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Influence of orbital symmetry on high-order-harmonic generation and quantum tomography
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Quantum tomography based on high-order-harmonic generation in molecules is potentially a powerful
technique to image electron orbitals. However, many assumptions are needed to reconstruct the spatial orbital
structure from the harmonic spectrum. With two-dimensional model calculations, we examine several of these
assumptions and find their validity depends strongly on the orbital symmetry and reconstruction axis. In fact,
for certain symmetries we cannot find a reconstruction procedure that gives good results. We compare the
length and velocity forms of the dipole interaction and find that the form of the dipole strongly affects the
quality of the orbital reconstruction. For all of the wave functions studied, the velocity form works as well or
better than the length form and may be the best method for quantum tomography. Moreover, in many cases,
using the harmonic radiation polarized perpendicular to the molecular axis gives much better results than the
parallel polarization. Finally, we examine the minima in the harmonic spectra as a function of angle and find

that they cannot always be interpreted as a two-center interference effect.
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I. INTRODUCTION

Several years ago, the possibility was raised that the har-
monic spectrum generated by molecules in strong laser fields
could be used to reconstruct the ground-state orbital of the
molecule [1]. This so-called quantum tomography (QT) is
particularly exciting as the amplitude of the wave function
can, in principle, be recovered, not just the probability den-
sity. Reconstruction can only occur because the temporal
Fourier transform of the time dependent dipole can be related
to the spatial Fourier transform of the ground-state wave
function, although this requires numerous assumptions. To
become a useful and reliable technique, these assumptions
need to be tested in a variety of circumstances to determine
exactly how accurate the reconstruction can be [2].

While most work on QT has focused on the ground state
of molecules, in this paper, we investigate the possibility of
QT on excited states, as this presents some advantages in
performing QT and opens up some interesting physics: (1)
QT requires spatially aligned molecules, which is generally
achieved through impulsive alignment [1,3]. Using the mea-
sure of alignment from Ref. [3] (which ranges from 0.5 for
random molecules to 1.0 for perfect alignment), alignment
factors of 0.65 have been achieved for N,. However, by ex-
citing a state that has a transition dipole moment parallel to
the molecular axis, the excited state population will have a
pure cos?(#) distribution and this distribution has a signifi-
cantly higher alignment factor of 0.75 without a separate
alignment pulse. (2) If the excited state dissociates, one can
track the electronic orbital as a function of internuclear sepa-
ration in a pump-probe experiment, allowing the visualiza-
tion of the orbital as it progresses from the unified atom limit
to the separated atom limit. (3) The influence of enhanced
ionization [4] and enhanced excitation [5] due to charge
resonant states [6] should be observable at intermediate in-
ternuclear separations.

While the reconstruction of excited states is similar to
ground states, they present some additional challenges: They
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come in a much greater variety of orbital symmetries than
ground states and the excited states lie closer in energy and
may couple more strongly to other excited states, compared
to the ground state. This latter aspect may further complicate
orbital reconstruction of excited states, but we do not explic-
itly address this here. Since QT relies on the strong field
interaction being in the tunneling regime, longer wave-
lengths are required for excited states with low binding en-
ergies. However, new mid-ir short-pulse laser sources are
being developed [7] and will be ideally suited to probing
excited states. Thus, our main goal for this paper is to inves-
tigate the influence of molecular symmetry on the QT recon-
struction algorithm as a first step towards understanding QT
of excited states. Moreover, we consider several geometries
for QT and study how well they work for different symme-
tries.

In this paper, we present two types of calculations. First,
we find two-dimensional (2D) solutions to the time-
dependent Schodinger equation for a model double-well po-
tential in a strong laser field and calculate the harmonic spec-
trum for two initial states, one with o, symmetry and one
with o, symmetry, as a function of angle between the laser
polarization and molecular axes. From this, we can compare
the harmonic spectrum in the laboratory frame and the mo-
lecular frame and investigate the phase shifts in the harmonic
spectrum as a function of angle. Second, for QT, the har-
monic spectrum must be related to the Fourier transform of
the initial wave-function times the dipole operator. While for
exact wave functions, the form of the dipole operator should
not matter, it does for the approximate wave functions as-
sumed for QT. Thus, we calculate reconstructed wave func-
tions using the length and velocity form of the dipole mo-
ment as these can be used for reconstruction. While the
acceleration form gives consistently good results, it cannot
be used as the VV operator is generally not known.

From these calculations we are led to several conclusions.
(1) The length and velocity forms give comparable results,
although often the velocity form works better, especially for
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m, states. (2) States with 7, symmetry are poorly recon-
structed. Similarly, complex o, orbitals are hard to recon-
struct. (3) A dispersion equation is needed to connect the
frequency domain of the high-order-harmonic generation
(HHG) spectrum to the spatial domain of the wave function.

We find that
k§/2=nw,+ w; (1)

is an accurate form of the dispersion relationship, where &, is
the spatial frequency in Fourier space, n is the harmonic
order, w; is the laser frequency, and w; is the binding energy
of the initial state (w;>0). This matter has been open to
some debate [1,2,8]. (4) The origin of the minima in the
harmonic spectrum corresponding to ~180° phase shift ob-
served in both numerical and experimental data [9,15], can
be seen directly in the Fourier transform of the orbital wave
function. While most of the minima in the harmonic spectra
can be explained as a two-center interference effect, we find
an additional anomalous minimum when using the accelera-
tion form.

II. CALCULATIONS

Our time-dependent calculations are performed on a 2D
spatial grid using the split-operator technique to propagate
the 1-electron wave function in time [9,10]. 2D calculations
are particularly well suited for investigating QT, as one di-
mension of the wave function is always projected out by the
technique. We use a soft-Coulomb potential which avoids the
singularities at the nuclei but preserves a full Rydberg series
of excited states [11,12]. It also displays a range of wave-
function symmetries. We use the length gauge for the inter-
action term of the Hamiltonian (er-E) which has been
shown to give identical results for such 2D grid calculations
as the velocity gauge (p-A) [10]. Once we have obtained the
total wave function as a function of time during the laser
pulse, we compute the amplitude of the radiated harmonics
using the acceleration form [13]

Ayed(w) = J di(¥ (1) V V| (2))e', (2)

where W () is the total time-dependent wave function and V
is the potential.

QT requires the acquisition of harmonic spectra of aligned
molecules as a function of angle between the molecular axis
and the laser polarization, which requires some discussion:
The molecular axis is set by the alignment or excitation laser
pulse, while the ionized electron is driven along the direction
of the laser polarization. However, the axis of the dipole
operator in Eq. (2) is determined by the polarization sensi-
tivities of the detector. Ideally, one would like to measure the
polarization of the harmonics along an axis parallel to the
molecule. In this case, the dipole operator corotates with the
molecular waven function and this simplifies the reconstruc-
tion. However, this is not always possible. We consider three
detector types. (1) The detector is completely insensitive to
polarization, in which case the measured harmonic power is
simply the sum of the powers in each component. (2) The
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FIG. 1. Various dipole operators and coordinate systems.

detector has some sensitivity to polarization. If the difference
in sensitivity is great enough, the two polarization compo-
nents can be decoupled and transformed into the molecular
frame. (3) The detector is sensitive to only one polarization.
In this case, the harmonics in the molecular frame can be
measured directly. In a polarization insensitive detector [(1),
above], the harmonics will be dominated by the polarization
along the laser axis, and we refer to this as the laboratory
frame. Since it is not always possible to measure the harmon-
ics in the molecular frame, we examine the issues in trying to
reconstruct the orbital based on data taken in the laboratory
frame.

Finally, since the harmonic spectrum is supposed to carry
the information about the spatial Fourier transform of the
wave function, it is far simpler to compute the Fourier trans-
form of the wave functions directly to examine the effects of
symmetry on QT. To make the connection between the har-
monic spectrum and the spatial wave function, we first write
W(t) as the sum of the initial state and a continuum state,
which is assumed to be a plane wave [16],

V(1) = agpe’ + beltetei! (3)

where we=kg/ 2 is the energy of the continuum electron. For
weak ionization, a=1 and b<<1. Substituting Eq. (3) into
Eq. (2) yields

APW

wcel(@,0) = 8- v, — w, + w)

X fdxdyeikex(?V(x,y;H)zﬁi(x,y;9)+c.c.,

4)
where A"V(w,6) is the harmonic amplitude in the plane-

wave approximation. The laser polarization is along the x
axis, the molecule lies in the x-y plane, and the molecular
axis makes an angle of @ with respect to the x axis. Thus, the
potential and the initial wave function are rotated by an angle
0 in the x-y plane, V(x,y;6) and ;(x,y;6), respectively.
Figure 1 shows the various operators and coordinate systems
that will be used. In QT, as mentioned above, one axis is
always projected out, in this case the z axis.

This form of A, is very close to the spatial Fourier trans-
form of the radon transform of ¢;(x,y). The radon transfor-
mation is a standard tool in many types of tomography [14].
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One problem with Eq. (4) is the presence of the dipole op-
erator JV. One can consider Eq. (4) to be the radon transfor-
mation of the entire object dV(x,y; 6)i(x,y; 6) but we still
need to define d. There d operator is determined by which
component (x or y) of the harmonic polarization A is mea-
sured and in which frame (laboratory or molecular). If the
harmonics are measured in the laboratory frame, then d=4,
corresponds to the harmonics polarization parallel to the la-
ser polarization and d=4d, corresponds to the perpendicular
polarization. It is important to note that J, and d, do not
rotate with V and ¢ and, so, Eq. (4) does not give a proper
radon transformation. However, this does represent the har-
monic radiation detected in the laboratory frame and we refer
to this as a pseudoradon transformation. Nevertheless, it of-
ten leads to a reasonable reconstruction, as we will see. Simi-
larly, if the harmonics are measured in the molecular frame,
then d=9,(6) corresponds to the harmonics polarization par-
allel to the molecular axis and d= ¢9y(9) corresponds to those
perpendicular to the molecular axis. In this case, d,(6) and
d,(6) do rotate with V and # and we have a proper radon
transformation. Yet, even in this case, there is still a problem.
For example, inverting Eq. (4) for the case of parallel polar-
ization in the molecular frame yields d,V(x,y)¢i(x,y). If
d,V(x,y) is known, then the ratio of these would finally give
i(x,y). However, d,V(x,y) is generally not known.

This last problem has been addressed by considering the
length form of Egs. (2) and (4),

Ajen() = @ f AP (0)[r[W(1))e™ (5)

and

A}’;ﬁ’(w, 6) = 8- w; — v, + w)w’ f dxdye™*ri(x,y;6) +c.c.,

(6)

where r=x, y, x(6), or y(6), depending on the measured po-
larization, as above. In this case, xi;(x,y) is recovered, for
example, and the factor x can be divided out [1]. Of course,
x goes to zero right down the middle of the wave function.
Dividing by x amplifies any noise and errors and leaves an
indeterminate line in the reconstruction. This will be true of
any of the length dipole operators.

Since the length form of the dipole operator is singular
during the reconstruction, we also consider the velocity form

Avl(@) =0 f AV )|V [ ()™ @

and

AMW(w,0) = 8- w; - w, + w)wf dxdye* o (x,y; 0) + c.c.

vel
(8)

Interestingly, in the velocity form d,#;(x,y), for example, is
recovered. This is easily integrated to yield #;(x,y) directly,
which is more accurate and immune to noise compared to the
length form.
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To examine the effects of the form of the dipole operator
on the reconstruction, we first calculate A" (w,6), as the
acceleration form is presumably the most accurate. Then, a
basic assumption of QT is that Aj\ (w, )=A""(w, 6) or, al-

ternatively, A™Y (w, 0)=A" (w, §). Using Egs. (1), (4), (6),

vel A acc
and (8) we can write

J dxdyeikfxrlz,-(x,y; 0)

=——— | dxdye**oV(x,y;0)i(x,y:0) (9
(k§/2+wi)2f xdye (5 y;0)(x,y;60)  (9)

and

f dxdyeikex&zzi(x,y; 0)

1

= o f dxdye"'oV(x,y; 0)y(x,y;0).  (10)

where the tilde denotes the recovered wave function.

In the molecular frame, with the harmonics parallel to the
molecular axis, we use d=d,(6) on the right-hand sides of
Egs. (9) and (10). Then, with an inverse Fourier transform

and an inverse radon transformation, we obtain x;(x,y) and

3.i(x,y), respectively. Finally, we can obtain #;(x,y) for
each form of the dipole and compare to the original wave
function, ;(x,y). We can also consider basing the QT on the
harmonics polarized perpendicular to the molecular axis by
letting 9=4,(6) on the right-hand sides of Eqgs. (9) and (10).
This potentially leads to a different #;(x,y) and gives better
results for certain symmetries.

In addition to the above reconstruction procedure, we can
use the harmonics from the laboratory frame, corresponding
to the pseudoradon transformation and simply try to invert
the data, anyway. Here we take d=4, in Egs. (9) and (10). In
this case, it is not obvious what axis should be used when
integrating to remove the J operator in the velocity form, or
when dividing to remove the r operator in the length form, as
we do not have a proper radon transformation. We tried both
d=4d, and ¢, in the velocity form and r=x and y in the length
form. Interestingly, we found that =4, and r=y worked the
best and that is what we present below.

III. RESULTS
A. States with o, symmetry

In order to benchmark our calculations, we reproduced
the conditions used in Ref. [9]: A 1-electron double-well po-
tential made up of two soft Coulomb potentials with a
smoothing factor €=0.5 a.u.? and an internuclear separation
of R=2 a.u. (a.u. refers to atomic units). The electric field
has a pulse shape consisting of 10 optical cycles, which in-
cludes a linear turn on and turn off of three cycles, each. We
used a wavelength of 800 nm instead of 780 nm as in Ref.
[9], but this has only a minor affect on the results. Figure
2(a) shows the initial wave function and Fig. 2(b) shows the
logarithmic of the harmonic power spectrum in the labora-
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FIG. 2. (Color online) (a) Ground-state wave function. (b) The
logarithm of the power spectrum of the harmonics in the laboratory
frame from a 2D 1-electron double-well potential, starting in the
ground state (o). Black dots show a minimum in the harmonic
spectrum as a function of angle from Ref. [9]. The harmonic spectra
were smoothed by 1.5 orders to suppress the regular harmonic
structure and bring out the envelope of the spectrum.

tory frame as a function of angle between the laser polariza-
tion and the molecular axis at an intensity of 5X10'
W/cm?. Overall, the harmonics show a cutoff at around 81,
as expected [17] and in agreement with Ref. [9]. However,
the more striking feature is the dark valley running through
the spectrum. This minimum in harmonic production corre-
sponds to a nodal line and a phase shift of approximately
180° in the harmonic spectrum across the line, as identified
in Ref. [9]. Indeed, the black dots show the particular posi-
tions of the phase shift of several harmonics as a function of
angle given in Ref. [9]. The fact that the dots lie right along
the valley indicates excellent agreement between the two cal-
culations.

The reason for the phase shift and corresponding nodal
line in the harmonic spectrum has been interpreted as an
interference effect, although the explanation has been some-
what convoluted [8,9]. However, if QT is possible, the struc-
ture of the harmonic spectrum should correspond to the spa-
tial Fourier transform of the ground-state wave function.
Figure 3(a) shows the Fourier transform of the pseudoradon
transform of 4, V(x,y; 0);(x,y; ), or equivalently AEC\Z (w, 0)
from Eq. (4) in k space, in which 4, is not rotated.

Immediately apparent is the strong similarity between
Figs. 2(b) and 3(a). The same nodal line as a function of
angle shows up in the spatial transform of the wave function.
However, to make a quantitative comparison, a connection is
needed between harmonic order and the k vector of the spa-
tial Fourier transform. In Fig. 3(a), the black dots correspond
to those of Fig. 2(b) using the dispersion relationship in Eq.
(1). The agreement between the position of the nodal line in
the frequency domain and the spatial-frequency domain in-
dicates that Eq. (1) works well.

It has been suggested [9,16] that the nodal lines come
from a two-center interference effect. However, the exact
interference condition depends on the form of the dipole op-
erator. As is usually done, we assume that the molecular
orbital is a linear combination of atomic orbitals (LCAO)
centered on each nucleus. We can have a gerade or an
ungerade combination of atomic orbitals, wiizqﬁ(r
—R/2)* ¢(r+R/2). The dipole matrix element is then
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FIG. 3. (Color online) (a) Pseudoradon transformation of
A V(x,y; 0 ix,y; 60 for the ground state in Fig. 2(a). Black dots
correspond to the dots in Fig. 2(b). (b) Proper radon transformation
of d(OV(x,y;0ix,y; 6. (c) Proper radon transformation of
d(0)i(x,y;0). (d) Proper radon transformation of x(6)¢(x,y;6).
Nodal lines predicted from Egs. (13) and (16) are shown. A loga-
rithmic scale is used. Note, the defects in (d) result from numerical
noise.

1(k) = (™| 0|y, (11)

where Q is some form of the dipole operator. First, we con-
sider the length form, Q=x. If we assume that x is approxi-
mately constant over the extent of ¢, we have

x|y )= g[— &(r—R/2) = ¢(r+R/2)]. (12)

The x term leads to a relative sign change between the
atomic orbitals. This results in the conditions for destructive
interference of

k-R=2nm for (length)
=(2n+ 1) for ; (length). (13)

This relative phase shift does not occur for the velocity or
acceleration form of the dipole

Al =[¢'(r=R12) = ¢'(r+ RI2)] (14)

and
AV =[V' (r—RI2)p(r—R/2) = V'(r+ RI2)(r + R/2)].
(15)

For these cases, the conditions for destructive interference
are

k-R=2nm for ¢ (velocity, acceleration)
=(2n+1)m for ¢ (velocity, acceleration).
(16)

Of course, this difference only occurs because we are con-
sidering imperfect wave functions. Nevertheless, it does
highlight the issues associated with the choice of the dipole
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FIG. 4. (Color online) l?f,-(x, y) from the inverse radon transformations of Egs. (9) and (10) starting with the ground state i;(x,y). (a)
Molecular frame data inverted with the velocity form of the dipole. (b) Laboratory frame data (velocity form). (c) Molecular frame data with
perpendicular polarization (velocity form). (d) Molecular frame data inverted with the length form of the dipole. (¢) Laboratory frame data
(length form). (f) Molecular frame data with perpendicular polarization (length form).

operator. Figure 3(a) shows the nodal lines predicted from
Eq. (16). The agreement is reasonably good and is only off
because of small deviations from the LCAO approximation.

Having established the connection between the harmonic
spectrum and the spatial structure of the wave function of the
electron, we can address two important issues: First, the dif-
ference between the laboratory frame and the molecular
frame, and, second, the difference between the length, veloc-
ity, and acceleration forms of the dipole interaction. As dis-
cussed above, Fig. 3(a) shows the Fourier transform of the
pseudoradon transformation of the ground state wave func-
tion, which corresponds to the harmonic spectrum in the
laboratory frame. Figure 3(b) shows the Fourier transform of
the proper radon transformation, which corresponds to the
harmonic spectrum in the molecular frame. Superficially, the
two transformations look quite similar. In particular, the val-
ley lies in approximately the same place in each plot. The
main difference is that in the molecular frame, at 90° the
harmonics go to zero, as they should: Harmonics in the mo-
lecular frame at 90° would have a polarization perpendicular
to the laser polarization, which cannot occur for a symmetric
wave function.

To compare the effects of the choice of dipole, Fig. 3(c)
shows Alv)e] (w, 0) from Eq. (8) using a proper radon transfor-
mation, and, similarly, Fig. 3(d) shows Ale\:((u, 0) from Eq.
(6). Figures 3(b) and 3(c) are quite similar, as expected, as
they share the same interference condition, while Fig. 3(d)
clearly shows shifted nodal lines. However, this is in agree-
ment with Eq. (13). Again, it is odd that the interference
condition depends on the form of the dipole, but, as men-
tioned this is only because nonexact wave functions are be-
ing considered.

We now examine the effects of the form of the dipole and
the choice of laboratory or molecular frame on the wave-
function reconstruction. If we take the inverse radon trans-
formation of the data in the molecular frame using the accel-
eration form, Fig. 3(b), we should get back the original wave
function exactly, after dividing out the 4,V term, except that
the VV operator has many nodal lines which leads to a loss
of information upon division. However, as mentioned above,
the VV operator is not known.

Practical reconstruction can be done using the velocity or
length form of the dipole operator. Figure 4(a) shows the
result of inverting the data in Fig. 3(b) using the velocity

form in the molecular frame [Eq. (10)], to obtain i;(x,y). As
can be seen, the results compare very well with the original
wave function, Fig. 2(a). This demonstrates that the velocity
form of the dipole could lead to a useful reconstruction
method, as no knowledge of the potential is required. The
results in the laboratory, Fig. 4(b), are not nearly as good, in
this case. Finally, Fig. 4(c) shows the results in the molecular
frame but using the perpendicular polarization of the har-
monics and the results are as good as the parallel polariza-
tion.

Previous work on QT has used the length form of the
dipole operator for reconstruction, and Figs. 4(d)-4(f) show
the same sequence as above, except using the length form of
the dipole. Figure 4(d) [using Eq. (9)] has a double peaked
structure, in addition to the line running down the middle
where x goes to zero. While one might expect results for
parallel polarization in the molecular frame to be the best,
this is not the case for the length operators. Both the labora-
tory frame [Fig. 4(e)] and the perpendicular polarization in
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FIG. 5. (Color online) Excited state o, wave function.

the molecular frame [Fig. 4(f)] give better reconstructions.
While this might be a coincidence, this is often the case. Of
course, the reconstruction will always have an undetermined
line, where, in the latter two cases, the y operator goes to
zZero.

Before leaving the ground state, we note that we per-
formed the same comparisons with larger internuclear sepa-
rations of R=4 and R=8 and the same conclusions hold. This
is consistent with the results of Ref. [2] where the authors
found that even if the reconstructed wave functions were not
perfect, accurate internuclear separations could be deter-
mined.

B. States with o, symmetry

States with o, symmetry are the simplest to reconstruct
through QT, while states with lower symmetry present addi-
tional problems. To investigate this, we next consider the first
excited state of the 2D double-well potential, which has o,
symmetry. The binding energy of this state is significantly
smaller than the ground state. In order to highlight just the
changes that result from the different symmetry, we deepen
the potential well to achieve the same binding energy as the
ground state, above. For this, we need a smoothing param-
eter €=0.0635 a.u.? and obtain the wave function shown in
Fig. 5. Figures 6(a) and 6(b) show the pseudoradon and
proper radon transformations of this wave function, respec-
tively, using the acceleration form. Figures 6(c) and 6(d)
show the proper radon transformations using the velocity and
length forms, respectively, and all graphs show the nodal
lines predicted from Egs. (13) and (16).

For this wave function, the structure of the valleys is quite
different between the two frames and between the different
choices of the dipole operator. The nodal lines in Figs.
6(a)-6(c), starting at about 3.1 a.u. and 6.3 a.u. at 0°, are
predicted quite well by the two-center interference condition.
The nodal lines in Fig. 6(d) are close to the predicted lines,
but clearly shows the length form is not so good. The most
unusual feature in Figs. 6(a) and 6(b) are the additional nodal
lines starting at 1 a.u., which are not predicted from a two-
center interference effect. Also, its shape changes between
the laboratory and molecular frames. Again, this shows that
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FIG. 6. (Color online) Transforms of o, wave function. (a)
Pseudoradon transformation of &, V(x,y; 6)i(x,y;6). (b) Proper ra-
don transformation of J,(0)V(x,y; 6 i(x,y;6). (c) Proper radon
transformation of d,(6) y{(x,y; 6). (d) Proper radon transformation of
x(0)(x,y;0). Nodal lines predicted from Egs. (13) and (16) are
shown.

intuition gained with one form of the dipole operator does
not necessarily translate to the other forms when imperfect
wave functions are considered.

However, an entirely new problem arises: Figures 6(a)
and 6(b) predict that at an angle of 90°, the polarization of
the harmonics will be completely perpendicular to the laser
polarization. Of course, for states of definite parity at 0° or
90°, the harmonics must be polarized along the laser polar-
ization axis, so we need to understand the origin of the dis-
crepancy. Critical to the success of QT is the assumption that
the ionized electron returns as a plane wave, Eq. (3). This
places a term ¢ in the matrix element giving rise to the
harmonic radiation, providing the correct form for a Fourier
transform. If the returning electron is not a plane wave, the
spatial Fourier transform is lost. The problem comes from
the fact that a state with o, symmetry rotated by 90° (or
alternatively a r, state at 0°) will have a nodal plane con-
taining the laser polarization axis. The ionized electron will
then also have a node along this same plane. This is very
much not a plane wave. Indeed, a plane wave traveling along
the laser polarization direction and interacting with the
above-mentioned orbitals will produce harmonics polarized
perpendicular to the laser polarization. The point is that the
true ionized electrons are not plane waves and will, as ex-
pected, produce harmonics parallel to the laser polarization.
Unfortunately, Fig. 6(b), the proper invertible radon transfor-
mation of the state in question, will never be recovered.
Moreover, calculations using the strong-field approximation
[2] will not reproduce this problem, as the electron is still
assumed to be a plane wave.

The full quantum evolution of this state is consistent with
the above analysis. Figures 7(a) and 7(b) show the harmonic
spectrum in the laser and molecular frames, respectively,
while Fig. 7(c) shows the molecular frame spectra trans-
formed into k space using the dispersion relationship in Eq.
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FIG. 7. (Color online) (a) Harmonics as a function of angle in
the laboratory frame starting from a state with ¢, symmetry. (b)
Harmonics in the molecular frame. (¢) Harmonics in the molecular
frame transformed into k space. Nodal lines at 3.1 a.u. and 6.3 a.u.
are from Eq. (16) while the third line comes from the anomalous
nodal line in Fig. 6(b).

(1). Figure 7(c) picks up the nodal line from Fig. 6(b) at
roughly the correct k value of 3 a.u., although the harmonic
spectrum does not reach high enough to track the nodal line
very far. Moreover, the harmonic spectrum in the laboratory
frame goes to zero at 90° in both the quantum calculations
and the radon transformations, as expected. However, as
mentioned above, the laboratory frame is not invertible. Un-
fortunately, even in the molecular frame, there are problems.

PHYSICAL REVIEW A 78, 033423 (2008)

The calculated harmonic spectrum in this frame [Fig. 7(b)]
has several features that are qualitatively different from the
molecular frame radon transformation [Fig. 6(b)]. In the ra-
don transformation, the harmonic spectrum should not go to
zero at 90°. As expected from the symmetry the actual har-
monic generation does go to zero. Thus, this is a clear ex-
ample where the harmonic generation is not an adequate
probe of the wave function. Moreover, in the radon transfor-
mation, there is a second nodal line which carries important
information about the wave function. While the harmonics
change phase across this line, it is at too large an angle where
the actual harmonic spectrum is no longer probing the wave
function. Thus, the information in this nodal line is lost. Nev-
ertheless, it does appear that a nodal line is present. The fact
that there is evidence for the anomalous nodal line from Fig.
6(b) in Fig. 7(c) suggests that this nodal line is real, despite
not being predicted from the two-center interference condi-
tion. It also implies that VV is the more physical dipole
operator.

Finally, we investigate how well o, orbitals can be recon-
structed. Figure 8 shows reconstructed images of the excited
state wave function similar to Fig. 4. On the one hand, for
this symmetry, in the molecular frame, the harmonics polar-
ized parallel to the molecular axis do not lead to a useful
reconstruction [Figs. 8(a) and 8(d)]. This is due to the prob-
lems identified above in the radon transformations in Fig. 6.
On the other hand, the perpendicular polarization works ex-
tremely well for both forms of the dipole [Figs. 8(c) and
8(f)]. Again, this can be understood by looking at the radon
transformations for the perpendicular polarization, shown in
Fig. 9. In this case, the molecular frame transforms all look
quite similar, leading to similar reconstructions. Again, the

5

5

d)

I
_
i

X[a.u.]

X[a.u.]

0 5 -5 0 5
X[a.u.]

FIG. 8. (Color online) Inverse radon transformations of excited state wave function (R=2). (a) Molecular frame data inverted with the
velocity form of the dipole. (b) Laboratory frame data (velocity form). (c) Molecular frame data with perpendicular polarization (velocity
form). (d) Molecular frame data inverted with the length form of the dipole. (¢) Laboratory frame data (length form). (f) Molecular frame

data with perpendicular polarization (length form).
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FIG. 9. (Color online) Transforms of o, wave function for per-
pendicular polarization. (a) Pseudoradon transformation of
d,V(x,y;0)¢(x,y;6). (b) Proper radon transformation of

() V(x,y;0)¢x,y;0). (c) Proper radon transformation of
3,(0)(x,y;6). (d) Proper radon transformation of y(6)¢(x,y;6).
Nodal lines predicted from Eq. (13) are shown. Note that Eq. (16) is
not relevant here for the length form in (d), as the dipole operator is
y not x. Using y in Eq. (12) does not change the relative sign of the
atomic orbitals.

laboratory frame reconstruction with the length form is fairly
good.

C. Reconstructing states with other symmetries

In the preceding section, we have found that different re-
construction techniques on wavefunctions with different
symmetries give very different results. Thus, in this section,
we focus on just the question of reconstruction for some
other orbital symmetries, but without full quantum calcula-
tions. First, we consider states with 7, symmetry [Fig.
10(a)]. Figure 11 shows the various reconstructed wave func-
tions as in Figs. 4 and 8. This particular symmetry is signifi-
cant as it is the first one where the length form never gives a
reasonable reconstruction, while the velocity form does. In
this case, it is the parallel polarization in the molecular frame
which works fairly well. Although the shape of the wave
function is somewhat distorted, the internuclear separation
comes out very well and the 7, character is quite clear.

States with 7, symmetry, not shown, are the most prob-
lematic. Neither the length nor the velocity form give rea-
sonable reconstructions using any of methods described
above. This represents the most serious failure of this aspect
of QT. The length and velocity form of the dipole moment
simply do not capture critical elements of the information
encoded by the acceleration form.

QT has already been criticized in Ref. [2] in terms of
giving quantitative results, but they did find that they could
capture the symmetry of the oxygen ground state, which is
m,. This would appear to be in conflict with our inability to
reconstruct the , orbital. However, it is important to note
that in Ref. [2], they used the length form for both calculat-

PHYSICAL REVIEW A 78, 033423 (2008)
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FIG. 10. (Color online) Wave functions of highly excited states.
(a) m, state (R=8). (b) o, state with hidden structure (R=2). (c) o,
state with side lobes (R=2).

ing the harmonic spectrum [essentially using Eq. (6)] and
reconstructing the wave function. They were addressing the
question of the limited range of £ values probed by the har-
monic spectrum and its effect on reconstruction. We are ask-
ing whether reconstruction is possible, even with a complete
range of k values. In our reconstructed images, if the same
form of the dipole is used for generation and reconstruction,
the results are very good. What we are attempting to do here
is assess the problems induced in using the length and veloc-
ity forms of the dipole for reconstruction, while using the
acceleration form to generate the harmonic spectrum. Under
these conditions, the M, State cannot be reconstructed.
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FIG. 11. (Color online) Inverse radon transformations of excited
state wave function 7, (R=8). (a) Molecular frame data inverted
with the velocity form of the dipole. (b) Laboratory frame data
(velocity form). (c) Molecular frame data with perpendicular polar-
ization (velocity form). (d) Molecular frame data inverted with the
length form of the dipole. (e) Laboratory frame data (length form).
(f) Molecular frame data with perpendicular polarization (length
form).

Finally, we have looked at other types of o, states, as
shown in Figs. 10(b) and 10(c). Generally, the added details
of Fig. 10(b) inset structures, known as phantoms in tomog-
raphy and Fig. 10(c) side lobes are difficult to reconstruct.
Figure 12 shows the results of trying to reconstruct Fig.
10(b). In this case, a small negative piece of the wave func-
tion is surrounded by a large positive donut. As can be seen
in Fig. 12, the central negative piece is hard to recover.

PHYSICAL REVIEW A 78, 033423 (2008)

IV. CONCLUSIONS

Clearly, the harmonic spectrum produced by molecules in
strong laser fields is intimately connected with the spatial
structure of the electronic wave function from which the har-
monics are produced, and, thus, the goal of QT is to extract
the spatial information from the harmonic spectrum. It has
already been shown that this is perhaps asking for too much
[2], even within the context of the strong-field approxima-
tion. In this paper, we have examined our ability to recon-
struct wave functions of various different symmetries. We
considered, for the first time, using the velocity form of the
dipole operator for wave-function reconstruction. We find
that it works as well as the length form in all cases, and, in
fact, can reconstruct states with 7, symmetry that the length
form cannot. Moreover, it is cleaner, as it never generates
indeterminate lines in the reconstruction. We also compared
several different reconstruction geometries and found that
often the harmonics polarized perpendicular to the molecular
axis are better for reconstructing o orbitals, while the har-
monics polarized parallel to the molecular axis are better for
m, orbitals. It turns out that 7, orbitals are very hard to
reconstruct. Moreover, details of excited state g, orbitals are
difficult to recover. Finally, we find that the minima in the
harmonic spectra cannot always be described as a two-center
interference effect. In summary, by using different dipole
operators and reconstruction geometries, we have been able
to extend the range of QT to several different orbital sym-
metries, compared to standard reconstruction techniques, al-
though significant problems still exist for some symmetries.

10 10 10
5 5 5
E)
S0 0 0
>
-5 -5 -5
a) b) c)
-10 10 10
-10 -5 0 5 10-10 -5 0 5 10-10 -5 0 5 10
10 10 10
5 5 5
E)
S0 0 0
>_
-5 -5 -5
d) e) f)
-10 10 10
—-10 -5 0 5 10-10 -5 0 5 10-10 -5 0 5 10
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FIG. 12. (Color online) Inverse radon transformations 17/,»(x, y) of Fig. 10(b). (a) Molecular frame data inverted with the velocity form of
the dipole. (b) Laboratory frame data (velocity form). (c) Molecular frame data with perpendicular polarization (velocity form). (d) Mo-
lecular frame data inverted with the length form of the dipole. (¢) Laboratory frame data (length form). (f) Molecular frame data with

perpendicular polarization (length form).
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