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The Floquet problem for the interaction of an atom with a monochromatic laser field of frequency � was
studied long ago for the case of high � and arbitrary intensity using the ‘‘high-frequency Floquet theory’’
�HFFT�. The two parameters of the theory are the frequency � and the classical excursion parameter �0

�E0�−2, where E0 is the electric field strength. HFFT solves the Floquet system by successive iterations.
Convergence of the iteration procedure was shown to be ensured by the condition that � be suffiently large
with respect to some typical atomic excitation energy. We now establish that the same iteration procedure is
capable of handling the case of low frequency at sufficiently high intensity. This leads to the conclusion that in
this case the ionization rates display quasistationary stabilization also at low �. The concept is thus not
exclusively related to high frequencies, as widely assumed. In addition, it suggests that a more appropriate
designation for the theory should be ‘‘high-intensity, high-frequency Floquet theory’’ �HIHFFT�. Our general
results are applied to a frequently used one-dimensional �1D� soft-core potential model, for which explicit
analytic results can be obtained for the quasienergies and wave functions from the general HIHFFT formulas.
The relevance of these quasistationary results for the case of laser pulses is pointed out.
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I. INTRODUCTION

Atomic stabilization is a well-documented phenomenon
�1�, occurring both for short laser pulses �“dynamic stabili-
zation” �DS�� and for long, quasimonochromatic pulses
�“quasistationary stabilization” �QS� �2��. In the first case it
is displayed by the decrease with intensity of the ionization
probabilities at the end of the pulse, calculated with the time-
dependent Schrödinger equation �TDSE�, in the other, by the
decrease of the decay rates with increasing intensity, calcu-
lated with the Floquet formalism. Much of the work was
carried out using the space-translated version of the
Schrödinger equation. Its Floquet version, used in the fol-
lowing, has as basic parameters the frequency � and the
excursion of the classical motion, �0=E0�−2, instead of the
frequency � and electric field strength E0 used in the labo-
ratory frame. Within this approach, a formal iteration proce-
dure was developed to handle the high-frequency case �3�.
To lowest order, the approach extracts a “structure equation”
from the differential Floquet system, which describes a
stable, nonionizing atom, and imposes dichotomy on its
eigenfunctions. The following iteration yields decay rates
and level shifts. The procedure was shown qualitatively to
converge at high frequency �high with respect to some aver-
age atomic excitation energy� and arbitrary intensity. The
formalism was termed “high-frequency Floquet theory”
�HFFT� �4�. The rates calculated are decreasing functions at
large �0 �sometimes in an oscillatory manner�, which is per
definition QS �1�. This has tacitly accredited the idea that
stabilization is an essentially high-frequency phenomenon,
and all studies made pertain to this case.

However, it was realized long ago that HFFT was capable
of treating also cases of low frequency and high intensity,

although no proofs were given �5,6�. In the following, we
undertake a systematic study of this possibility, including the
issue of stabilization. We show formally that the iteration
procedure of HFFT converges indeed at low frequency � if
the intensity �or �0� is sufficiently high. This leads to the
existence of QS for the ionization rates, thus showing that
QS is not exclusively a high-frequency phenomenon. It also
suggests that the proper designation of the formalism should
be ‘‘high-intensity, high-frequency Floquet theory’’ �HIH-
FFT�, rather than simply HFFT.

Our results are presented as follows. Section II is devoted
to our Floquet results in three dimensions �3D�. In Sec. II A
we recall those aspects of Floquet theory needed to apply the
iteration procedure of HIHFFT. In Sec. II B we develop the
formal iteration procedure. In Sec. II C we analyze the con-
vergence of the theory and show that the criterion needed at
high � and arbitrary intensity �or �0� actually covers also the
case of large intensity ��0� and low �. In order to gain more
physical insight, we apply HIHFFT to a popular 1D model
with soft-core potential for which the theory can be worked
out analytically to a great extent; see Sec. III. The eigenval-
ues and eigenfunctions of the structure equation are derived
in Sec. III A, the first-order correction to the quasienergy is
obtained in Sec. III B, and the expression of the Floquet
components in Sec. III C. Conclusions are drawn in Sec. IV.

We emphasize that our results are based entirely on the
nonrelativistic Schrödinger equation, with no allowance for
relativistic corrections, which become important at high in-
tensities. Our large-�0 limits are to be understood in the
mathematical sense, within nonrelativistic theory.

II. LARGE-�0 HIHFFT IN 3D

Our starting point is the space-translated Schrödinger
equation for a one-electron atom in a laser field A�t�:
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�1

2
P2 + V�r + ��t���� = i

��

�t
, �1�

where

��t� �
1

c
�

0

t

A�t��dt�. �2�

We shall be using atomic units �a.u.� throughout the paper.

A. Floquet theory background

For simplicity, we shall consider in the following the case
of a linearly polarized field:

E�t� = E0e cos �t, ��t� = �0e cos �t , �3�

where e is the polarization vector, and �0 is the excursion
parameter defined above.

We write Floquet solutions as

��r,t� = e−iEt	
n

�n�r�e−in�t. �4�

The Floquet components 
�n�r�� need to satisfy the system
of coupled differential equations

�H − �E + n����n�r� = − 	
m

�m�n�

Vn−m��0;r��m�r� , �5�

H �
1

2
P2 + V0��0;r� , �6�

where Vn��0 ;r� are the Fourier components of V�r+��t��:

Vn��0;r� =
1

2�
�

0

2�

ein�V�r + �0e cos ��d� . �7�

Since V�r� is real and assumed to be even, we have

Vn�− r� = �− 1�nVn�r�, V−n�r� = Vn�r� . �8�

Note that, for linear polarization, Eq. �3�, Vn�r� is real. The
conditions Eq. �8� lead to the possibility of finding solutions
with generalized parity P=0 �even� or 1 �odd�, such that
�n�−r�= �−1�P+n�n�r� for all n.

If the column 
�n� represents a solution of the Floquet
system Eq. �5� for quasienergy E and parity P, it is easy to
check that the column 
�n

�q��, where �n
�q�=�n+q, E�q�=E+q�,

P�q�= P+q, and q is an integer, represents a solution for
quasienergy E�q� and parity P�q�. Although the two solutions
are mathematically distinct, they are physically equivalent,
as they lead to the same Floquet solution Eq. �4� of the
TDSE �“Floquet redundancy”�. It is desirable to select a defi-
nite representative for each set, if possible. As, at vanishing
intensity, the Floquet system reduces to the field-free
Schrödinger equation, we shall select as representative that
solution for which at �0→0, Re E coincides with the unper-
turbed atomic energy �the ‘‘natural normalization conven-
tion’’.

Boundary conditions need to be imposed on the compo-
nents �channel functions� �n in order to ensure the unique-

ness of the solution 
�n�. These are expressed in terms of the
channel momenta kn, defined by kn

2 /2��E+n��. To study
bound states and ionization, the boundary conditions are cho-
sen of the Gamow-Siegert type. Two classes of solutions
emerge. The first one is that of physical solutions, which
have outgoing asymptotic waves in all open channels n �for
which Re kn

2�0� and have asymptotic decay in all closed
channels n �for which Re kn

2	0�. This leads to

Re kn 	 0, Im kn � 0, �Re kn� 	 Im kn �closed channels� ,

�9�

Re kn � 0, Im kn 	 0, Re kn � �Im kn� �open channels� .

�10�

Equation �9� forces a closed channel function �n�r� to decay
exponentially at infinity, whereas Eq. �10� forces an open
channel function �n�r� to blow up exponentially. The second
class is that of nonphysical solutions �also called “shad-
ows”�, which do not satisfy all of these conditions. Imposing
the boundary conditions Eqs. �9� and �10� leads to an eigen-
value problem: the “quasienergy” E in Eq. �5� needs to be a
well-defined complex number E�W− �i /2�
, in order that

�n� satisfy Eq. �5�. From Eq. �9� it follows that 
�0.

Individual Floquet states can be used for the description
of atomic behavior in long, quasimonochromatic pulses, un-
der certain limitations �the ‘‘single-state Floquet theory’’�. W
can be interpreted as the mean energy of the atom in the field
�binding energy �W��, and 
 as the total ionization rate, with
the condition that 
 be sufficiently small, in essence 
 / �W�
�1. Since the neutral atom in the field is a resonant decaying
state, 
 is at the same time the width associated with W.
Only physical solutions can be used in single-state Floquet
theory, because only these give rise to the correct outgoing
currents in the open channels.

When followed continuously in �0, and all channel
boundary conditions are kept the same, Floquet solutions
may change their character, from physical to nonphysical, or
vice versa. For example, assuming the natural normalization
convention mentioned above, W��0��Re E��0� for a physi-
cal state starts at �0=0 from the unperturbed eigenvalue
W0	0 located between two consecutive � thresholds
−�p−1�� and −p�, where p is a positive integer, i.e.,
−�p−1��	W0	−p�. As �0 grows it may happen that
W��0� hits either the upper or lower energy threshold. At that
point, either Re kp−1

2 /2�W��0�+ �p−1��=0 or Re kp
2 /2

�W��0�+ p�=0, which means that either channel p−1,
which was closed to ionization before, now opens �channel
opening�, or channel p, which was open to ionization before,
now closes �channel closure�. By keeping across the thresh-
old a closed channel boundary condition for channel p−1, or
alternatively an open channel boundary condition for channel
p, the solution becomes nonphysical. In both cases we are
dealing with a state suppressed by the variation of the inten-
sity, a ‘‘light-suppressed state’’ �LSS�.

On the other hand, there are nonphysical solutions starting
from W0 at �0=0, for which W��0� may cross one of the
adjacent thresholds −�p−1�� or −p�, and thereafter satisfy
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all of Eqs. �9� and �10�, thereby becoming physical. If this
happens the atom acquires a new state, called a ‘‘light-
induced state’’ �LIS�.

B. High-intensity, high-frequency Floquet theory

We now review the iteration procedure which is the basis
of our approach to Floquet theory ��3�; for details, see Sec.
IV B of �4��. We write the system of equations Eq. �5� in an
alternative way, by singling out the n=0 case,

�H − E��0 = − 	
m

�m�0�

V−m�m. �11�

The equations for n�0 we rewrite in integral form using the
Green’s operator associated with the Hamiltonian H:

G�E� �
1

E − H
. �12�

Thus,

�n = G�E + n�� 	
m

�m�n�

Vn−m�m �n � 0� . �13�

A double iteration procedure was applied to Eqs. �11� and
�13�; see �4�, Sec. IV B. It was thus possible to extract an
equation for �0 alone, the equations for �n�0 being ex-
pressed in terms of �0. Let us denote by E��� and �n

��� the
approximations of order � to E and �n, obtained by stopping
after � iterations. It was found that �0

��� satisfies

�H + V̄��� − E�����0
��� = 0, �14�

where the optical potential V̄��� is:

V̄��� � V̄1 + ¯ + V̄�, �15�

V̄
 � 	
m1

	
m2

¯ 	
m


V−m1
G�E��� + m1��Vm1−m2

G�E���

+ m2�� ¯ Vm
−1−m

G�E��� + m
��Vm


. �16�

The sums above are written with the understanding that all
terms containing G�E���+m�� or Vm with m=0 should be
omitted. For the expression of �n

���, see Sec. IV B of �4�.
To zeroth order ��=0�, the procedure gives the structure

equation

�1

2
P2 + V0��0;r� − E�0��u = 0, �17�

where we have introduced the explicit form of H, Eq. �6�,
and have denoted �0

�0��u. The equation has real eigenvalues
E�0��W��0� that are � independent.

The first iteration ��=1� contributes to Eq. �14� a correc-

tion equal to �H�1�� V̄1. Assuming this to give a small con-
tribution �E�1� to the quasienergy, it can be handled by per-

turbation theory. Note that V̄1 contains G�E�1�+m��. To
lowest order one can replace E�1� by E�0��W��0�. We need
to recall, however, that the exact E should be located in the

complex energy plane on the unphysical sheet, under the cut
along the positive energy axis. To retain this feature correctly
in our approximation, we need to replace E�1� by W��0�+ i�.
Hence, to lowest order,

�H�1� � V̄1 = 	
m

�m�0�

VmG�+��W + m��Vm, �18�

which yields

�E�1� = 
u��H�1��u� � �W − �i/2�
 . �19�

The result for E�1� is then

Re E�1� = W��0� + �W, Im E�1� = − �1/2�
 . �20�

On the other hand, by considering the asymptotic form of
�n, Eq. �13�, we get the n-photon ionization amplitude fn.
This, and the corresponding differential ionization rate
d
n /d�, can be written

fn = −
1

2�

ukn

�−��Vn�u�, d
n/d� = kn�fn�2, �21�

where ukn

�−� is a continuum state of Eq. �17�, with asymptotic
momentum kn contained in d�, and having incoming spheri-
cal waves; it is normalized so as to have asymptotic ampli-
tude 1.

In order that the formal iteration described above have a
meaning, it needs to converge in some pragmatic sense. By
this we mean that consecutive corrections of the iteration to
E�0��W��0�, as well as the expression for the remainder,
should decrease in ranges of interest of the frequency and
intensity. The issue of convergence of the theory will be
discussed in the following section.

The basic equations of HIHFFT, like Eqs. �17� and �19�,
require a numerical evaluation, albeit one much simpler than
that of the original Floquet system. However, in the limits of
very high � or very large �0, these equations are amenable to
rather simple analytic formulas �see for example Sec. III for
the 1D case�.

C. Convergence of HIHFFT

We first recall a few facts about the structure equation,
which is the starting point of the iteration procedure �for
details see �4��. This has been extensively studied numeri-
cally for 3D hydrogen �7,8�, and 1D models �references are
contained in �1�, Sec. 2�. Its eigenvalues W��0� and eigen-
functions were determined for low-lying as well as for Ryd-
berg states, at �0 extending from 0 to large values �into the
thousands�. Dichotomy was established. It has been pre-
dicted analytically, and confirmed numerically, that the
bound-state energy spectrum is compressed to 0 at growing
�0. For all excited states ��0 and at all �0 we have the
sequence of inequalities

0 	 �W���0�� 	 �W0��0�� � �W0�0�� = 0.5a.u. �22�

We are using the “natural” Floquet normalization conven-
tion defined in Sec. II.

Let us now consider the problem of the convergence of
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the iteration procedure. The most obvious case of conver-
gence is that of sufficiently high frequencies, which was de-
veloped within HFFT. At very high �, using Eq. �12�, we
may replace the operators G�E+m�� by

G�E + m�� �
1

m�
I �m � 0� . �23�

Consequently, to dominant order Eq. �16� becomes �9�

V̄
 �
1

�
	
m1

	
m2

¯ 	
m


1

m1m2 ¯ m


V−m1
Vm1−m2

¯ Vm

.

�24�

The case of 
=1 is an exception to this estimate because of
a cancellation of terms:

V̄1 �
1

�
	
m

1

m
V−mVm = 0, �25�

where we have used Eq. �8�. V̄1 is thus smaller than esti-
mated by Eq. �24�, and a better approximation than Eq. �23�
is needed to establish its correct order of magnitude.

It should be noted, however, that in actual calculations

operators such as V̄
 appear in matrix elements �e.g., average

values, transition elements� like 
u�V̄
�u��, evaluated for ex-
ample in the basis set of eigenstates of the zeroth-order struc-
ture equation. The order of magnitude we have ascribed to

the operators V̄
 can be transferred to the matrix elements if
their integrals remain convergent after applying the approxi-
mation Eq. �23�. This depends on the singularities of
Vm��0 ,r�, which in turn depend on the polarization and �0.
For hydrogen and linear polarization, Vm behaves as r−1/2 at
the end points ��0e, for all �0 �see Eq. �129� of �4��; for the
special case of large �0, �see Eqs. �30� and �36� below�.
Therefore, for 
�5 the matrix elements of V̄
 �Eq. �24��
become singular. This means that their true order of magni-
tude is larger than the �−
 we have estimated and a more
refined evaluation would be needed to assess it. However, the
cases 
�4 are sufficient for our needs. Thus, at high enough
�, we have “convergence” in the sense that the successive

iterations for the optical potential V̄���, Eq. �15�, up to 

�4 certainly improve its value, while their error decreases;
see Sec. IV B of �4�.

As opposed to the linear case, Vm for elliptic �circular�
polarization has only logarithmic singularities along the clas-
sical trajectory �see Eq. �130� of �4��. These singularities are
integrable, and Eq. �24� holds for any 
.

The order of magnitude of the first iteration �E�1� was left
open by the crude estimate Eq. �23�. In fact, 
 could be
evaluated explicitly, and has been extensively studied; for
references, see �1�, Sec. 2. Its dependence on �0 has revealed
quasistationary stabilization �10�. Although no systematic
study has been made in 3D for �W, Eq. �19�, order of mag-
nitude estimates have been given in �4�, Sec. IV D.

The issue of a formal condition of convergence was dis-
cussed in �4�, Sec. IV D, with the conclusion that it was
sufficient that � be large with respect to some average exci-
tation energy Wexc��0� for the manifold of states containing
the state considered:

� � Wexc��0� . �26�

Wexc��0� is of the order of magnitude of the largest binding
energy of the manifold. Taking into account the sequence of
inequalities Eq. �22�, in order to apply HFFT to hydrogen at
all intensities ��0� and all states, it should be sufficient to
require that ��0.5 a.u. Practically all studies of QS �and DS
as well� have been carried out in this frequency range.

A closer look at the condition Eq. �26� shows that � need
not be high at all if �0 is sufficiently large, in fact it can be
arbitrarily small. This is because Wexc��0� vanishes at large
�0. To understand this, we need to consider the structure
equation �17� at large �0. We shall show that, for linear po-
larization, the eigenfunctions concentrate around the “end
points” of the classical motion, ��0e, and the motion is
determined by the form of the dressed potential V0�r� in the
vicinity of these points.

Indeed, let us first find the form of the Fourier compo-
nents Vn��0 ;r� near the end points. For example, in the vi-
cinity of +�0e we can rewrite Eq. �7� as

Vn�r� =
�− 1�n

�
�

0

�

�cos n��V�r− + �0e�1 − cos ���d� ,

�27�

where, n�0,

r� � r � �0e . �28�

By changing the integration variable according to
�=�0�1−cos ��, we get

Vn�r� =
�− 1�n

�
�

0

2�0

�cos n��V�r− + �e�
d�

�2�0��1 − ��/2�0�
.

�29�

Assuming V�r� to be singular at the origin, the main contri-
bution to the integral comes from r−+�e�0. As at large
enough �0 the �essentially bounded� values of interest of r−
will satisfy r−��0; this implies that the relevant values of �
are ���0. Hence, �1− �2� /�0� can be replaced by 1, cos n�
by 1, and we may extend without consequences the upper
limit of the integral to �. This gives

Vn�r� � �− 1�nṼ0�r−� for �r−/�0� � 1 and n � 0,

�30�

Ṽ0�r� �
1

��2�0
�

0

�

V�r + �e�
d�

��
. �31�

Proceeding similarly, near the other end point −�0e, we have
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Vn�r� � Ṽ0�− r+� for �r+/�0� � 1 and n � 0. �32�

Thus, Vn�r� is expressible in the vicinity of the end points in

terms of the “end-point potential” Ṽ0�r�.
With Eqs. �30�–�32�, the structure equation reduces in the

vicinity of the end points to

�−
1

2
� + Ṽ0��r���u�r�� = W��0�u�r�� . �33�

The change of variables ��r− and ��−r+, respectively,
transforms the two equations into the following one

�−
1

2
�� + Ṽ0����s��� = W��0�s��� . �34�

The eigenfunctions for the two alternatives in Eq. �33� can be
expressed as

u�r+� = s�− r+�, u�r−� = s�r−� . �35�

For hydrogen, V�r�=−�1 /r�, Eq. �31� gives �11�

Ṽ0�r� =
1

��0r
U�r̂� , �36�

U�r̂� � −
�2

�
K� �1 − r̂ · e�1/2

21/2 � , �37�

where K�x� is the complete elliptic integral of the first kind

�see �12�, Eq. �8.113.3��. Ṽ0 has a r−1/2 singularity at the
origin, and a logarithmic singularity along the line r̂=e. It
has been shown �13� that the corrective terms to Eq. �30� are
of order O��0

−3/2� for the Coulomb case.
Introducing Eq. �36� in Eq. �34� and scaling the variable

according to �=�0
−1/3�, we find

�−
1

2
�� +

1

�1/2U��̂��v��� = Wv��� , �38�

where

W��0� � �0
−2/3W , �39�

s��� � v��/�0
1/3� . �40�

Equation �39� displays the �0
−2/3 dependence of the bound-

state eigenvalues W��0� at large �0.
The eigenfunctions of the end-point equations �33� are

u�r−�=v�r− /�0
1/3� and u�r+�=v�−r+ /�0

1/3�. Since they expand
with �0 as �0

1/3, and the separation of their centers is 2�0, it
follows that their overlap tends to zero as �0 increases. This
means that any linear combination of them corresponding to
the same W is an eigensolution �degeneracy�. In particular, if
we choose

uP�r� �
1

�2�0

�v�r−/�0
1/3� + �− 1�Pv�− r+/�0

1/3�� , �41�

uP�r� has parity P=0,1. If v��� is normalized to 1, so will be
uP�r�. Physically speaking, the charge distribution of the
state represented by uP�r� splits into two separate lobes cen-

tered on the end points �dichotomy�.
With Eq. �39�, the convergence condition Eq. �26� can be

expressed at large �0 as

R �
�Wexc�

��0
2/3 � 1, �42�

where �Wexc� is a number comparable to 1. It now is obvious
that, at sufficiently large �0, � can be allowed to be small. In
the rest of the paper we shall be concerned with this regime.
Let us start with the convergence of the iteration procedure.

Considering the higher corrections to the quasienergy E���

in Eqs. �14�–�16�, for example, we are interested in matrix

elements such as 
u�V̄
�u��. The multiple sum of V̄
 yields
terms like �see Eqs. �23� and �24��


u�V−m1
Vm1−m2

¯ Vm

�u�� , �43�

which contains 
+1 Fourier components Vm. The main con-
tribution to the integral Eq. �43� comes from the vicinity of
the end points ��0e, where the Vm are singular, and given by
Eqs. �30�, �32�, and �36�. For u�r� we shall use the dichoto-
mous form Eq. �41�. The dominant contribution to Eq. �43�
from the end point +�0e is then


u��V0�
+1�u��

�
1

2�0
�v�r−/�0

1/3��� 1
��0r−

U�r̂−��
+1�v��r−/�0
1/3�� .

�44�

By changing the integration variable according to t
��0

−1/3r−, we get


u��V0�
+1�u�� �
1

2��0��2
+2�/3 � v�t�� 1
�t

U�t̂��
+1

v��t�dt .

�45�

As the other end point −�0e gives an identical contribution,
we can write


u�V−m1
Vm1−m2

¯ Vm

�u�� �

V
+1

�0
�2
+2�/3 , �46�

where V
+1 is an �0-independent constant. With Eq. �16�, for

�1 this leads to


u�V̄
�u�� =
1

�
O� 1

�0
�2
+2�/3� = �0

−2/3O�R
� . �47�

The case 
=1 is an exception, as noted earlier in Eq. �25�.
Thus, if ��0

−2/3 is sufficiently large and the criterion Eq. �42�
is well satisfied, the higher 
, the smaller the matrix element

is at large �0; this applies to 
u�V̄����u�� as well. This means
that the iteration procedure indeed yields decreasing correc-
tions.

We have considered above the case of linear polarization.
A similar discussion could be made for general elliptic po-
larization, with some changes regarding the order of magni-
tude of the terms, without affecting the conclusions on con-
vergence.
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We shall illustrate the predictions of HIHFFT in more
detail on the case of a 1D model. Not only can the HIHFFT
formulas be numerically computed in this case, but they can
also be evaluated analytically, allowing a more transparent
interpretation. This evaluation is presented in the next sec-
tion.

III. LARGE-�0 HIHFFT FOR 1D MODEL

We consider the popular 1D model with the “soft-core”
Coulomb-potential

V�x� = −
1

�a2 + x2
. �48�

At large �x�, this has a Coulomb tail supporting an infinite set
of Rydberg states. The constant a2 under the square root
“softens” the 1 / �x� singularity at the origin, which is too
strong for a consistent mathematical treatment of the 1D
case. By choosing a=1.414 the energy of the ground state is
W0=−0.500. In the following we present analytic HIHFFT
results for the large-�0, all-� regime of this model. Their
accuracy is confirmed by numerical results, see Sec. IV.

A. Eigenvalues W(�0) of structure equation

Let us consider the structure equation for the potential Eq.
�48�. As in the 3D case, at large �0 it is sufficient to solve it
in the vicinity of one of the end points, say +�0. Starting
from the analog of Eq. �33�, after changing the variable ac-
cording to x−=��, we get

�−
1

2

d2

d�2 + �2Ṽ0�����v��� = Wv��� , �49�

where we have denoted

W��0� = �−2W , �50�

u�x−� � v�x−/�� . �51�

The end point potential corresponding to Eq. �48� is

Ṽ0�x� = −
1

��2�0
�

0

� 1
��x + ��2 + a2

d�

��
. �52�

This can be expressed in terms of the complete elliptic inte-
gral K�k�, or the hypergeometric function 2F1 �14�:

Ṽ0�x� = −
1

�
� 2

�0
K�k� =

1
�2�0

1

�x2 + a2�1/4 2F1�1

2
,
1

2
,1;k2� ,

�53�

where

k2 =
�x2 + a2�1/2 − x

2�x2 + a2�1/2 . �54�

In order that Eq. �49� have solutions, �2Ṽ0���� needs to
stay finite in the limit of large �0. By inspection of Eq. �53�
it is easy to see that this can happen only if � increases with
�0. Consequently, at finite �, where the eigenfunction v��� is

significantly different from zero, the variable of Ṽ0���� lies
in the asymptotic range ��→�, �15�. The asymptotic form

of Ṽ0�x�, Eq. �53�, is �16�

Ṽ0
as�x� =�−

2

��2�0

1
��x�

�ln 8�x�/a��1 + O� 1

x2�� , x 	 0,

−
1

�2�0

1
�x
�1 + O� 1

x2��, x � 0. � �55�

We now choose � such that the coefficient of the term

−�1 /����� of �2Ṽ0
as���� for x	0 be 1. This means

2�3/2 ln�8�/a�
��2�0

= 1. �56�

With this choice we can write

�2Ṽ0
as���� � U��� + U���0,�� , �57�

where

U��� = �−
1

����
, � 	 0,

0, � � 0,
� �58�

and

U���0,�� =�−
1

ln�8�/a�
ln���
����

, � 	 0,

−
�

2 ln�8�/a�
1
��

, � � 0.� �59�

Equation �49� thereby becomes
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�−
1

2

d2

d�2 + U��� + U���0,���v��� = Wv��� . �60�

Let us consider now the solution ���0� of the algebraic
equation Eq. �56�. The equation can be solved numerically,
but also an analytic solution can be obtained to dominant
order in �0, which is sufficient for our purposes. This is �17�

� = �0
1/3� �

�2ln�8�0
1/3
0/a�

�2/3
, 
0 � � �

�2ln�8�0
1/3/a�

�2/3
.

�61�

The logarithmic dependence of � on �0 is a consequence of
the logarithmic term in the potential Eq. �55�. The behavior
of � is dominated by the factor �0

1/3, present also in the 3D
Coulomb case. By comparing Eq. �61� to the numerical so-
lution of Eq. �56�, we find an agreement at the level of 1% on
the interval 100	�0	3000. From Eq. �56�, we have also

ln�8�/a� � ln�8�0
1/3
0/a� . �62�

As at large �0 the quantity in Eq. �62� is a small, U��� ,�0� of
Eq. �59� can be considered a corrective term in Eq. �60�.
Neglecting it, by combining Eqs. �50� and �61�, we find for
W��0� to lowest order

W��0� � �0
−2/3��2

�
ln�8�0

1/3
0/a��4/3

W�0�, �63�

where W�0� is the eigenvalue of Eq. �60� without U���0 ,��.
Treating the latter by perturbation theory gives the energy
correction to W�0�

W�1���0� = −
1

ln�8�0
1/3
0/a���

2
�

−�

0 ln���
����

v2���d�

+ �
0

� 1
��

v2���d�� . �64�

Collecting terms yields

W��0� � ����0��−2�W�0� + W�1���0�� . �65�

Equation �63� indicates that, to lowest order in �0 �i.e., with
U���0 ,�� neglected�, we have a scaling law similar to the 3D
case, Eq. �39�, albeit more complicated. The analytic ap-
proximation for ���0�, Eq. �61�, shows that it increases with
�0 slightly more slowly than �0

1/3. It follows that W��0� de-
creases with increasing �0 slightly more slowly than �0

−2/3,
which is the 3D case Eq. �39� �18�.

Using Eq. �51�, the complete eigenfunction corresponding
to W��0� is given by

uP�x� �
1

�2�
�v�x−/�� + �− 1�Pv�− x+/��� . �66�

The functions v�x� /�� expand in the vicinity of the end
points proportionally to �. Since � behaves roughly as �0

1/3,
we conclude that we have dichotomy for the 1D model as
well.

B. First-order quasienergy correction �E(1)

We now evaluate the first iteration correction �E�1�, Eqs.
�18� and �19�. Our emphasis is on the case of large �0, with
the convergence condition Eq. �42� satisfied. We make use of
the dichotomous structure of the wave function u, Eq. �66�.
This gives to dominant order in �0

�E�1� =
1

�
	
m

m�0



v�x−/���VmG�+��W��0� + m��Vm�v�x−/��� + �− 1�P
v�x−/���VmG�+��W��0� + m��Vm�v�− x+/���� , �67�

where we have used the parity property of Vm�x�, Eq. �8�.
We shall designate the first term in Eq. �67� as the direct term �E�d�. It is convenient to evaluate it by using the general

decomposition formula for the Green’s function G�+��W� associated with the Hamiltonian H:

G�+��W� = P� 1

W − H
� − i���W − H� , �68�

where P and � are the principal value and delta operators. The principal value contribution is

�EP
�d� �

1

�
	
m

�m�0� �v�x−/���VmP
1

�W��0� + m�� − H
Vm�v�x−/��� . �69�

Using Eq. �8� the sum over m�0 can be converted into one over m�0 only:

�EP
�d� =

2

�
	

m�0
�v�x−/���PVm

W��0� − H

�W��0� − H�2 − �m��2Vm�v�x−/��� . �70�
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The contribution of the operator H in Eq. �70� is of the order
of a typical excitation energy Wexc��0�, a fact that can be
easily ascertained by inserting the completeness equation for
the eigenfunctions of H, S��u��
u��= I. By virtue of the con-
ditions Eqs. �42� and �26�, we can approximate the denomi-
nator by −�m��2. Moreover, by using the Schrödinger equa-
tion �33�, we can reexpress the numerator, to get

�EP
�d� �

1

��2 	
m�0

1

m2 
v�x−/���†Vm,�H,Vm�‡�v�x−/��� .

�71�

Note the cancellation of the terms of order 1 /�, already sig-
naled in Eq. �25�.

With Px�−id /dx, we have

�H,Vm� = 
PxVm�Px +
1

2

Px

2Vm� , �72�

where the curly brackets indicate that Px acts only on the
function inside it. This leads to

†Vm,�H,Vm�‡ = �Vm,
PxVm�Px� = − 
PxVm�2. �73�

Thus

�EP
�d� �

1

��2 	
m�0

1

m2 
v�x−/���
dVm�x�/dx�2�v�x−/��� .

�74�

The dominant contributions to the integrals of the matrix
elements in Eq. �71� comes at large �0 �or �� from the vicin-
ity of the end point +�0. Therefore, as in the 3D case, we can

use Eqs. �30� to replace Vm�x� by Ṽ0�x−� to get

�EP
�d� �

1

��2 
v�x−/���
dṼ0�x−�/dx−�2�v�x−/��� 	
m�0

1

m2 .

�75�

Further, by changing the integration variable in the matrix
element according to x−=��, we find


v�x−/���
dṼ0�x−�/dx−�2�v�x−/���

� �1/���
−�

�

�dṼ0����/d��2�v����2d� . �76�

The last integral can be decomposed in two parts, for ���
	q and ����q, where q�a /�. For ����q, the integral re-
mains finite in the limit �a /��→0 so that we can use the

dominant asymptotic behavior of Ṽ0����, given by Eqs. �55�,
�57�, and �58� to get a contribution O��−5�. With Eq. �53� we
have further

1

�
�

���	q

�dṼ0����/dx�2�v����2d�

=
1

2�0�2�
���	q

� d

d�

f���
��2 + �a/��2�1/4�2

�v����2d� , �77�

where f���� 2F1�1 /2,1 /2,1 ;k2�. The square of the deriva-

tive gives rise to three terms containing, respectively, �n��2

+ �a /��2�−1/2−n, with n=0,1 ,2. The most singular of these for
�→� or �a /��→0 is that for n=2, and hence also the one
giving the dominant contribution at large �. Moreover, be-
cause f��� and v��� are smooth functions at �=0, they can be
extracted from the integral with their value at this point. The
remaining integral over � is elementary and proportional to
�� /a�2. Returning to Eq. �76�, this gives the dominant behav-
ior:


v�x−/���
dṼ0�x−�/dx−�2�v�x−/��� �
1

12a2�0
�f�0�v�0��2,

�78�

where f�0�= 2F1�1 /2,1 /2,1 ;1 /2�. As 	m�0�1 /m2����2�
=�2 /6, we find for �EP

�d�:

�EP
�d� �

�2

6

1

12a2

1

�0��2 �f�0�v�0��2. �79�

In the evaluation of �EP
�d� we have used the complete

Green’s function G�+��W� associated with the full Hamil-
tonian H because it was simpler to do so. However, we recall
that due to our condition Eq. �42�, at increasing �0, the ar-
guments of the Green’s functions G�+��W��0�+m��, for m
�0, become sufficiently large �i.e., large compared to the
extension of the bound state spectrum Eq. �63��, to be en-
titled to apply the first Born approximation to the Green’s
function, see �19�. In 1D this is

G0
�+��W��0� + m�;x − x�� �

1

ikm
eikm�x−x��, �80�

with km derived from km
2 /2��E+m��. With our approxima-

tions

1

2
km

2 � W��0� + m� + i� � m� for m � 0, �81�

for both m�0. Open channels correspond to m�0, closed
ones to m	0. Equations �9� and �10� then give for km:

km � 0 for m � 0; km = i�km� for m 	 0. �82�

In our further evaluations of �E�1� we will replace G�+� by
G0

�+�, and consequently also H by H0= Px
2 /2 in the � term of

Eq. �68�. The latter contributes then to �E�d� with

�E�
�d� � − i

�

�
	
m

�m�0�


v�x−/���Vm

��
�W��0� + m�� − H0�Vm�v�x−/��� . �83�

Alternatively, this can be written as

�E�
�d� = − i

1

2�
	

m�0
�

−�

+�

dk�
e−ikx�Vm�v�x−/����2��1

2
�km

2 − k2�� ,

�84�

with km given by Eq. �82�. Note that we need to have m
�0 �i.e., open channels� in the sum, so that the � function
does not vanish. Using Eq. �30� and a known property of the
� function, Eq. �84� becomes
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�E�
�d� = −

i

�
	

m�0

1

km
�I�km��2, �85�

where we have defined

I�k� � �
−�

+�

e−ikxṼ0�x�v�x/��dx , �86�

where k can be taken complex. As the extension of v�r� is
practically finite, the integral I�k� is convergent.

We now calculate I�k� for k real. As, by increasing �, each
integration point gets a contribution from v�x /��, which is
close to v�0�, the latter can be extracted from the integral in
Eq. �86�. The remaining integral represents the Fourier trans-

form of the end-point potential, denoted Ṽ0�k�, which is well
defined �20,21�. To dominant order in 1 /� we then get

I�k� � �2��Ṽ0�k�v�0� . �87�

Using Eq. �52�, one finds

Ṽ0�k� =
1

��2�0

h�− k�V�k� , �88�

where V�k� is the Fourier transform of the original potential,
Eq. �48�, which is real �21�. h�a� is defined by �22�:

h�a� � �
0

+�

e−ia� d�

��
= ���/ae−i��/4� �a � 0�

��/�a�e+i��/4� �a 	 0� � . �89�

Consequently, we find for k real, to dominant order in 1 /�:

I�k� �� 2�

�0�k�
e�i��/4�V�k�v�0� , �90�

where the plus sign in the exponent corresponds to k�0, and
the minus sign to k	0. I�k� is independent of � to dominant
order. By inserting I�km� in Eq. �85� we get km

2 in the denomi-
nator, for which we use Eq. �81�. This gives �23�

�E�
�d� � − i

�

�0��
�v�0��2 	

m�0

1

m
�V�km��2. �91�

We now turn to the evaluation of the second sum of �E�1�

in Eq. �67�, which we shall designate as the exchange term
�E�ex�. It is now convenient to use the explicit form of the
1D free-particle Green’s function Eq. �80�. Further, we split
the sum over m into two parts, for m�0 and m	0. For
m�0 �open channels�, we write using Eq. �82�

�E�
�ex� �

�− 1�P

i�
	

m�0

�− 1�m

km
�

−�/2

+�/2

dx−�
−�/2

+�/2

dx+�

� v�x−/��Ṽ0�x−��eikm�x−x��Ṽ0�− x+��v�− x+�/�� .

�92�

We have made use here of Eqs. �30� and �32�. The integra-
tion over dx− and dx+� should extend in principle from −� to
+�, but it is limited by the extension of the functions v,
which is practically finite; we have denoted it by �. Recall
that �=O��� and, as ���0

1/3, � is much smaller than the

separation of the centers of the two end points 2�0. Thus, the
difference

x − x� = 2�0 + x− − x+� �93�

in the exponent of Eq. �92� can be taken as positive. The
double integral in Eq. �92� splits then into the product of two
equal integrals, such that

�E�
�ex� �

�− 1�P

i�
	

m�0

�− 1�m

km
e2ikm�0�I�− km��2, �94�

with I�k� defined by Eq. �86�. Inserting Eq. �90� into Eq. �94�
this will contain km

2 in the denominator, for which we use Eq.
�81�. We find then to dominant order in �0 �23�

�E�
�ex� � �− 1�P+1 �

��0�
�v�0��2 	

m�0

�− 1�m

m
e2ikm�0�V�km��2.

�95�

Let us consider now the m	0 sum of �E�ex�, which we
denote �E	

�ex�. In view of Eq. �93� �see also Eq. �82��, the
exponential in Eq. �92� is of order exp�ikm�x−x���
�exp�−2�0�km��. Thus, the terms contained in �E	

�ex� are
negligible with respect to those of �E�

�ex�, Eq. �95�, and
�E�ex���E�

�ex�.
Finally, �E�1� is the sum of contributions from Eqs. �79�,

�91�, and �95�. In view of Eq. �19� we get

�W =
�2

6

�f�0��2

12a2 �v�0��2 1

�0��2

+ �− 1�P+1 �

�0��
�v�0��2 	

m�0

�− 1�m

m
cos 2km�0�V�km��2,

�96�


 =
2�

�0��
�v�0��2 	

m�0

1

m
�1 + �− 1�m+P sin 2km�0��V�km��2.

�97�

Let us now compare the order of magnitude in �0 and � of
the correction �E�1� with the lowest-order approximation for
the quasienergy W��0�. Consider the first term of �W. We
note that the constant a it contains can be expressed in terms

of the value of the end-point potential Ṽ0�x� at the origin

Ṽ0�0� �see Eq. �53�� as Ṽ0�0�= �2�0a�−1/2f�0�, where f�0� is
of order 1. With ���0

1/3 �see Eq. �61��, the estimate for the

first term of �W is �0
2/3�Ṽ0�0��4 /�2. As Ṽ0�0� is of the order

of the binding energy W��0� �see Eq. �34��, the estimate
gives �0

2/3�W��0��2�W��0� /��2. Taking into account that
�W��0����0

−2/3, the estimate gives further R2�W��0��
� �W��0��, where we have used Eq. �42�. Consider now the
second term of �W, which has the same order of magnitude
as 
. For both, the order is ��0���−1�V�km��2

=R�W��0���V�km��2� �W��0���V�km��2� �W��0�� �see �23��.
Thus, under our conditions, �W and 
 are indeed small cor-
rections to W��0�. The fact that 
 is decreasing at large �0
represents QS �see �1�, Sec. I�.

�W and 
 contain sums over m involving cos 2km�0 and
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sin 2km�0, respectively. These sums are dephased in �0 by
� /2 for P=0 and by 3� /2 for P=1.

C. Floquet components

We now investigate the behavior of the Floquet compo-
nents �n�x� to first order in the HIHFFT iteration, obtained
by setting �m�u�0m on the right-hand side of Eq. �13� and
using the first Born approximation of the Green’s function,
Eq. �80�:

�n
�1��x� = �

�

G0
�+��W��0� + n�;x − x��Vn�x��u�x��dx�.

�98�

Inserting here Eqs. �30�, �32�, and �66�, we get

�n
�1��x� =

1
�2�ikn

��− 1�n�
−�/2

+�/2

eikn�x−−x−��Ṽ0�x−��v�x−�/��dx−�

+ �− 1�P�
−�/2

+�/2

eikn�x+−x+��Ṽ0�− x+��v�− x+�/��dx+�� .

�99�

kn is given for the open �n�0� and closed �n	0� channels
by Eq. �82�. Concerning the integration limits in Eq. �99�, we
have proceeded as for Eq. �92�. Note that we have by defi-
nition

uP��0 � �/2� = �− 1�PuP�− �0 � �/2� � 0, v���/2�� � 0.

�100�

To study the behavior of �n
�1��x�, we distinguish three in-

tervals on the x axis: �A� the interval between the lobes of
the dichotomous atom; �B� the interval covering the lobes;
�C� the interval lying outside both lobes, and extending to
��. As �n

�1��x�, Eq. �99� has parity properties �see Sec. II�, it
is sufficient to consider x�0.

On interval A, characterized by 0�x��0−� /2, we can
write, in view of Eqs. �86� and �99�:

�n
�1��x� =

1
�2�ikn

I�− kn�eikn�0��− 1�ne−iknx + �− 1�Peiknx� .

�101�

For open channels we get

��n
�1��x�� =�2

�

1

kn
�I�− kn���cos�knx +

�

2
�P + n��� ,

�102�

and for closed ones

��n
�1��x�� =�2

�

1

�kn�
e−�kn��0�I�− i�kn���

� �cosh�kn�x if P + n = even,

sinh�kn�x if P + n = odd.
� �103�

Hence, for closed channels ��n
�1��x�� increases exponentially

when �x� grows from 0 to �0, which means that we have
dichotomy, just as for n=0.

Interval B is characterized by �0−� /2�x��0+� /2. In
the second integral of Eq. �99�, �x+−x+��= �x+−x+��, and the
integral is proportional to I�−kn�. Because in the first integral
�x−−x−�� can change sign, we split it into two, so that Eq. �99�
becomes

�n
�1��x� =

1
�2�ikn

��− 1�n�eiknx−�
−�/2

x−

e−iknx−�Ṽ0�x−��v�x−�/��dx−�

+ e−iknx−�
x−

+�/2

eiknx−�Ṽ0�x−��v�x−�/��dx−��
+ �− 1�Peiknx+I�− kn�� . �104�

We next apply an integration by parts to the integrals in this
equation. For the first one we get

�
−�/2

x−

e−iknx−�Ṽ0�x−��v�x−�/��dx−�

= −
1

ikn
�e−iknx−Ṽ0�x−�v�x−/��

− e+ikn�/2Ṽ0�− �/2�v�− �/2��� + T . �105�

Note that the second term vanishes in view of Eq. �100�. The
term T is an integral that can be again integrated by parts to
show that it is of order 1 /�kn, and hence negligible. A similar
result holds for the second integral of Eq. �104�, and we find
eventually

�n
�1��x� �

1
�2�ikn

��− 1�n 2i

kn
Ṽ0�x−�v�x−/��

+ �− 1�Peikn�x−+2�0�I�− kn�� . �106�

For open channels this leads to

��n
�1��x��2 �

1

2�kn
2� 4

kn
2 Ṽ0

2�x−�v2�x−/�� +
4

kn
�− 1�P+n

��I�− kn��Ṽ0�x−�v�x−/��sin�kn�x− + 2�0� −
�

4
�

+ �I�− kn��2� . �107�

If the last term in the square brackets is small with respect to
the first one, ��n

�1��x��2 has practically the same nodes as the
dichotomous state uP�x� in the vicinity of the end point +�0
�recall Eq. �66��. The smooth dependence on x of the first
term is then modulated by the second term, with the same
frequency kn that ��n

�1��x�� has on interval A; moreover, the

amplitude of the oscillations is small. Note that Ṽ0�x−� has no
zeros.
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For closed channels, kn should be replaced everywhere in
Eq. �106� by i�kn�. Then the second term in the square brack-
ets becomes of the order of e−2�kn��0 and is negligible. This
leads to

��n
�1��x��2 �

2

��kn�4
Ṽ0

2�x−�v2�x−/�� . �108�

Now ��n
�1��x��2 has precisely the same nodes as uP�x�. As

opposed to the open channel case, there is no modulation.
On interval C, characterized by �0+� /2	x	 +�, we

can write

�n
�1��x� =

1
�2�ikn

��− 1�neiknx−I�kn� + �− 1�Peiknx+I�− kn�� .

�109�

For open channels we get with the help of Eq. �90� �24�

��n
�1��x�� =� 4�

��0

1

kn
3/2 �v�0���V�kn��

��cos�kn�0 +
�

2
�P + n� −

�

4
�� , �110�

which is constant in x. For closed channels, it follows from
Eq. �109� that �n

�1��x� is real and vanishes exponentially for
x→ +�.

IV. DISCUSSION AND CONCLUSIONS

In this paper we have shown that the iteration procedure
developed earlier within nonrelativistic Floquet theory at
high frequency and arbitrary intensity converges also in the
case of low frequency and high intensity. From the physical
point of view this means that, contrary to a widespread be-
lief, QS and dichotomy are phenomena that can occur also at
low � �compared to the unperturbed ground state energy
�0.5 a.u.�, provided that the intensity is sufficiently large.
Therefore, the theory should be more appropriately desig-
nated as high-intensity, high-frequency Floquet theory. We

have then applied the general 3D HIHFFT formulas to the
case of a 1D Coulomb soft-core potential model, where ana-
lytic calculations could be pushed surprisingly far, enabling
results to be obtained for the dominant behavior of the en-
ergy levels, ionization amplitudes, etc.

We have considered here the case of individual Floquet
states, which, from the physical point of view are apt to
describe atomic behavior in long quasimonochromatic laser
pulses, of adiabatically varying field amplitude. However,
our findings bear also on atomic behavior in short laser
pulses, because wave packets can be expressed as superpo-
sitions of Floquet states �“multistate Floquet theory;” see
�25–27��. If the wave packet of the system contains a super-
position of bound Floquet states of the type we have consid-
ered, which undergo QS at high �0, this would have as con-
sequence the fact that the wave packet would undergo DS.
Indeed, the decrease with �0 of the 
��0� of the individual
states of the wave packet would translate into an ionization
probability Pion that is decreasing with the peak field
strength, i.e., DS. Thus, the superintense regime appears like
a haven of stability for the neutral atom at all frequencies,
low and high, to the extent that relativistic effects can be
neglected. The critical issue is, however, to devise strategies
for bringing the atom into this regime, without ionizing it
during the rise of the pulse, i.e., to create physically the
aforementioned superposition of bound Floquet states.

In a following presentation we shall approach the low-
frequency regime for our 1D model from the numerical point
of view �28�. On that occasion we shall show that the HIH-
FFT results obtained in Sec. III for our model are in good
agreement with the numerical results, within the expected
errors.

ACKNOWLEDGMENTS

This work was partially supported by the National Sci-
ence Foundation through a grant to ITAMP. Two of us �M.G.
and I.S.� would like to thank A. Dalgarno for his hospitality
there.

�1� M. Gavrila, J. Phys. B 35, R147 �2002�.
�2� We prefer the use of the term quasistatic stabilization instead

of the original “adiabatic stabilization,” because of the physi-
cal ambiguities the latter can give rise to; see footnote 10 of
�1�.

�3� M. Gavrila and J. Z. Kaminski, Phys. Rev. Lett. 52, 613
�1984�.

�4� M. Gavrila, in Atoms in Intense Laser Fields, edited by M.
Gavrila �Academic Press, New York, 1992�, p. 435.

�5� M. Gavrila and J. Z. Kaminski �unpublished�.
�6� P. S. Krstic and M. H. Mittleman, Phys. Rev. A 42, 4037

�1990�.
�7� M. Pont, N. R. Walet, M. Gavrila, and C. W. McCurdy, Phys.

Rev. Lett. 61, 939 �1988�.
�8� M. Pont, N. R. Walet, and M. Gavrila, Phys. Rev. A 41, 477

�1990�.
�9� The approximation Eq. �23� is intended only for the assess-

ment of the dominant order with respect to 1 /�. Note that it
ignores completely the imaginary part of G�E+m��, reducing

V̄
 of Eq. �24� to its real part.
�10� M. Pont and M. Gavrila, Phys. Rev. Lett. 65, 2362 �1990�.
�11� This expression agrees with that in Eq. �146� of �4�, where it

was derived differently.
�12� I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series

and Products �Academic Press, New York, 1965�.
�13� M. Gavrila and J. Shertzer, Phys. Rev. A 53, 3431 �1996�.
�14� See �12�, Eqs. 3.137.7, 8.112.1, and 8.121.3.
�15� It may seem contradictory that, on the one hand, we claim to

be operating in the vicinity of the end point +�0 when replac-
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as���� in

this area; see Eq. �55�. There is no contradiction, however,
because the asymptotic distances of interest from the end point
are O�����0

1/3, which are vanishingly small in comparison to
the distance between the end points, 2�0.

�16� See �12�, Eq. 8.113.1 for x�0, and Eq. 8.113.3 for x	0.
�17� The form of �, Eq. �61�, can be obtained by making use of the

substitution �=�0
1/3 
0 � in Eq. �56�, and solving the equation

for �, on the assumption that ln � is negligible �i.e., � is not far
from 1�, which is confirmed a posteriori.

�18� In the case of the 1D model with a potential V�x�=−V0��x�, the
scaling law of the levels is exactly �0

−2/3 as in the 3D case; see
T. P. Grozdanov, P. S. Krstic, and M. H. Mittleman, Phys. Lett.
A 149, 144 �1990�.

�19� A. Klein and C. Zemach, Ann. Phys. �N.Y.� 7, 440 �1959�,
Sec. III.

�20� We define the Fourier transform of the potential as in Eq. �7�.
�21� The integrals of the Fourier transforms V�k� and Ṽ0�k� of the
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