true shape of each of the wave
packets created and serves as a background for the oscilla-
tions in the LP spectrum. Thus, by rotating the polarization
axis at a time between the two humps of the ionization rate
�t�, one can control the interference substructure. Whether
this is feasible experimentally remains an open question.

B. Analysis in terms of the high-frequency
Floquet theory

Having established the fact that the observed oscillations
in the spectrum result from an interference mechanism, here
we develop an approximate picture of the dynamics and re-
construct the first ATI peak using an adiabatic version of the
HFFT �34�. The present analysis generalizes that of �32� to

the 3D case. For definiteness, we consider a circularly polar-
ized pulse �see Eqs. �7� with �=1�. We shall treat the prob-
lem in the KH frame on the basis of Eq. �5�. It is convenient
to rotate the coordinate axes with respect to what has been
implied in the above discussion in such a way that the polar-
ization plane coincides with the xy plane, and thus the laser
pulse propagates along the z axis. For brevity, in this section
we omit the subscript KH in the notation of Eq. �5�.

Let us consider a monochromatic laser field, i.e., we tem-
porarily omit the envelope factor f�t� in Eqs. �7�. The clas-
sical trajectory in this case is given by ��t�
= �� cos �t ,� sin �t ,0�, where �=F0 /�2 is the excursion
amplitude. The KH potential can be expanded into a Fourier
series,

V„	r + ��t�	… = �
n=−�

�

Vn�r,�;��ein��−�t�, �10�

where � and � are the polar angles defining the direction of
r. In the zeroth order of the HFFT �34�, the system is de-
scribed by the stationary “dressed” Hamiltonian

HHFFT��� = −
1

2
� + V0�r,�;�� . �11�

It can be seen that V0�r ,� ;0�=V�r�; hence HHFFT��� reduces
to the unperturbed atomic Hamiltonian in the absence of the
field. The eigenfunctions of HHFFT��� will be called the
dressed states. Let �0�r ,� ;�� and E0��� denote the eigen-
function and eigenvalue, respectively, of the initial bound
dressed state, which coincides with the ground state of the
unperturbed atom for �=0. Let ��r ,k ;�� be the scattering
dressed state corresponding to the momentum k= �k ,�� and
energy k2 /2, normalized to unit amplitude of the incoming
plane wave. Then, in the first order of the HFFT �34,37�, the
partial width of the initial state associated with the absorp-
tion of one photon is given by

��� =
k���
�2	�2 � 	A„k���,�;�…	2d� , �12�

where A�k ,� ;�� is the transition amplitude,

A�k,�;�� =� �*�r,k;��V1�r,�;��ei��0�r,�;��dr ,

�13�

and k��� is the momentum of the photoelectron,

k��� = �2�E0��� + �� . �14�

One can easily recognize in these formulas the first-order
perturbation theory for the dressed interaction potential
V1�r ,� ;��ei��−�t� in the basis of the dressed states.

The coefficients Vn�r ,� ;�� in Eq. �10� can in turn be ex-
panded in terms of the associated Legendre polynomials,

Vn�r,�;�� = �
l=n,n+2,. . .

vnl�r;��Pl
n�cos �� , �15�

where the summation runs over l in steps of 2, since the
left-hand side in Eq. �10� is an even function of cos �. The
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FIG. 6. �Color online� The first ATI peak for linear polarization
�LP� along the z axis and in the case where the polarization axis is
adiabatically rotated �AR� from z to x near the center of the pulse in
order to suppress the interference �see text�. The laser parameters
are F0=0.5, �=	 /10, and T=600.
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bound dressed state can be constructed numerically by sub-
stituting a partial-wave expansion,

�0�r,�;�� = �
l=0,2,. . .

�l�r;��Pl�cos �� , �16�

where, again, the summation runs only over even l since
�0�r ,� ;�� must be an even function of cos �. Our calcula-
tions show that even for the largest excursion amplitude con-
sidered here, �=4, the dressed binding potential V0�r ,� ;��
preserves spherical symmetry to a good approximation, i.e.,
the term with l=0 in Eq. �15� dominates for n=0, and it is
sufficient to retain only terms with l=0 and 2 in the expan-
sion �16�. The behavior of the eigenvalue E0��� is shown in
Fig. 7�a�. The initial state remains bound in the interval of �
shown in the figure, but the binding energy monotonically
decreases as � grows, since the potential V0�r ,� ;�� becomes
shallower. The scattering dressed state also can be con-
structed using a partial-wave expansion,

��r,k;�� = �
lm

�lm�r,k;��Ylm��,�� . �17�

Only terms with m=1 contribute to the integral in Eq. �13�.
Our calculations show that in the expansion �15� for
V1�r ,� ;�� the term with l=1 dominates in the interval of �
under consideration. This explains the results of the exact
calculations discussed in Sec. III B: the dominant contribu-
tion to the first ATI peak comes from the partial wave with
l=1 �see Fig. 1�; the contribution from l=3 is smaller by an
order of magnitude. Hence, to calculate ��� it is sufficient
to retain only the term with �l ,m�= �1,1� in the expansion
�17�. We approximately construct this term by retaining only
the spherically symmetric part of the potential V0�r ,� ;��.

The dressed wave functions thus constructed are substituted
into Eq. �13�. The one-photon width of the initial state is
obtained from Eq. �12�. The error caused by the approxima-
tions made in this calculation is estimated to be within a few
percent. The width ��� calculated for �=	 /5 is shown in
Fig. 7�a�. It first grows with �, but then decays after � passes
the critical value �c
1.5. This behavior of ���, which is a
signature of stabilization, is a key for understanding the ion-
ization dynamics. To close this discussion, we note that the
dominance of the l=0 and 1 components in the dressed bind-
ing V0�r ,� ;�� and interaction V1�r ,� ;�� potentials, respec-
tively, means that the angular dependence of the transition
amplitudes in the perturbation theory within the HFFT is
similar to that in the standard perturbation theory in the L
frame. However, the absolute values may be qualitatively
different because of the effect of dressing on the initial and
final states and the transition operator, as can be seen from
the very fact of nonmonotonic behavior of ���.

The remaining part of the analysis parallels that in �32�.
To provide a clear illustration of our point, let us consider a
laser pulse with the parameters F0=1.2, �=	 /5, and T
=2000. The length of the pulse is increased compared to the
previous cases, to have a pronounced interference substruc-
ture. The frequency is doubled, to keep a good contrast by
reducing the decay rate. The field amplitude is increased ac-
cordingly to satisfy ���c. A part of the photoelectron spec-
trum near the first ATI peak �E0+�
0.601� calculated for
this pulse is shown in Fig. 8. This pulse is not monochro-
matic. However, its envelope varies slowly; the pulse con-
tains noc=200 optical cycles. So one could expect that the
picture suggested by the HFFT is followed adiabatically. The
adiabatic approximation is implemented by the substitution

� → ��t� =
F0

�2 f�t� . �18�

The maximum value of ��t� for the present parameters is
F0 /�2=3.04; it is shown by the vertical dotted line in Fig.
7�a�. The behavior of E0�t� and �t�, now as functions of t
recalculated using the substitution Eq. �18�, is shown in Fig.
7�b�. The decay rate �t� indeed has two humps, as antici-
pated above. The probability to stay in the initial state until
the moment t is, in this approximation,
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FIG. 7. �Color online� �a� Energy �solid line� and one-photon
decay width �dashed line� of the initial dressed state as functions of
the excursion amplitude �=F0 /�2 for �=	 /5. �b� Same as in �a�,
but as functions of time recalculated using Eq. �18� for the laser
pulse with F0=1.2, �=	 /5, and T=2000. The maximum value of
��t� for this pulse is shown by the vertical dotted line in the upper
panel.
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results are obtained from Eq. �22�.
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P0�t� 
 exp�− �
0

t

�t��dt�� . �19�

This gives P0�T�
0.063, which is not very far from the
survival probability 0.055 obtained in our accurate calcula-
tions. Within the adiabatic approximation, the energy E of a
photoelectron is a function of the moment t of its ionization,

E = E0�t� + � → t = t�E� , �20�

where t�E� is the inverse function. The electrons ionized in
the interval from t to t+dt have energies between E and E
+dE, where dE= �dE0�t� /dt�dt. Equating the total ionization
probability in this interval P0�t��t�dt to C2�E�	dE	, where
C�E� is the amplitude of the photoelectron wave packet cre-
ated, one finds

C�E� = �P0�t��t� dt

dE


t=t�E�

. �21�

As can be seen from Fig. 7�b�, for the present pulse t�E� is a
double-valued function. Let t1�E� and t2�E� denote its two
branches, and C1�E� and C2�E� denote the corresponding
amplitudes defined by Eq. �21�. There are two different paths
for the photoelectron with the energy E to evolve from t
= t1�E� to t= t2�E�. The first one is to be ionized at t1�E� and
then propagate until t2�E� in the scattering state. The second
one is to propagate between t1�E� and t2�E� in the bound
state and then be ionized. These paths lead to the same final
state, but with different phases. Summing up their contribu-
tions, the photoelectron spectrum is given by

PHFFT�E� = 	C1�E� + C2�E�ei��E�	2, �22�

where ��E� is the phase difference for the two paths,

��E� = E�t2�E� − t1�E�� − �
t1�E�

t2�E�

�E0�t� + ��dt . �23�

Note that for a fixed energy E this phase is proportional to
the duration of the pulse T. The results obtained using these
formulas are shown in Fig. 8. This approximate theory yields
the spectrum only in a limited energy interval from
min�E0�t�+�� to max�E0�t�+��, shown in the figure by ver-
tical dotted lines. Equation �22� diverges at the upper bound-
ary of this interval because of the factor dt�E� /dE in Eq.
�21�. It nicely reproduces the phase of the interference sub-
structure, but the amplitude is somewhat overestimated, es-
pecially in the lower part of the spectrum. However, in spite
of these limitations, it is clear that the theory correctly ac-

counts for the mechanism responsible for the appearance of
the interference substructure. This analysis confirms our
qualitative interpretation of the dynamics.

V. CONCLUSION

We discussed an interference effect in the dynamics of
photoionization of atoms by strong high-frequency laser
pulses in the stabilization regime. The effect was first found
in 1D calculations �32� and then confirmed for linear polar-
ization in the 3D case �16�. The present calculations show
that it reveals itself for an arbitrary elliptic polarization and
over a wide range of the laser parameters. Thus the effect is
robust against variations of the laser parameters and should
be observable experimentally. The accurate photoelectron
spectra are calculated using the Siegert-state expansion ap-
proach �13–16�. An adiabatic version of the high-frequency
Floquet theory �34� is developed to explain the interference
mechanism. This approximate theory is confirmed by recon-
structing the oscillating substructure of the first above-
threshold ionization peak, which generalizes a similar analy-
sis in �32� to the 3D case. The interference substructure
discussed in �16,32� and in the present paper is a signature of
the stabilization regime, sensitive to the details of the photo-
ionization dynamics, so it could be used for probing the dy-
namics. The stabilization regime may soon become acces-
sible by the rapidly developing light sources. Experimental
certification of the stabilization effect is highly recom-
mended.

The origin of the slow electrons represented by the zeroth
peak in Fig. 1 and the bright disk at the center of Fig. 2 is
different from the multiphoton absorption or from the inter-
ference mechanism discussed in this paper. Its explanation is
expected to emerge on the basis of a recently developed
theory of nonadiabatic transitions to the continuum �15�. We
leave this issue for future studies.
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