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Recolliding electrons are responsible for many of the interesting phenomena observed in the interaction of
strong laser fields with atoms and molecules. We show that in multielectron targets such as Cg, an important
recollision pathway opens up: the returning electron may excite collective modes even if the laser frequency is
far off-resonant. We formulate a simple analytical theory which predicts that the recollision-induced excitation
of collective modes should dominate over the “usual” harmonic generation yield at 800 nm wavelength. In this
case the tomographic imaging of complex multielectron systems may be obscured. We employ a time-
dependent density functional model of Cqy and show that with increasing laser wavelength the dynamics
becomes more and more single-active-electron-like, suggesting that long wavelengths are to be preferred for

imaging purposes.
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I. INTRODUCTION

A typical interaction scenario in strong field laser atom or
molecule interaction involves three steps: (i) the removal of
an electron from a target (ionization), (ii) motion of this elec-
tron in the continuum, and, possibly, (iii) a recollision with
the “parent” atom or molecule if step (i) occurred at a time
such that the laser field drives the electron back. The recol-
lision in the third step is responsible for the plateaus in pho-
toelectron and high harmonic spectra, and nonsequential
multiple ionization, corresponding to the three pathways (i)
scattering in the presence of a laser field, (ii) recombination
and emission of a photon, and (iii) laser-induced collisional
ionization (see, e.g., [1-3] for reviews).

Structural information about the target is encoded in both
photoelectron and harmonics spectra. Hence, besides the po-
tential of high order harmonic generation (HOHG) as an ef-
ficient source of short wavelength radiation and attosecond
pulses [2], the so-called “tomographic imaging” of molecular
orbitals [4,5] has attracted considerable attention. It is clear
that whatever is “imaged” in this procedure is supposed to be
representation-independent, i.e., should not depend on the
basis in which one expands the multielectron wave function.
This requirement is difficult to fulfill within the simple
and commonly adopted single-active-electron approximation
(SAE) [6].

In this work we study the recollision dynamics and the
emitted radiation for the case of the Cg, fullerene, which is
an example for a multielectron system displaying collective
modes and an interesting dynamics when exposed to fs laser
pulses [7,8] (other such systems are, e.g., metal clusters or
biomolecules). The laser frequency is kept well below the
surface and volume plasmon frequency of Cg, so that only
the recolliding electron may excite the collective modes ef-
ficiently but not the laser itself. In the context of “orbital
imaging” it is vital to know whether the structural informa-
tion encoded in the HOHG spectra is “contaminated” by
emission at collective frequencies. In other words, we are
interested in the relative efficiency of the collective response
with respect to the “standard” harmonic generation.
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The outline of the paper is as follows. In Sec. II the Cg
jellium model we use in the time-dependent density func-
tional theory (TDDFT) calculations is reviewed, and its col-
lective modes are identified. In Sec. Il HOHG spectra are
presented for three different wavelengths, ranging from the
typical 800 nm up to 3508 nm. The transition from the linear
to the nonlinear excitation regime is discussed, enhance-
ments in the dipole spectra due to plasmon excitation are
evidenced, and their origin is investigated. In Sec. IV we
compare the TDDFT results with the predictions of a simple,
SAE Lewenstein-like model of HOHG from Cg,. Section V
is devoted to an analytical model which takes collective
modes into account and enables us to predict the relative
efficiency of harmonic emission due to recollision-induced
plasmon excitation (RIPE) with respect to standard harmonic
generation. Finally we conclude in Sec. VI

II. MODEL

The Cg, fullerene is modelled using density functional
theory (DFT) employing a jellium potential for the ionic
background of inner and outer radius R;, R,, respectively,
[9,10], i.e.,r
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where k=r°, R;=53, R,=8.1, r;°=N/(R}-R}), N=250

s 2 N
Kohn-Sham (KS) electrons, and V,=0.68 (atomic units are
used unless noted otherwise). The solution of the time-

independent KS equation
&l =T+ V+Vy+ Vil )

yields the ground state configuration from which we start the
propagation. Here, |¢};), j=1---N are the N KS orbitals, €; are
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FIG. 1. (Color online) Net KS potential (black, squares), total
density (red, diamonds), wave functions of the lowest KS orbital
and the HOMO (orange, crosses and triangles, respectively). The o
and 7r levels are indicated. Density and wave functions are scaled to
fit into the plot.

the KS orbital energies, T is the single-particle kinetic energy
operator p?/2,

Vi = f D) 3)

r—r’|

is the Hartree potential,

1/3
3”75”} / )

ch(r) == |:

is the exchange-correlation potential in exchange-only local
density approximation (LDA), and

n(r) = 2 [rly)P (5)
J

is the electron density. The N=250 KS electrons lead to a
spin-neutral, closed-shell ground state of spherical symmetry.
More precisely, we obtain 200 o electrons (without node in
the radial wave functions) and 50 7 electrons [with one node
in the radial wave function located close to the Cg, radius
R=(R{+R,)/2=6.7]. The free parameter V,=0.68 is used to
adjust the KS energy of the highest occupied molecular or-
bital (HOMO) to the ionization potential of Cgy —€nomo
=1,=0.28. The HOMO of our model is a  orbital of angu-
lar momentum quantum number ¢=4. Figure 1 illustrates
and summarizes the ground state configuration from which
we start the time-dependent calculations.

Collective modes wyg;e and o,

In order to characterize the collective response of the
model Cg, we apply the real-time method proposed in Ref.
[11]. To that end we solve the time-dependent KS (TDKS)
equation [12]
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FIG. 2. Dipole response of the Cgy model system. Narrow lines
(single-particle transitions) on top of two broad structures (surface
or Mie plasmon wy;e=0.7 and volume plasmon w,=1.4) are ob-
served. The Mie plasmon corresponds to homogeneous dipolelike
oscillations of the electron density with respect to the ions. The
volume plasmon (in general a breathing mode) is visible in our
dipole spectra since it contains a nonvanishing dipole component.
The dipole strength is normalized such that its integral equals N
=250.

i§t|l//j(l‘)> =[T+V+Vi(t) + Vg + Vi J|g(0)) ©6)
with
Vi) =A(@) - p, (7)

where A(t)=Aez®(t) is a vector potential describing a &-like

electric field E(r)=—dA/dr=Ad(7) in dipole approximation.
From the Fourier-transform of the dipole,

d (1) = f dran(r,1), (8)

the spectrum S(w)=|d,(w)|* is calculated. Figure 2 shows
that the linear dipole response consists of several narrow
lines (single-particle transitions) that sit on top of two broad
structures (the surface and volume plasmon, respectively).
Closer inspection shows that transitions of the type of
— (€ *x1), m{ — o(£ * 1) contribute to the surface (or Mie)
plasmon g, and transitions between o states and (initially
unoccupied) § states (with two radial nodes) to the volume
plasmon .

III. RESULTS

In this section we shall present and discuss our results for
dipole spectra S(w) of our model Cq4, when exposed to
Gaussian and trapezoidal laser pulses of various peak inten-
sities and wavelengths.

A. From linear to nonlinear plasmon excitation

We solved the TDKS equation (6) for Gaussian pulses
with a vector potential of the form
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FIG. 3. (Color online) Harmonic spectra of the Cgy model for
Gaussian laser pulses with @;=0.057 (A=800 nm, upper panel) and

@,=0.02 (\=2280 nm, lower panel). The values of E are given in
the plots. The linear response profile from Fig. 2 is included (dot-

ted). The field amplitude E=0.04 corresponds to the intensity 5.6
X 10 W/cm?.

A

Alt)=- E sin(wlt)e‘”z(’) 9)
wy
with
a(t):?a[w—]t—l} (10)
ni

There are 0.278n cycles within the full width at half maxi-
mum (FWHM) of the Gaussian pulse (with respect to the
electric field or the vector potential) centered around ¢
=27/ w;)(n/2). We started the simulation from the ground
state at r=0 and stopped at t=(27/ w;)n with n=8.

Figure 3 shows the transition from the linear to the non-

linear regime. At very low field amplitude (E=0.0025 and
0.005 at 2280 and 800 nm, respectively) the dipole spectra
display replicas of the linear response profile on a very low
level, depending on the bandwidth of the applied laser pulse.
Upon doubling the field amplitude (E =0.005 and 0.01 at

2280 and 800 nm, respectively) the signal in the dipole spec-
trum is quadrupled, as expected in the linear regime. The
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FIG. 4. (Color online) Harmonic spectra of the Cqy model for
E=0.05, ®;=0.057 (A\=800 nm), and an eight-cycle trapezoidal la-
ser pulse with two cycles up and down ramps [13]. The full spec-
trum and the one just from the valence KS electron (“HOMO only™)
are shown. The linear dipole response from Fig. 2 is included
(shifted vertically). The vertical arrow indicates the standard cutoff
3.17Up+|eHOMO|.

corresponding values of intensity are 0.9 X 10'> W/cm? and
3.5 10'> W/cm?. However, with further increasing laser in-
tensity, plateaus develop and the high harmonic signal in-
creases rapidly over a wide frequency range. One may argue
that this increase of the harmonic signal is just due to the
standard harmonic generation mechanism while the collec-
tive response is still within the linear regime and thus not
visible at higher laser intensities. The next subsection is
hence devoted to identify plasmon enhancements and their
wavelength dependence.

B. Plasmon enhancements and wavelength dependence

Figure 4 shows the harmonic spectra S(w) as calculated
from the full dipole and the outermost orbital density only
(“HOMO only”) for an eight-cycle, (2,4,2) trapezoidal
800-nm laser pulse, i.e., with two cycles up and down ramps

and four cycles of constant amplitude £=0.05 [13]. The dif-
ference between the two harmonic spectra clearly indicates
that not just the valence electron contributes to the emission.
Enhancements by two orders of magnitude around frequen-
cies at which the system displays collective modes are vis-
ible. The standard cutoff known from atomic HOHG is at

3.17U,+| enomol [With U,=E?/(4w}) the ponderomotive en-
ergy]| and indicated by an arrow. The real cutoff, however, is
extended to higher harmonic frequencies because recombina-
tion into orbitals with higher ionization potentials |e;]
> | enomol takes place. Note that the latter is possible without
violation of the Pauli principle (unless KS electrons are fro-
zen in the respective states). An extension of the standard
harmonic plateau in a multielectron system—presumably of
the same origin—has also been observed in Ref. [14].

In the following we show that with increasing laser wave-
length the emission spectra become more and more SAE-like
in the sense that all collective response is less efficient than
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FIG. 5. (Color online) Emission for w;=0.02 (A=2280 nm) and
E=0.03 (other parameters as in Fig. 4). The results from a full
TDKS calculation (“full”) and a SAE simulation are shown. The
linear dipole response from Fig. 2 is included (shifted vertically).
The vertical arrow indicates the standard cutoff.

the standard harmonic generation by the outermost electron
at the respective frequency. In the SAE calculations we also
start from the DFT ground state but freeze the potentials Vi
and V. for the propagation of the valence KS orbital.

Figure 5 shows that at A=2280 nm there are still substan-
tial differences between the SAE result and the full TDKS
calculation. First, the SAE yield is higher because the ion-
ization step in the three step scenario described above is
more efficient for a frozen potential since there is no polar-
ization which counteracts the laser field. Second, the plas-
mon emission included in the full result obscures the oscil-
latory structure from which structural information (i.e., in
our case the Cgq radius and the width of the spherical jellium
shell) could be obtained. Only in the (extended) cutoff region
full and SAE result agree very well because there are no
collective modes at such high frequencies.

At the even longer wavelength A=3508 nm the full
TDKS result agrees well with the SAE result, as is shown in
Fig. 6. Also the cutoff is at the expected position, indicating
that recombination into states with orbital energies |e|
> |enomol is insignificant. A closer inspection of the indi-
vidual response of all the KS electrons shows that the stan-
dard HOHG generation of the HOMO KS electrons (i.e., the
two spin-degenerate ones with £=4 and m=0) clearly domi-
nates. Hence long wavelengths are advantageous for imaging
schemes which are based on interference structures in the
HOHG spectra predicted by strong field-theoretical treat-
ments [15] in SAE approximation. However, the efficiency
of HOHG also decreases with increasing laser wavelength
[16]. The fact that the efficiency of the collective response
decreases even faster is one of the main results of this work.

C. Identifying the mechanism

In Sec. I A we showed that at low field strengths the
collective response increases linearly with the field strength
(i.e., the signal in the dipole spectra quadratically) while at
higher intensities the standard high harmonic plateau devel-
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FIG. 6. (Color online) Emission for w;=0.013 (A=3508 nm)

and E=0.02. The results from a full time-dependent KS calculation
(“full”) and a SAE simulation are shown. The bold vertical arrow
indicates the standard cutoff, the three thin vertical arrows local
minima in the envelope of the full spectrum.

ops, which is an entirely nonlinear phenomenon. In Sec.
IIT B we showed that plasmon enhancements are present al-
though they decrease relative to the standard high harmonic
plateau with increasing wavelength. This means that there
must be some nonlinear effect at work which is able to gen-
erate a collective response of comparable strength as the
standard high harmonics. The latter are due to returning elec-
trons which recombine. The obvious guess is to attribute the
collective response also to the returning electrons so that the
similar efficiency of harmonic emission via the SAE and via
the collective mechanism can be understood if recombination
with emission of a photon and with excitation of a plasmon
(followed by emission of a photon) are similarly efficient. In
this subsection we support the viewpoint that the recolliding
electrons indeed excite collective modes by analyzing our
numerical results in more detail.

In our TDDFT simulations we use a spherically symmet-
ric imaginary potential W(r)=—iWo(r/Rg;q)'® with Wo=100
and Ry;q the radius of the numerical grid. The imaginary
potential serves as an absorber of probability density ap-
proaching the boundary of the numerical grid [12]. Usually
the grid is chosen big enough so that only the probability
density corresponding to never-returning electrons is ab-
sorbed and thus the imaginary potential does not affect the
relevant dynamics taking place in the interior of the numeri-
cal grid where W(r) is negligible. However, in order to test
whether recolliding electrons are responsible for both the
standard harmonic generation and the plasmon enhance-
ments, we may absorb probability density representing elec-
trons of a certain excursion amplitude Z by moving the
imaginary potential closer to the Cgy. If the plasmon en-
hancements are due to recolliding electrons we then expect
the harmonic signal and the plasmon signal to drop. If, in-
stead, the plasmon enhancements are due to some other yet
unknown nonlinear effect which does not require returning
electrons, then the harmonic signal should drop while the
plasmon signal sustains.

Figure 7 shows dipole spectra for A=2280 nm and E
=0.01 (i.e., the second highest intensity shown in the lower
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FIG. 7. (Color online) The same as in Fig. 3, lower panel, for

E=0.01 but two different grid sizes (indicated in the plot). The
linear response profile from Fig. 2 is included again (dotted).

panel of Fig. 2) for two grid sizes. The excursion amplitude

of a free electron in this case is Z=F/ w;=25. Hence we
expect the R, q=100 grid to comprise all the relevant elec-
tron dynamics whereas on the R,;q=40 grid some electrons
will be already inhibited from returning to the Cg, because
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the corresponding probability density is absorbed. In fact,
Fig. 7 shows that parts of the plateau are removed in the
spectrum for the smaller grid. Only the single particle tran-
sition lines close to w=0.6 are unaffected by the absorbing
boundary, showing that these transitions are not excited by
recolliding electrons but—presumably—by multiphoton
resonances. However, besides these resonant transitions the
whole plateau is suppressed. We thus conclude that the re-
turning electrons are essential for the excitation of the col-
lective modes. This conclusion is further supported by a
time-frequency analysis of the dipole d.(¢). To that end a
spectral window is applied to d.(w). The result is trans-
formed back, which corresponds to the spectral filtering of
certain harmonics for the generation of attosecond pulses in
experiments [2]. The result is shown in Fig. 8. The emission
follows overall nicely the classical “simple man’s theory:”
the classical return times of electrons with return energy &,
(which contribute to the emission of harmonic radiation at a
frequency w=E&+|€gomol) are indicated by white trajecto-
ries in the frequency-time plane. It is seen that the plasmon
emission is correlated with the return of electrons. Whenever
there are recolliding electrons having the right energy to ex-
cite a plasmon, enhanced emission is observed. Due to the
large width of the collective resonances the emission decays
before the next returning electron collides.
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FIG. 8. (Color) Logarithmically scaled contour plot of the time-frequency analyzed dipole emission log,g|d.(t, w)|? for the parameters of
Fig. 5. The white lines indicate the classical solutions of returning electrons (see text). The positions of the Mie surface plasmon and the

volume plasmon are indicated.
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IV. SAE LEWENSTEIN MODEL VS
LONG-WAVELENGTH TDDFT RESULT

We now show that the structure in the HOHG spectrum of
Fig. 6 is indeed similar to what one expects from the strong
field approximation applied to HOHG, i.e., the so-called Le-
wenstein model [17]. Within the Lewenstein model the di-
pole expectation value for an infinite, linearly polarized laser
pulse

E(1)=Ee_cos wt, E(1)=-3dA() (11)

is given by
® 2 32 .
dP()=i f dr(.—”) Wk 7) + A
0 LT

X exp[— iS(t, D) ]E cos[w|(t - 7]
X ulk(t,7)+A(r—7)]+cc., (12)

where 7 is the travel time of the electron between ionization
and recombination,

Iu’z(pz) = <pz|Z|\P0>» (13)
k(z,7) is the saddle-point momentum
. COS Wyt — cos wy(t— 7)

k(t’T)=_E 2 > (14)
w7

and S(z,7) is the saddle-point action
2U,(1 = cos wy7)

_ £Up\U T EOS D)
S(#,7) = (U, — €gomo) T~ 2
O[T
~ U,C(7)cos[ (2t — T)w|] (15)
|
with
. 4
C(7) =sin w;7— — sin“(w;7/2). (16)
w7

For a derivation of Eq. (12) the reader is referred to the
original work in Ref. [17].

The target-dependence of the HOHG spectra enters in Eq.
(12) via the initial state W, through the ionization and recom-
bination matrix elements wu[k(z,7)+A(r—7)] and ,uj[k(t,r)
+A(1)], respectively [18]. We assume an initial state of the
form W (r)=Dy(r)Y (6, )/ r with Y,,(6, ¢) a spherical har-
monic and model the valence 7 orbital using a radial wave
function ®y(r)/r=(2A)""? for R-A<r<R, —(2A)~"? for
R<r<R+A, and zero otherwise. Here, A is half the thick-
ness of the Cg shell, i.e., A=(R,—R;)/2=1.4. Assuming fur-
ther |[p,A|<1 and, e.g., =0 we obtain

wp.) ~ I%(sin p.R—p.Rcosp.R+ p?R2 sinp.R) (17)
Z

and a similar but more lengthy expression for £=4. One

clearly sees that structural information (i.e., the Cg radius R)

is “encoded” in w.(p.). If the approximation |p,A|<1 is not

made, also information about the shell thickness 2A is in-

cluded in the matrix element wu.(p.).
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FIG. 9. (Color online) Harmonic spectra S(w), calculated from
Eq. (12) for €=4, £=0, and €£=4 but twice the radius R. The laser
parameters are the same as in Fig. 6 [0,=0.013 (A=3508 nm) and
E:0.0Z]. R=6.7 and A=1.4 was used. The three thin vertical ar-
rows indicate local minima in the envelope of the spectrum for €
=4,

Figure 9 shows the harmonic spectra obtained from the
Fourier transform dgL)(w) of Eq. (12) for £=4 and €=0 and
the laser parameters of Fig. 6. The positions of the minima in
the envelope of the HOHG spectra depend on the initial ¢
quantum number and the Cg, radius R. In order to illustrate
this dependency the spectra for €=0, €=4, and € =4 but with
the radius doubled are shown. The minima indicated in the
€=4 spectrum by vertical arrows may be compared with
those of the time-dependent DFT result in Fig. 6. The latter
are at @=0.5, 0.95, and 1.7. The arrows in Fig. 9 are at w
=(.52, 1.05, and 1.9, which is in reasonable agreement.
Note that the agreement would be worse if one attempted to
compare with the €=0 spectrum, let alone with the spectrum
for £=4 and doubled radius, which is qualitatively different
since there is at least one more pronounced minimum in the
envelope.

V. ANALYTICAL MODEL FOR HARMONIC GENERATION
INCLUDING RECOLLISION-INDUCED
COLLECTIVE EXCITATIONS

For systems with a single active electron, harmonic spec-
tra are usually analyzed using the strong field approximation
(or Lewenstein model) [17,19], as we did in the previous
section. Emission into a mode with frequency w and polar-
ization e,, A=1,2, by a system with only a single active
electron can also be described by the amplitude

Mgspg(w,\)
o0 13
=—Jd3pf dl<q’0»1w,x|V:ad|0w,>uP>f dr'(p|V|¥).
(18)
Here, |W,) is the single-electron ground state, |p) is the

Volkov state of drift momentum p, |n,,,) is the Fock state of
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the harmonic radiation field with n photons in the respective

mode (n=0,1 in our case), and \A/;Lad and V are the interaction

operators coupling to the radiation and the laser field, respec-

tively,
A 27w .
Via=—1 \/ v r-exﬁl’)\e""’, (19)

V=E(t)z, (20)

with a' the photon creation operator and V the quantization
volume. The amplitude (18) describes an electron which is
lifted from the ground state to a Volkov state by the laser
field at time 7’ and emits a harmonic photon upon recombi-
nation at time 7>¢'. The harmonic spectrum is given by the
square modulus of Eq. (18) and appears to be virtually iden-
tical to the spectrum found from the dipole (12) [19]. In the
dipole approximation we use here the wave vector K of the
emitted photon does not appear in the amplitude (18).

Now we introduce a similar amplitude which accounts for
the collective modes: in addition to the pathway described by
Eq. (18) the recombining electron may excite collective
modes which then relax upon emission of a harmonic pho-
ton. The amplitude for such a process reads

Mcon(w,)\)=22f dt<0js1w,)\|‘>:ad|0w,)\’Lj>fd3p
j L J=

t . 1! .
xf dt’(‘PO,Lj|U|Oj,p>f ar"{p|V|W).

1)

Here, [0;) and |L;) are the ground and the Lth excited state of
a collective mode, labelled by j (e.g., surface or volume os-
cillations). The interaction energy between the electron and

the residual electron cloud is described by the operator U.
The amplitude (21) is a straightforward generalization of the
Lewenstein model to the case when collective modes can be
involved in the emission process.

To evaluate the collective amplitude (21) a certain model
for the description of the collective modes and their interac-

tion U with the active electron is required. In order to esti-
mate the relative contribution of the SAE and the collective
pathways to the radiation spectrum we use a simple model
which takes collective degrees of freedom into account as
two noninteracting harmonic oscillators with eigenfrequen-
cies wy;e=0.7 and w,=1.4 (i.e., the surface and the volume
plasmon in the C4, model above). The respective widths of
the plasmons are taken as I'yjie(;)=0.2. The main physical
mechanism which generates these widths is a coupling be-
tween collective and single-electron degrees of freedom.
This can also be interpreted as collisionless or Landau damp-
ing of collective modes in a finite system [20,21]. To obtain

an explicit form for the interaction operator U we employ a
rigid sphere model (RSM) in which the electron cloud is
treated as an incompressible homogeneous sphere which
may oscillate around its equilibrium position. Note that on
the level of modeling in this section it does not matter
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whether we consider a homogeneous sphere or a spherical
shell. Within the RSM the interaction operator has the form

3 (r-X)?
w-n)2 e Y=k
U(r,X)zT R (22)
X’ Ir—X| >R,

where N=240 is the number of electrons, r is the active
electron’s position, and X is the center-of-mass displacement
of the electron cloud. Because of the relatively high energies
of the plasmons only the first excited collective states are
relevant in the sum over L in Eq. (21). For a first excited
state X = l/v"(N—l)wMie(p)<R so that with high accuracy
(e.g., taking N=240 and wy;.=0.7 one estimates X=0.08)
one may simplify Eq. (22) keeping only the linear term with
respect to the center-of-mass displacement X:

1, r<R,

23
RYF, r>R. (23)

Ur,X) = Uy(r) + I%r . X{

Next, we assume that the electron excursion amplitude in the

laser field 2=I§"/w12 is less than or comparable to the cluster
size R. Then, with reasonable accuracy, we may use

N-1
Ur,X) = 'S r-X (24)

instead of Eq. (23). Within this approximation an explicit
relation between the amplitudes (21) and (18) can be de-
rived. To this end we first evaluate the emission matrix ele-
ment in Eq. (18),

. - 27w .
<\P0’ 1w,)\|V:ad|0w,)up> =-1 T<\P0|r : e}\lp>elwt'

A similar procedure for the emission matrix element in Eq.
(21) yields

(25)

<0Mie(p)’ 1 w,)\| V:ad|ow,)\’ 1Mie(p)>

[7(N-1)w .
=—i Qez . e}\g’(“’_“’Mie(p))t_FMie(p)t/z. (26)
Vouie(p)

Here we used the fact that for the harmonic oscillator
(0lz]1)=1/2MQ with M=N-1 and Q=wy;e(p) in our case.
Also we take into account that the oscillator is excited along
the polarization direction given by the unit vector e,.

Rearranging the time integrations, the amplitude (21) can
be also written as

Mcoll(w’)\) = E E

d3l7f dt' (Y o, Lytie(p)| UlOmtie(p)P)
j Mie,p —%

X j dt<OMie(p)’ 1w,)\| Wad|0w,k’ lMie(p)>
t’

X f "l 27)

—00
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Now the inner integral over ¢ can be evaluated explicitly
using Eq. (26). The result reads

f dt<0Mie(p)’ 1w,k|Wad|0w,A’ 1Mie(p)>
tl
e. - e)\ei(w_wMiC(P))t

o ja(N-1)w '
=—i - . (28)
VwMie(p) I‘Mie(p)/z - l(w - wMie(p))

Finally, using the standard expression for the coordinate ma-
trix element of the harmonic oscillator {0|z|1)=1/v2M ) and
Eq. (24) one obtains for the first matrix element in Eq. (27)

~ 1 N-1 .
W, It Ul0ntiatonP) = — A | (W |z|p)eiMicto)
(W, Lntie(p)| UlOwmie(p)-P) ' 2wMie(p)< olzlpye

(29)

Collecting Egs. (25)—(29), we may express the amplitude
(21) via Eq. (18) as

N-1 o
Mcoll =i 3 .Mle
2R | Dyie/2 — i(0 — opie)

-1

- "
T2 i) | A (30)
Equation (30) shows that collective modes may lead to
enhancements in the HOHG spectrum around the respective
plasmon frequencies. For the plasmon enhancements to be
detectable |My|*> > [Mgug|? should hold. For the ratio of col-
lective to SAE HOHG efficiency we obtain
2
I

|M coll|2 ~ |: N-1
|MSAE(w = wMie(p))|2 R3wMie(p)FMie(p)
For N=240, R=6.7, I'\;c=1",=0.2 the ratio (31) is above 10
for the surface and about unity for the volume plasmon.
The ratio (31) does not depend on the laser parameters
anymore whereas in our TDDFT results we observe a
wavelength-dependent relative efficiency of the plasmon en-
hancements. With increasing laser intensity or wavelength
the electron’s excursion amplitude is increasing and the ap-
proximation (24) for the interaction between the active elec-
tron and the electron cloud becomes invalid. Without the
assumption of small excursion amplitudes (as compared to
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the cluster radius) a simple relationship of the type (30) can-
not be established. Qualitatively it is quite obvious, however,
that with increasing excursion amplitude distances r=R [for
which Eq. (23) is sizeable] contribute less and less to the
spatial matrix element (29). As a consequence the standard

single-electron HOHG spectrum dominates for E/ wlz>R. In

fact, E/ w12= 15.4, 75.0, and 118.3 in Figs. 46, respectively,
supporting our statement.

The results (30) and (31) were derived making several
approximations besides the one of small excursion ampli-
tudes. For example, the surface and the volume plasmons
were treated as independent. This makes sense if they are
well separated from each other, ie., |wye—®p|> (Tyge
+I7,)/2, which is actually not fulfilled in the case of Cq.
Another simplification was that we applied the RSM for the
description of the electron cloud. Within this model the vol-
ume plasmon simply does not exist. In a more realistic de-
scription one should use two different interaction potentials
instead of Eq. (22) alone, which will lead to two different
coefficients in Eq. (31).

VI. CONCLUSIONS

In conclusion, we predict a recollision effect in the inter-
action of strong laser fields with multielectron systems. Be-
sides the usual high-order harmonic generation the recollid-
ing electron may excite collective modes instead of emitting
its energy directly as a harmonic photon. Via the recollision
mechanism collective modes can be excited even if the inci-
dent laser is far off-resonant with the plasmon frequencies.
Using time-dependent density functional theory we have
studied the wavelength dependence of the process in the case
of Cgo. With increasing laser wavelength the dynamics be-
comes more and more single-active-electron—like. Experi-
ments employing imaging techniques based on recolliding
electrons are hence more likely to reveal clean structural in-
formation if sufficiently long wavelengths are used.
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