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In the preceding paper we have shown, based on the high-intensity, high-frequency Floquet theory
�HIHFFT�, that atomic quasistationary stabilization �QS� and dichotomy are not necessarily high-frequency
phenomena as widely believed, but can occur also at photon energies small with respect to the unperturbed
ground state binding energy, provided that the field is strong enough. In this paper we approach the issue from
the point of view of accurate numerical Floquet computations. We have made a comprehensive determination
of the Floquet quasienergies for a one-dimensional �1D� atomic model with a soft-core Coulomb potential
�ground state energy W0=−0.500 a.u.� in a laser field of constant amplitude E0 and frequency �. The excursion
parameter �0=E0 /�2 was varied over the range 0��0�100, at two low frequencies �=0.12 and 0.24 a.u.
��� �W0��; the lowest-lying 18 states were computed. We present graphs for the �0 dependence of the energies
of the states in the field, W��0�=Re E �“Floquet maps”�, and their ionization rates ���0�. An intricate behavior
of W��0� was revealed at low �0, with many crossings, avoided crossings �ACs�, and Floquet states material-
izing or disappearing at multiples of � energy thresholds. At large �0, however, the uneventful pattern encoun-
tered at high frequencies is regained, in which the levels tend monotonically to zero modulo � �i.e., the binding
energies of all states vanish�. Also ���0� varies substantially at low �0, attaining sometimes large values, but
at large �0 it decreases to zero in an oscillatory manner �QS�. The form of the components of the Floquet wave
function was also followed from low to large �0, and abrupt changes were found in most cases at ACs. The
Floquet results were then compared to a computation of the HIHFFT formulas for the quasienergies and good
agreement was found �to within the expected accuracy of HIHFFT�. This confirms that HIHFFT is fully
capable of describing the low-frequency regime at large enough �0, and in particular the existence of QS and
dichotomy.

DOI: 10.1103/PhysRevA.78.033405 PACS number�s�: 32.80.Rm, 42.50.Hz

I. INTRODUCTION

It has been widely assumed that atomic dichotomy and
stabilization in intense laser fields are high-frequency phe-
nomena, occurring at frequencies � of the order of the un-
perturbed binding energy of the ground state, or higher �for a
review, see �1��. Practically all calculations done either for
quasistationary stabilization �QS� via the Floquet approach,
or for dynamic stabilization �DS�, via the time-dependent
Schrödinger equation approach, pertain to this case. The idea
may have originated in the fact that QS was derived using
the high-frequency Floquet theory �HFFT� �see �2,3��. How-
ever, in the preceding paper ��4�, referred to as I� we have
shown that this was not the case, as QS and dichotomy can
occur also at arbitrarily low frequencies, provided that the
field strength E0 is sufficiently high. This was done by show-
ing that the iteration procedure of HFFT for the quasiener-
gies and wave functions converges also in the latter regime.
Thus, a more adequate designation of the theory should be
high-intensity, high-frequency Floquet theory �HIHFFT�. In I
we have illustrated the general three-dimensional �3D� re-
sults with the case of a 1D soft-core Coulomb potential
model, for which explicit analytic formulas could be ob-
tained from the general HIHFFT results.

In this paper, we approach the problem of the low-
frequency regime ��� �W0��unperturbed ground state bind-

ing energy� from the numerical Floquet point of view. We
have computed accurately the quasienergies and eigenfunc-
tions of the Floquet system of differential equations for the
aforementioned 1D model at the low frequencies �=0.12
and 0.24 a.u. ��W0�=0.500 a.u.�, over an extended range of
field values E0, and for many �18� low-lying states. In terms
of the classical excursion parameter �0=E0�−2 a.u. we are
using, the range covered was 0��0�100. This comprehen-
sive overview allowed us to establish a correlation between
the low- and large-�0 behavior �5�. The results for the �0
dependence of W�ReE are presented in graphs that we have
termed Floquet maps. More recently, such maps have been
obtained in �6� for the 3D case of Ar modeled by a radial
potential ��0�13.8�.

The paper is organized as follows. The numerical methods
used are described in Sec. II. The relevant HIHFFT analytic
formulas for the quasienergies and eigenfunctions of the 1D
model derived in I are briefly recalled in Sec. III. These
formulas were obtained from the general HIHFFT results by
making the large-�0 assumption. They provide more trans-
parency concerning the physical interpretation but, on the
other hand, are limited by this assumption. In Sec. IV we
present our Floquet results for the quasienergies E. The Flo-
quet maps obtained for W�Re E reveal a complexity of
level crossings and avoided crossings �ACs� at low �0. These
are shown in Sec. V to be related to changes in the nodal
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structure of the components of the Floquet wave function.
Conclusions and perspectives are presented in Sec. VI. Our
numerical results confirm the predictions of HIHFFT ob-
tained in I.

Some remarks are in place. Our results pertain to indi-
vidual Floquet states. The connection of the mathematical
Floquet states with the physics can be done in two ways.
Under the assumption that one is dealing physically with
long, quasimonochromatic pulses, with adiabatically varying
amplitudes, one can attempt to describe the situation by a
single Floquet state �“single-state Floquet theory”�. Our re-
sults apply directly to this case. In the case of short, super-
intense pulses it is necessary to resort to “multistate Floquet
theory,” which is based on the mathematical possibility of
describing wave packets as superpositions of Floquet states
�see �7–9� and references therein�. In this context, Floquet
maps are an important auxiliary in following the time evolu-
tion of the atom because they can serve to identify its evo-
lution along diabatic paths. These paths consist of succes-
sions of Floquet states contained in the wave packet
decomposition, along which the atom preferentially evolves,
with quantal jumps at ACs �see, for example, �10�, and also
�11,12��. Comprehensive information on Floquet states al-
lows a physical understanding of atomic dynamics in the
field, complementary to that obtained by the direct numerical
integration of the time-dependent Schrödinger equation.

II. 1D MODEL AND COMPUTATIONAL METHODS

In this paper we use the 1D model with soft-core Cou-
lomb potential

V�x� = −
1

�a2 exp�− �x/a�2� + x2
. �1�

At large �x�, this has a Coulomb tail supporting an infinite set
of Rydberg states. The term a2 exp�−�x /a�2� under the square
root “softens” the 1 / �x� singularity at the origin, which is too
strong for a consistent mathematical treatment in the 1D
case. The exponential multiplying a2 was introduced for nu-
merical convenience �see �16��. We have chosen a=1.6 so
that the ground state energy is W0=−0.500 a.u.

Floquet computations endeavor to solve the differential
system of equations

�H − �E + n����n�x� = − �
m

�m�n�

Vn−m��0;x��m�x� , �2�

where �n�x� are the components of the Floquet solution
��x , t�=e−iEt�n�n�x�e−in�t. Here,

H �
1

2
P2 + V0��0;x� , �3�

and Vm��0 ;x� are the Fourier components of the oscillating
potential V�x+�0e cos t�:

Vm��0;x� =
1

2�
	

0

2�

eim�V�x + �0 cos ��d� . �4�

Boundary conditions of the Gamow-Siegert type are imposed
to obtain Floquet ionizing states �see I, Sec. II A�. They can

be expressed in general both for a Columb-type potential as
in Eq. �1� with asymptotic charge Z=1, and for a short-range
potential with asymptotic charge Z=0, as

�n
�P��x� → 
 fn exp�i	n� for x → + 
 ,

�− 1�P+nfn exp�− i	n� for x → − 
 ,
� �5�

where 	n=kn�x�+Zkn
−1 ln 2kn�x�, and kn is obtained from

kn
2 /2��E+n��, with the choice of the square root depending

on if the channel is open or closed, according to

Rekn � 0, Im kn � 0,�Rekn� � Im kn �closed channels� ,

�6�

Rekn � 0, Im kn � 0, Rekn � �Im kn� �open channels� .

�7�

By imposing the boundary conditions Eqs. �6� and �7�, the
problem becomes an eigenvalue problem for the determina-
tion of the complex quasienergy E�W− i�� /2�.

The numerical program used to solve Eq. �2� was de-
scribed for the 1D short-range potential case �Z=0� in �13�,
Sec. III. It proceeds by truncating the system of coupled
equations �2� to a number N, sufficiently large to ensure the
accuracy desired. N linearly independent solutions ��j� �with
N components� are generated by requiring that, at x→ +
,
��j� behaves as f j exp�i	 j� in channel j and vanishes in all
others. A complex trial value Et is chosen for the quasienergy
in the expression of kn, the same for all ��j�. The solutions
��j� are then propagated inward with the Numerov algorithm.
The desired �E is a linear combination of the N solutions
��j�. In order that �E satisfy the boundary condition Eq. �5�
also for x→−
, and thereby become an eigensolution, it
needs to have definite parity P. This is imposed in the vicin-
ity of the origin by extending the integration one step into the
x�0 interval, i.e., to grid point −h, and comparing �E at
grid points 
h. A determinantal compatibility condition ap-
pears for Et, which in general will not be satisfied for the
arbitrarily chosen Et. A fast optimization routine is applied
iteratively to select an improved value for Et, until the con-
dition is satisfied by the correct E. To keep the memory
requirements low, we did not store the solutions ���j�
 during
the computation.

Because of the special nature of the boundary conditions
�open channel Floquet components increase exponentially at
infinity, whereas closed channels decrease exponentially�,
during propagation the N solutions tend to become linearly
dependent, leading to numerical instability. In order to avoid
this, a number of linear transformations are applied to the set
of solutions ���j�
 along the way. For details, see �13�, Sec.
III.

As the ���j�
 were not stored during the computation of E,
in order to determine �E

�P�, the program is run once again
with this E as a trial value. Now the parity condition at the
origin allows the determination of their linear combination,
yielding �E

�P�. As the components of �E
�P� satisfy Eq. �2� with

boundary conditions Eqs. �5�–�7�, it is indeed the quasien-
ergy solution.

The program was extended to the Coulomb-tail potential
case �Z=1� by one of us �14�. Because of the long-range
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FIG. 1. �a� �Color online� Real part of Floquet quasienergies for the even states of the 1D model Eq. �1� at �=0.12 a.u. �full lines�.
Corresponding eigenvalues W��0� of the 1D HIHFFT structure equation �10� �dashed lines�. Floquet states are characterized by the notation
�n ;�� described in Sec. IV C. �In color, LISs are drawn in shades of red and LSSs in black.� �b� Same as �a� except for odd states.
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FIG. 2. �Color online� �a� Same as Fig. 1�a�, except that �=0.24 a.u. �b� Same as for Fig. 1�b�, except that �=0.24 a.u..
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nature of the potential, the asymptotic form Eq. �5� is at-
tained very slowly. The problem was to find an improved
form so as to enter the asymptotic regime at a smaller value
x0. �A similar problem appears in scattering theory, see �15�,
Sec 1.4.4.� To this end, the Fourier coefficients Vn�x�, Eq.
�4�, were expanded in powers of 1 /x, as

Vn�x� =
1

x
�
��n

bn
���0

x
��

�x � �0� , �8�

where bn
� are constants, and one can take n�0 as V−n=Vn;

note that ��n. We then write similar expansions for the N
linearly independent solutions of interest:

��j� � „�n
�j��x�…, �n

�j��x� � �
p=0

1

xp�
q

apq
�j�nei	q,

j = 1, . . . ,N , �9�

with starting conditions apq
�j�n=�p0�nj�qn. The sum over q runs

over all N channels, and allows for asymptotic channel cou-
pling. By inserting the series for Vn�x� and �n

�j��x� in Eq. �2�
and equating the coefficients of equal powers of x−1 on the
left- and right-hand sides, a system of algebraic recurrence
relations is obtained for the apq

�j�n of fixed j. The starting con-
ditions allow the unique determination of apq

�j�n. Equation �9�
then gives the improved form of the asymptotic condition for
each ��j�. However, as in the short-range case, the Floquet
eigenfunction �E

�P� is a linear combination of the ��j� with
unknown coefficients. These are again determined at the ori-
gin by imposing the parity condition.

One needs to make a compromise concerning the point x0
where one applies the asymptotic procedure, so that, on the
one hand, it be sufficiently large for the Coulomb asymptotic
formula Eq. �9� to be accurate enough, and, on the other
hand, it be sufficiently small in order that the exponential
increase imposed by the Gamow-Siegert boundary condi-
tions be minimal �16�. At that point x0, there is an optimal
number of terms to be taken in the 1 /x expansions for best
accuracy, because the expansions are asymptotic.

Proceeding along the lines described a very stable pro-
gram has emerged, even at large values of �0. �The latter
case is more difficult because the size of the atom, and hence
of the grid required, increases with �0; see Sec. III.� Never-
theless, not all light-induced states �LISs� in the Floquet
maps, could be determined in the vicinity of their material-
ization point �0, e.g., the states denoted as �LIS 10;2�, �LIS
12;0� in Fig. 1�a�, �LIS 9;3�, �LIS 11;1� in Fig. 1�b�, �LIS
3;0� in Fig. 2�a�, and �LIS 2;1� in Fig. 2�b�. This is because,
due to an interplay of the parameters, the recurrence relations
used in connection with the asymptotic integration tend to
break down in these cases in the vicinity of the materializa-
tion thresholds. For the same reason, we could not continue
light-suppressed states �LSSs� to their disappearance thresh-
olds, e.g., �3; LSS� and �1�2�; LSS� in Fig. 1�b�.

On the other hand, the program has permitted us to cal-
culate some of the shadow states giving rise to the LISs we
have found. By this we mean that we could follow continu-
ously in �0 below the materialization threshold of a particu-
lar LIS the Floquet solution giving rise to it �see I, Sec. II A�.

We show the results in Fig. 3 for the case of �=0.12 and the
consecutive LISs: �LIS 3;11�, �LIS 5;13�, �LIS 6;6�, �LIS
7;7�, �LIS 8;20�. Only the last three LIS could be extended to
�0=0, where they originate �modulo �� in the unperturbed
states n=1, 6, and 5, respectively. In our computation we
have retained typically N=21 equations �except at large �0,
where we have taken 25�, achieving in general an accuracy
of better than 0.1% for Re E, and better than 1% for � �ex-
cept in the vicinity of the materialization thresholds�.

To compare our accurate numerical Floquet results with
the predictions of HIHFFT obtained in I, we have also car-
ried out a computation of the expressions of the latter for the
potential Eq. �1�. HIHFFT expresses the real part of the
quasienergy to first order as Re E�1��W��0�+�W��0 ,��,
where W��0� is an eigenvalue of the structure equation

�1

2
P2 + V0��0;x��u = W��0�u , �10�

and �W��0 ,�� is given by I Eqs. �19� and �20�. � is obtained
from I Eq. �21�. The numerical computation of these expres-
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FIG. 3. �Color online� LIS at �=0.12 a.u. �full lines� whose
calculation could be extended in shadow form to �0 values below
their materialization point �dotted lines�, some as far as �0=0. For
the latter, the unperturbed states they are connected to have been
indicated.
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sions was done along the lines described in �13�, Sec. III.
This is considerably simpler than the integration of the Flo-
quet differential system.

III. HIHFFT, LARGE-�0 ANALYTIC RESULTS

In I we have applied the general HIHFFT results to the 1D
popular model with the soft-core Coulomb potential:

V�x� = −
1

�a2 + x2
. �11�

The constant a was chosen a=1.414, so that the energy of
the ground state was W0=−0.500.

In the following we summarize the analytic HIHFFT re-
sults obtained for model Eq. �11� in the large-�0, all-� case.
The details of the calculation are contained in I.

�1� The �0 dependence of the eigenvalues of the structure
equation �10� is, to a good approximation, given by

W��0� � ����0��−2W�0�; �12�

see I Eq. �63�. Here, W�0� is a constant of order 1, and ���0�
is given by I Eq. �61�. ���0� increases with �0 slightly more
slowly than �0

1/3, and W��0� decreases with �0 slightly more

slowly than �0
−2/3. The normalized dichotomous eigenfunc-

tions corresponding to W��0� are

uP�x� �
1

�2�
�v�x−/�� + �− 1�Pv�− x+/��� , �13�

where v��� is an eigenfunction of I Eq. �60�.
�2� The dominant form of the first-order energy correction

�E�1�, I Eqs. �96� and �97�, is

�W =
�2

6

�f�0��2

12a2 �v�0��2 1

�0��2

+ �− 1�P+1 �

�0��
�v�0��2 �

m�0

�− 1�m

m
cos 2km�0�V�km��2,

�14�

� =
2�

�0��
�v�0��2 �

m�0

1

m
�1 + �− 1�m+P sin 2km�0��V�km��2.

�15�

Here, V�k� is the Fourier transform of the potential Eq. �1�
above �17�, v�0� is the value of v��� at the origin, f�0�
= 2F1�1 /2,1 /2,1 ;1 /2�, a2 is the constant contained in V�x�,
and km� +�2m�.

�W and � contain sums over m involving cos 2km�0 and
sin 2km�0, respectively . These sums are dephased in �0 by
� /2 for P=0 and by 3� /2 for P=1.

�3� Concerning the Floquet components �n
�1��x�, open

channels correspond to n�0, closed channels to n�0. The x
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axis has been divided into three intervals: interval A lies
inbetween the lobes of the dichotomous atom; interval B
covers the lobes; interval C lies outside the two lobes �for a
more stringent definition of the intervals, see I, Sec. III C�.

On interval A, for open channels ��n
�1��x�� oscillates as

�cos�knx+ �P+n�� /2�� with frequency kn. For closed chan-
nels it behaves as cosh�kn�x �if P+n=even� or �sinh�kn�x� �if
P+n=odd�, and hence increases exponentially when �x�
grows from 0 to �0. All closed channels are dichotomous,
just as for n=0.

On interval B, for open channels,

��n
�1��x��2 �

1

2�kn
2� 4

kn
2 Ṽ0

2�x−�v2�x−/��

+
4

kn
�− 1�P+n�I�− kn��Ṽ0�x−�v�x−/��

�sin�kn�x− + 2�0� −
�

4
� + �I�− kn��2� , �16�

where I�−kn� is given by I Eq. �90�, and Ṽ0�x−� by I Eq. �53�.
When the last term in the square brackets is small with re-
spect to the first one, ��n

�1��x��2 has practically the same nodes
as the dichotomous state uP�x� in the vicinity of the endpoint
+�0 �recall Eq. �13��. The smooth dependence on x of the
first term is then modulated by the second term, with the
same frequency kn that ��n

�1��x�� has on interval A; moreover,

the amplitude of the oscillations is small. Note that Ṽ0�x−�
has no zeros.

For closed channels, on the other hand,

��n
�1��x��2 �

2

��kn�4
Ṽ0

2�x−�v2�x−/�� . �17�

Now ��n
�1��x��2 has precisely the same nodes as uP�x�. As

opposed to the open channel case, there is no modulation.
On interval C, ��n

�1��x�� is constant in x for open channels
�18�, and decays exponentially toward infinity for closed
channels.

The analytical results derived above will help interpret the
numerical Floquet results described in the next sections.
Note that the potential Eq. �11� is slightly different from that
in Eq. �1� used in our numerical Floquet computations. How-
ever, the numerical differences for the quasienergies, besides
being small, are irrelevant for interpretation of the numerical
Floquet theory.

IV. FLOQUET NUMERICAL RESULTS FOR
QUASIENERGIES

Our Floquet calculations have been carried out at low
photon energies �=0.12 and 0.24 ��� �W0��. In the first case
five photons are needed to ionize the system at low intensity,
in the second case, three photons. The results for Re E��0�
are shown as full lines in Figs. 1�a�, 1�b�, 2�a�, and 2�b�; see
also Fig. 9 below. The quasienergies of the states have been
shifted by the multiple of � needed so that their Re E��0� fits
in the first negative energy band, −��Re E�0. A super-
script �q� indicates an upward shift of q�. Due to the Floquet
redundancy mentioned in I, Sec. II A, these shifted quasien-
ergies correspond to actual Floquet states, but with a differ-
ent parity �−1�P+q than the original one �−1�P. The quasien-
ergies have been grouped according to the parity of the
shifted states. The rationale for this grouping is that only
same-parity Floquet states interact giving rise to ACs in the
complex energy plane. Figures 1�a� and 2�a� contain the even
states for �=0.12 and 0.24, respectively, and Figs. 1�b� and
2�b�, the odd states. Only states that are physical within the
energy band are shown. We shall refer to the representation
of Re E as function of �0 in these figures as Floquet maps.
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Also shown in these figures by dashed lines are the com-
puted eigenvalues W��0� of the structure equation �10�.

At low and intermediate �0, Re E��0� has a rather con-
torted behavior due to numerous crossing and ACs. How-
ever, as �0 increases this behavior calms down, and at large
�0, all Floquet Re E��0� settle on the eigenenergies of the
structure equation, as predicted by HIHFFT. This occurs
sooner for the higher frequency �=0.24 than for �=0.12, as
anticipated �19�.

Crossing and ACs occur when Re E��0� for the two states
differ approximately by an integer number of � �are equal
modulo ��. In physical terms, this means that there is a reso-
nance in the multiphoton ionization of the states; for a dis-
cussion of Floquet resonances; see, e.g., �10�. As opposed to
the usual case of real eigenvalues of a Hermitian Hamil-
tonian which obey the von Neumann–Wigner noncrossing
rule, quasienergies are complex and obey a generalized non-
crossing rule: their trajectories in the complex energy plane
cannot intersect at the same value of �0. ACs in the complex
plane can be characterized by a minimum of the distance
between two quasienergies calculated at the same �0,
dij��0���Ei��0�−Ej��0��. In general, at a narrow AC �sharp
minimum of dij� either the Re E��0� can avoid each other,
but then Im E��0� cross, or vice versa, Im E��0� avoid each
other but then Re E��0� cross �there are also exceptions�.
Therefore, one cannot assess the behavior of the system at
ACs on the basis of Floquet maps for Re E only; information

on Im E��0� is needed in order to understand the whole pic-
ture �20�. A detailed discussion of diabatic paths and com-
plex ACs for our model will be given elsewhere �21�.

The overall behavior of the states, from low to large �0, is
reflected by the behavior of Re E��0�, and can be categorized
as follows. �I� Some states are physical at all �0, i.e.,
Re E��0� starts from a field-free energy at �0=0, stays in the
energy band, and goes over into an eigenvalue of the struc-
ture equation at large �0. �II� Other states start by being
physical but at some �0 become LSSs, i.e., Re E��0� starts
from a field-free energy at �0=0, stays in the energy band for
a while, but then hits the lower or upper � threshold, and
disappears as a physical state because Eqs. �6� and �7� cannot
be satisfied for all channels n. �III� Still other states are LISs,
i.e., they start come into existence at some �0�0, and re-
main so beyond it, i.e., Re E��0� starts at the upper or lower
thresholds of the energy band and remains in it. �IV� Finally,
some of the LISs become LSSs at some higher �0, i.e.,
Re E��0� appears in the energy band at some �0�0 but hits
one of the thresholds afterward.

In order to keep track of this behavior, we have intro-
duced a two-label notation �n ;�� for the states. For category
I, the first label n stands for the field-free state in which the
Floquet state originates at �0=0, and the second label �
stands for the state of the structure equation to which it tends
at large �0; such are the states �0�4� ;8�, �2�1� ;17�, �4;4�.
�These and the following examples refer to the �=0.12
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case.� Note that we label the n and � states starting from 0.
For category II, we designate states by �n; LSS�, where n is
the field-free state of origin; examples are �1�2�; LSS� or
�3; LSS�. For category III, we write �LIS p ;��, where p
indicates the order of appearance of the LIS, and � represents
the large-�0 state of the structure equation it tends to; ex-
amples are �LIS 12;0� or �LIS 11;1�. Finally, for category IV,
we write �LIS p; LSS�; examples are �LIS 1; LSS� or �LIS 2;
LSS�.

As predicted by HIHFFT, at large �0, Re E��0� as well as
W��0�, coalesce in even-odd pairs �even-odd degeneracy�,
albeit rather slowly. For example, at �=0.12 the state �LIS
12;0� coalesces with �LIS 11;1�, �LIS 10;2� with �LIS 9;3�,
etc. To illustrate in more detail the situation we show in Fig.
4�a� the coalescence of the states �LIS 3;0� and �LIS 2;1� at
�=0.24, according to exact Floquet theory and HIHFFT.
Note first that the results of the two theories lie right on top
of each other. The structure equation results for W��0� of the
two states are coincident and shown by the dotted line in Fig.
4�a�, which lies close to the actual results. An oscillatory
dependence on �0 is apparent for the Floquet and HIHFFT
results Re E��0�, the two coalescing energies oscillating with
almost � difference of phase. This feature is explained by the

analytic HIHFFT expression for the energy correction �W,
Eq. �14�, in which the oscillating term has opposite sign for
the P=0 and P=1 states. Moreover, although the oscillating
term contains the superposition of an infinity of frequencies
cos 2kn�0, because of the rapid decrease with m of
�V�km��2 /m, only few terms contribute effectively. This gives
the oscillating contribution a nearly harmonic character.

We now turn our attention to ���0�. A typical result at
�=0.24 is shown for the coalescent states �LIS 3;0� and
�LIS 2;1� in Fig. 4�b� for a restricted �0 range , and in Fig. 5
for an extended range. It is apparent from Fig. 5 that at large
�0, ���0� decreases with increasing �0 on the average, which
is per definition QS. The decrease is rather slow and oscilla-
tory. Figure 4�b� contains also the HIHFFT result obtained
for � via I Eq. �21�, which compares rather well with the
Floquet result. Note that the �’s for the two states oscillate
with opposite phases, in agreement with the analytic HIH-
FFT formula Eq. �15�. Moreover, by comparing the exact
Floquet and HIHFFT calculations for �W and � in Figs. 4�a�
and 4�b�, it is apparent that there is a � /2 phase difference
between the oscillations of the latter for both states with P
=0 and 1. Also this feature is borne out by the analytical
results of Eqs. �14� and �15�.

V. FLOQUET NUMERICAL RESULTS FOR WAVE
FUNCTION

We now focus on the properties of the components
��p�x�
 of the Floquet wave function. As noted in I, Sec.
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II A, the �p�x� have parity, consecutive components having
alternating parities. Hence it is sufficient to represent them
for x�0. As the labeling of the components is arbitrary �i.e.,
the label p=0 can be placed at will because of the Floquet
redundancy�, we shall set in all cases the first open channel at
p=1. As �p�x� are complex numbers, we shall represent for
simplicity their modulus. The set ��p�x�
 is defined by the
differential system Eq. �2� only up to a constant factor. We
have normalized it by imposing that the maximum value
attained by the dominant component ��p�x�� be 1. In our
figures we show the five most prominent components.

In Fig. 6 we consider the state �LIS 3;0� for �=0.24 and
�0=15 and 100. At �0=100 it is the ground state of the atom;
see Fig. 2�a�. This agrees with the fact that its dominant
component p=0 coincides with the ground state eigenfunc-
tion of the structure equation �shown as dotted in the figure�,
the other components being small. �0�x� clearly undergoes
dichotomy when �0 passes from 15 to 100, with the wave
function concentrating in the vicinity of the end points 
�0.
However, dichotomy appears in all closed channels �e.g.,
p=−1,−2, in Fig. 6�b��. In the open channels of Fig. 6�b�
�e.g., p=1,2�, ��p�x�� oscillates between the charge lobes
��x���0� like �sin kpx� or �cos kpx�, depending on parity. In
the vicinity of the end points 
�0, ��p�x�� is strongly af-
fected by channel coupling; see below. For �x���0 , ��p�x��
becomes nearly constant. Note that the exponential blow-up
of ��p�x�� imposed by the Floquet boundary conditions Eqs.
�5�–�7� occurs at larger �x� than shown in Fig. 6�b�. All these
features are predicted by the formulas derived analytically
from HIHFFT �see Sec. III point 3�.

We now focus on the true ground state of the system,
labeled �0�2� ;12� in Fig. 2�a�, and on the changes induced in
its Floquet wave function when the intensity ��0� grows
from 0 to large values, such as 600, at �=0.24. �For a better
vizualization of Re E��0� at low �0 we refer to the map Fig.
9.� The components ��p�x�� are shown in Fig. 7 at �0
=0.01,0.4,40, and in Fig. 8 at �0=600. The change is im-
pressive.

At �0=0.01, since we have placed the first open channel
at p=1, the dominant channel is p=−2, and three photons are
needed to ionize. �−2�x� is nodeless and coincides essentially
with the unperturbed ground state eigenfunction of the atom,
the other components being small. At �0=0.4 the dominant
component has moved to p=0 and has ten nodes. Due to the
compression of the Re E spectrum �see Fig. 2�a�� only one
photon is needed now for ionization. For �0�0.4 the domi-
nant component stays at p=0, but by �0=40 it has acquired
12 nodes, which it maintains thereafter. Since the quasien-
ergy settles on the �=12 eigenvalue of the structure equation,
the dominant component �0�x� and the �=12 eigenfunction
should coincide. Indeed, when superposed with the same
normalization, at �0=600 the two functions are indistin-
guishable at the graphical level.

The numerical results show that changes in the Floquet
wave function occur gradually between ACs, and suddenly at
ACs. Let us illustrate this for the case of �0�2� ;12� considered
above. The state is involved in two ACs �see Fig. 9�: one
occurs over the range 0.15��0�0.25, the other one occurs
over the range 4��0�12. The �0 values of these ACs lie
between the values at which the components are shown in

Fig. 7. In both cases it is the Re E��0� that avoid each other.
The AC at 0.15��0�0.25 is narrow and can be de-

scribed in terms of the two-state approximation of the Flo-
quet system Eq. �2�. Similarly to the case of a Hermitian
Hamiltonian, there is a swap of structure between the domi-
nant components of the interacting states. By this we mean
that, if the Floquet states �a� and �b� entering an AC have
dominant components �p�x� and �q�x�, respectively, beyond
the AC they will have dominant components �q�x� and
�p�x�, respectively. Thus, with reference to Figs. 6 and 8, the
state �0�2� ;12� enters the AC with dominant component p=
−2 having zero nodes, as it started at �0=0. Its interaction
partner �10;14� starts out at �0=0 with dominant component
p=0 having ten nodes. Beyond the AC, the dominant com-
ponent of �0�2� ;12� is p=0 and has ten nodes �see Fig. 7�,
while that of �10;14� is at p=−2 and has zero nodes �not
shown�. A similar swapping holds for the other states shown
in Fig. 9 �with the exception of �8;10��, at a slightly different
�0.

The second AC for �0�2� ;12�, occurring over the range 4
��0�12, is part of a multistate AC that is not amenable to
a sum of binary interactions. Indeed, all states shown in Fig.
9 �as well as higher ones, not shown� participate in this AC,
in the following way: the nodal structure of the dominant
component is transferred only from the higher state to the
lower state it interacts with, and not vice versa. Thus, the
structure of the dominant component of �0�2� ;12�, which
when entering the AC is characterized by p=0 and 10 nodes
�see Fig. 7�, is transmitted to �8,10�, not shown. The structure
of the dominant component of the next higher state �10;14�,
characterized at the time it enters the AC by p= 0 and 12
nodes, is transmitted to the dominant component of
�0�2� ;12�, characterized by p=0 and 12 nodes �see Fig. 7�,
etc. Thereafter, for growing �0, the dominant component of
�0�2� ;12� gradually settles on the eigenfunction �=12 of the
structure equation, while the other components vanish. A de-
tailed analysis of the situation will be presented elsewhere
�21�.

Finally, let us point out a noteworthy feature in the struc-
ture of the components �p�x� at large �0. We illustrate the
situation again by the behavior of �0�2� ;12� shown in Fig. 8.
On the x intervals lying outside or between the charge lobes,
the situation is similar to that in Fig. 6 and we shall not recall
it. Of present interest is the interval covering the charge
lobes �called interval B in Sec. III at point 3�. At �0=600 the
structure of the dominant component �0�x� has settled on the
�=12 eigenfunction of the structure equation. Note how the
nodes of the dominant component �0�x� are replicated in all
closed and open channels. For better vizualization we have
drawn in Fig. 8 vertical dashed lines passing through the
nodes. Whereas the nodes for closed channels are replicated
to within the graphical accuracy of the vertical lines, for
open channels �e.g., p=1� there are, strictly speaking, no
nodes, but rather deep minima. In addition, for open chan-
nels, the components are modulated with the frequency ex-
isting on interval A, between the lobes. Also these features
are predicted by the analytic formulas of Sec. III point 3 �see
Eqs. �16� and �17��. Thus, the dichotomous strucure of the
dominant component is present in all closed channels and
affects also the open channels.
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VI. CONCLUSIONS

We have made a comprehensive computation of the
quasienergies of a dynamical system, from low to large
�0 �0��0�100�, for the first 18 low-lying states, at the low
frequencies �=0.12 and 0.24 �smaller than the unperturbed
binding energy �W0�=0.500�. We have presented graphs for
the �0 dependence of the energies of the states in the field
W��0�=Re E �Floquet maps� and their ionization rates
���0�. An intricate behavior of W��0� at low �0 was re-
vealed, with many crossings, avoided crossings, and Floquet
states materializing or disappearing at � energy thresholds.
At large �0, however, the uneventful pattern encountered at
high frequencies is regained, in which the levels tend mono-
tonically to zero modulo � �i.e., the binding energies of all
states vanish�. Changes in the components of the Floquet
wave function were followed from low to large �0. They
were related to the ACs of the quasienergies.

We have also compared the accurate Floquet results to
HIHFFT. To this end, we have first computed the general
expressions of HIHFFT for the 1D model. We found quite
good agreement, within the expected errors, confirming that
HIHFFT is fully capable of describing the low-frequency
regime. Moreover, the analytic formulas derived from HIH-
FFT for the large-�0 limit, presented in Sec. III, give a trans-
parent interpretation of the numerical Floquet results. In par-

ticular, we have confirmed the fact that QS and dichotomy
can occur at any �, provided that the field strength E0 �or �0�
is sufficiently high.

The single-state Floquet theory results obtained, and in
particular the maps, offer the possibility of visualizing the
evolution of the atom under the influence of laser pulses, for
which the field amplitude rises from zero to a peak value and
returns to zero, i.e., we are dealing with a time-dependent
�0�t�. Indeed, multistate Floquet theory expresses any wave
packet as a superposition of individual states. As, in many
instances, at some time only one of these states is preferen-
tially populated, the evolution of the wave packet can be
visualized by a point on the corresponding W��0� curve of
the map. The trajectories of high probability inferred from
the map, the diabatic paths, are instrumental in predicting the
evolution of the atom and, alternatively, in steering it in de-
sired directions using adequate pulses. This kind of analysis
will be developed elsewhere �21�.
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