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I. INTRODUCTION

Entanglement, one of the most interesting features of
quantum mechanics and a potentially useful resource of
quantum states exhibiting correlations, has stimulated theo-
retical studies of various quantum systems �1–6�. Most of
those studies are devoted to characterizing dynamical prop-
erties of entanglement of the ground state or pure states in
ideal theoretical models. The continuous-variable-type en-
tangled states including squeezed states and coherent states
have also been studied �7,8�.

Entanglement has various interesting properties �2,8,9�,
for example, a sharp singularity at or near the phase transi-
tion point and scaling behavior. Several measures of quan-
tum entanglement have been introduced, such as entangle-
ment of formation, entanglement of distillation, relative
entropy, linear entropy, von Neumann entropy, Renyi en-
tropy, negativity, and concurrence, etc. �2,4,8–13�. The most
natural measurement of the uncertainty of the quantum me-
chanical state is arguably the entropy. Physically, entropy can
be interpreted as a measurement of the disorder of the sys-
tem. Both the linear entropy and von Neumann entropy are
commonly used to measure deviations from pure state be-
havior, such as in the process of decoherence �14–17�. The
general properties of the two entropies are similar, and their
values of zero could be used to predict the purification time.
The linear entropy can also be used to describe the degree of
purity of the subsystem in a scale from 0 �pure state� to 1
�statistical mixture�.

The interesting phenomena exhibited by the closed two-
site systems �dimer� have been studied �18–22�. Based on the
molecular vibrations of small molecules, the physical imple-
mentation of quantum computation was studied �23–25�. Yet
there appear to be few investigations of dynamical entangle-
ment for realistic molecular systems and the two-site dimer
system.

In this work we analytically investigate the linear entropy,
the von Neumann entropy, and the Lyapunov function for
initial Fock states and coherent states for the integrable
dimer and realistic small molecules systems. The realistic
small algebraic molecular Hamiltonian suggested by Kell-

man �26� was employed in our investigation. This Hamil-
tonian has been successfully used to study many aspects of
small molecules �7,27–30�.

This paper is structured as follows. In Sec. II, analytical
expressions for the linear and von Neumann entropy for both
initial Fock and coherent states are derived. The Lyapunov
functions of the integrable dimer and the realistic small sym-
metric molecules are also calculated for initial Fock states. In
Sec. III, for initial Fock states, we discuss the entanglement,
the probabilities of states, and the relation between entangle-
ment and the phase transition point for the integrable dimer
and small symmetric molecules. We also investigate the en-
tanglement dynamics of the two models for initial coherent
states in this section. The paper ends with some concluding
remarks in Sec. IV.

II. THEORETICAL FRAMEWORK

A. General considerations

For a given quantum system with time-independent
Hamiltonian H, the evolution can be obtained by

���t�� = e−itH���0�� , �1�

where ���0�� is the initial state of the system. Here we as-
sume �=1. We can extract all the dynamical information of
the quantum system from the time-dependent wave function
���t��. In this work we are interested in the dynamical en-
tanglement of two types of quantum system: the integrable
dimer and realistic small molecules.

The algebraic Hamiltonian of the integrable dimer is
given by �22�

H =
5

4
+

3

2
�a1

†a1 + a2
†a2� +

1

2
��a1

†a1�2 + �a2
†a2�2�

+ c�a1
†a2 + a2

†a1� � H0 + H1, �2�

where ai and ai
† �i=1,2� are the annihilation and creation

operators on site i. The classical and quantum properties for
this system were studied in Ref. �22�. In Eq. �2�, we let

H0 =
5

4
+

3

2
�a1

†a1 + a2
†a2� +

1

2
��a1

†a1�2 + �a2
†a2�2 + 2a1

†a1a2
†a2� ,
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H1 = − a1
†a1a2

†a2 + c�a1
†a2 + a2

†a1� . �3�

It is easy to check that Hamiltonians H0 and H1 satisfy the
following commutation relation:

�H0,H1� = 0. �4�

This quantum Hamiltonian, Eq. �2�, conserves the total bo-
son number N=n1+n2, where ni=ai

†ai �i=1,2� is the boson
number on site i. The number N in this integrable dimer
Hamiltonian can correspond physically to the total particle
number of the two interacting BECs or the total number of
photons associated with the field modes interacting in a Kerr
medium �31,32�. This Hamiltonian �2� can be used to calcu-
late the vibrational spectra of polyatomic molecules �33�.

The algebraic Hamiltonian of a realistic symmetric small
molecule can be written as �26,30�

H = �0�n1 + n2 + 1� +
�

2
�	n1 +

1

2

2

+ 	n2 +
1

2

2�

+ �12	n1 +
1

2

	n2 +

1

2

 +

1

2
�� +

�

2
�n1 + n2 + 1��

��a1
†a2 + a2

†a1� + 	��a1
†a1

†a2a2 + a2
†a2

†a1a1� � H0 + H1,

�5�

where ai and ai
† �i=1,2� are the annihilation and creation

operators on local mode i. In Eq. �5�, we defined

H0 = �0�n1 + n2 + 1� and H1 = H − H0. �6�

The symmetric molecular Hamiltonian conserves the multi-
plet quantum numbers N=n1+n2; ni=ai

†ai is the vibrational
quantum number on local mode i �i=1,2�. It is obvious that
the H0 and H1 in Eq. �5� also satisfy Eq. �4�.

Since we are interested in dynamical entanglement, the
total density operator is a projector onto the state ���t��,


�t� = ���t�����t�� , �7�

and the reduced density matrices


1�t� = Tr2 
�t� = Tr2���t�����t�� , �8�

where Tr2 is the partial trace over subsystem 2.
The entanglement can be described by linear entropy Sl�t�

and von Neumann entropy Sn�t�, which are defined by
�34,35�

Sl�t� = 1 − Tr1 
1�t�2,

Sn�t� = − Tr1�
1�t�ln 
1�t�� . �9�

Some studies of stability and other characteristics of dy-
namical systems employ the direct Lyapunov method. The
Lyapunov function has been used to study the stability of the
quantum control system �36–38�. Here we employ the

Lyapunov function V�t� to describe the “distance” between
the final state ���t�� and the initial state ���0�� at time t
�36–39�,

V�t� = 1 − ����0����t���2. �10�

We can see its zero values describe the recurrence times from
the definition.

In the following subsections we will consider two useful
initial states: Fock states and coherent states for the two
algebraic models: integrable dimer and small symmetric mol-
ecules.

B. Fock states

We first consider the case of initially unitary separable
Fock states,

���0�� = �n0� � �N − n0� � �n0,N − n0� , �11�

where n0 can be an arbitrary integer between 0 and N. The
time evolution of the system, from Eq. �1�, is given by

���t�� = e−itH���0�� = e−itH0e−itH1�n0,N − n0�

� U0�t�U1�t��n0,N − n0� , �12�

since H=H0+H1, and H0 and H1 satisfy Eq. �4�.

1. Integrable dimer

For the integrable dimer system, after we consider the
basic relation

a†�n� = n + 1�n + 1� ,

a�n� = n�n − 1� , �13�

and the Hamiltonian H1 act on the Fock states �n1 ,n2�,

H1�n1,n2� = − n1n2�n1,n2� + c�n1 + 1�n2�n1 + 1,n2 − 1�

+ cn1�n2 + 1��n1 − 1,n2 + 1� , �14�

we have, after some algebra,

U1�t� � e−itH1�n0,N − n0�

= �
k=0

�
�− it�k

k!
H1

k�n0,N − n0�

= �
k=0

�

�
l=�



Ck
�l��t��n0 + l,N − n0 − l�

= �
l=−n0

N−n0

P�l��t��n0 + l,N − n0 − l� , �15�

where �=max�−k ,−n0�, =min�k ,N−n0�, and P�l��t�
=�k=�l�

� Ck
�l��t�.

The recursion expression of Ck
�l��t� is given by
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Ck
�l��t� = −

it

k
�− �n0 + l��N − n0 − l�Ck−1

�l� �t�

+ c�n0 + l + 1��N − n0 − l�Ck−1
�l+1��t�

+ c�n0 + l��N − n0 − l + 1�Ck−1
�l−1��t�� , �16�

where k=0,1 ,2 , . . . ,�, and C0
�l��t�=	0,l for k=0.

2. Small symmetric molecule

The algebraic Hamiltonian of small symmetric molecules,
Eq. �5�, has been successfully used to study the vibrational
levels and other properties �26,30�. Following a similar pro-
cedure to that employed for the integrable dimer model, the
evolution operator of molecular system can be written

U1�t� � e−itH1�n0,N − n0�

= �
k=0

�
�− it�k

k!
H1

k�n0,N − n0�

= �
k=0

�

�
l=�



Ck
�l��t��n0 + l,N − n0 − l�

= �
l=−n0

N−n0

P�l��t��n0 + l,N − n0 − l� , �17�

where �=max�−k ,−n0�, =min�k ,N−n0�, and P�l��t�
=�k=�l�

� Ck
�l��t�.

Similarly, the recursion expression of Ck
�l��t� is given by

Ck
�l��t� =

− it

k
	��

2
�	n0 + l +

1

2

2

+ 	N − n0 − l +
1

2

2� + �12	n0 + l +

1

2

	N − n0 − l +

1

2

�Ck−1

�l� �t�

+ c�n0 + l + 1��N − n0 − l�Ck−1
�l+1��t� + c�n0 + l��N − n0 − l + 1�Ck−1

�l−1��t�

+ 	��n0 + l + 2��N − n0 − l − 1��n0 + l + 1��N − n0 − l�Ck−1
�l+2��t�

+ 	��n0 + l − 1��N − n0 − l + 2��n0 + l��N − n0 − l + 1�Ck−1
�l−2��t�
 , �18�

where c= 1
2 ��+ �

2 �N+1��, k=0,1 ,2 , . . . ,� and C0
�l��t�=	0,l for

k=0.
Equations �15� and �17� give similar expressions for the

U1�t� for the two quantum systems, and the time evolution
state can be generally written as follows:

���t�� = U0 �
l=−n0

N−n0

P�l��t��n0 + l,N − n0 − l� , �19�

where U0=exp�−it�5 /4+ 3
2N+1 /2N2�� for the integrable

dimer system and U0=e−itw0�N+1� for the realistic small mol-
ecules. The evolution of the two systems are now in a similar
form, which is convenient for us. Clearly, the term U0 has no
contribution to the dynamical entanglement. The density ma-
trices are then given by


�t� = ���t�����t�� = �
l=−n0

N−n0

�
l�=−n0

N−n0

P�l��t�P�l���t�*�n0 + l,N − n0 − l�

��n0 + l�,N − n0 − l�� . �20�

The reduced density matrix traced over subsystem 2 is given
by


1�t� = Tr2 
�t� = �
n2

�n2�
�t��n2�

= �
l=−n0

N−n0

�
l�=−n0

N−n0

P�l��t�P�l���t�*�n0 + l��n0 + l��	l,l�

= �
l=−n0

N−n0

�P�l��t��2�n0 + l��n0 + l� . �21�

The reduced density matrix 
1�t� is then diagonal. �P�l��t��2 is
the probability of the state �n0+ l ,N−n0− l� at time t and
�l�P�l��t��2=1. The linear and von Neumann entropy and the
Lyapunov function can be directly obtained as follows, re-
spectively:

Sl�t� = 1 − Tr1 
1�t�2 = 1 − �
l=−n0

N−n0

�P�l��t��4, �22�

Sn�t� = − Tr1�
1�t�ln 
1�t�� = − �
l=−n0

N−n0

�P�l��t��2 ln �P�l��t��2,

�23�

and
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V�t� = 1 − ����0����t���2 = 1 − �P�0��t��2. �24�

The mean values of linear entropy, the von Neumann en-
tropy, and the Lyapunov function over long time T are de-
fined as

�Sl� =
1

T
�

0

T

Sl�t�dt ,

�Sn� =
1

T
�

0

T

Sn�t�dt ,

�V� =
1

T
�

0

T

V�t�dt . �25�

C. Coherent states

In this subsection we consider an initially disentangled
product of coherent states written as

���0�� = e�−���2−���2�/2�
n,m

�n

n!

�m

m!
�n,m� , �26�

where � and � are the amplitudes of coherent states on sub-
system 1 and subsystem 2, respectively. n and m are boson
numbers �for dimer system� or vibrational quantum numbers
�for molecules�, with the condition n+m=N. The values of �
and � can be any complex number, but we here let �=� be
a real number. Then the initial coherent states Eq. �26� can be
rewritten as the superposition of Eq. �11�,

���0�� = e−�2�
N=0

�

�
n1,n2=0

N
�N

n1!n2!
�n1,n2�

= �
N=0

�

�
n0=0

N

An0,N−n0
�n0,N − n0� , �27�

where An0,N−n0
=e−�2 �N

n0!�N−n0�! . The sum over N is from 0 to
� in principle. In our numerical calculations of the entropy
we truncated the sum over N at large N=Nmax. We find that
the �N=0

Nmax�n0=0
N �A�2 yields converged results using Nmax=21

in this work.
In a manner similar to the case of the Fock state, the

time-evolved state can be obtained as follows:

���t�� = e−itH �
N=0

Nmax

�
n0=0

N

An0,N−n0
�n0,N − n0�

= e−itH0 �
N=0

Nmax

�
n=0

N

Pn,N−n�t��n,N − n� , �28�

where Pn,N−n�t�=�k=0
� Ck

n,N−n�t�. The resursion expression of
Ck

n,N−n�t� for the integrable dimer system is

Ck
n,N−n�t� = −

it

k
�− n�N − n�Ck−1

n,N−n�t�

+ c�n + 1��N − n�Ck−1
n+1,N−n−1�t�

+ cn�N − n + 1�Ck−1
n−1,N−n+1�t�� , �29�

and for the realistic small symmetric molecule is

Ck
n,N−n�t� =

− it

k
	��

2
�	n +

1

2

2

+ 	N − n +
1

2

2� + �12	n +

1

2

	N − n +

1

2

�Ck−1

n,N−n�t� + c�n + 1��N − n�Ck−1
n+1,N−n−1�t�

+ cn�N − n + 1�Ck−1
n−1,N−n+1�t� + 	��n + 2��N − n − 1��n + 1��N − n�Ck−1

n+2,N−n−2�t�

+ 	��n − 1��N − n + 2�n�N − n + 1�Ck−1
n−2,N−n+2�t�
 , �30�

where c= 1
2 ��+ �

2 �N+1��. In Eqs. �29� and �30�, k
=0,1 ,2 , . . . ,�, n0=0 ,1 ,2 , . . . ,N, and the C0

n0,N−n0�t�
=An0,N−n0

for k=0.
The density matrix is given by


�t� = ���t�����t��

= �
N,N�=0

Nmax

�
n=0

N

�
n�=0

N�

Pn,N−n�t�

�P
n�,N�−n�
* �t��n,N − n��n�,N� − n�� , �31�

the corresponding reduced density matrix over subsystem 2
is given by


1�t� = Tr2 
�t� = �
n2

�n2�
�t��n2�

= �
N,n

�
N�,n�

Pn,N−n�t�

�P
n�,N�−n�
* �t��n��n��	N−n,N�−n�. �32�

The reduced density matrix is now not diagonal. In terms of
the eigenvalues �k�t� of the reduced density operator, both
entropies are calculated via

Sl�t� = 1 − �
k=0

Nmax

��k�t��2,
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Sn�t� = − �
k=0

Nmax

�k�t�ln �k�t� . �33�

III. RESULTS AND DISCUSSION

A. Fock states

1. Integrable dimer

We first study the properties of the quantum entanglement
of the integrable dimer system. We calculate the linear and
von Neumann entropy, and the Lyapunov function versus
initial states �n0 ,N−n0� for the total boson numbers N and
the different coupling parameter c. In Fig. 1, we plot Sn�t�,
Sl�t�, and V�t� for weak coupling c=0.5 �the left column�,
medium coupling c=2 �the central column�, and strong cou-
pling c=12 �the right column� of the total boson numbers
N=10. Because of the symmetries of Hamiltonians �2� and
�5�, we investigate the cases of n0=0 ,1 , . . . ,Fix� N

2 �, where
Fix�X� returns the integer portion of X. Figure 1 shows that
the entropies and the Lyapunov function for initial states
�0,N� are periodic for weak coupling, while for the others
this is not the case. Our calculations show that the oscillatory
period of entropy becomes short for large N for the initial
state �0,N�. Also, the Lyapunov function is similar to entro-
pies for the weak coupling case. The purification times of the
entropy are also similar with the recurrence times of the
Lyapunov function for weak coupling for the initial states
�0,N�. The entropy increases rapidly in starting time, and the
entropy approaches steady state quickly with increasing cou-
pling strength.

Figure 1 shows that the entropies and the Lyapunov func-
tion have good periodicity for n0=0 for weak coupling
strength c=0.5. However, it becomes irregular with the in-
creasing of the n0 in this case. The periodic behaviors are
more pronounced with the increasing of the coupling

strength c, and it is clearly shown that the periodic behavior
is more pronounced for c=12 than for c=2 for the state
�0,N� in the figure. It becomes “chaotic” for strong coupling.

The “accretion” of the Lyapunov function denotes that the
final states are far away from the initial state. For the N=1
case, the explicit simple expressions for the linear entropy
and the mean linear entropy are as follows:

Sl�t� =
1

2
sin2�2ct� ,

�Sl� =
1

4
−

1

16cT
sin�4cT� . �34�

These expressions clearly indicate that the linear entropy is
oscillatory with the time evolution. By contrast, the mean
linear entropy goes to a steady state at long time T or large
cT.

The von Neumann entropy and the Lyapunov function
also show similar characteristics. The mean value of the en-
tropies and the Lyapunov function over long time T are
shown in Fig. 2. It is clearly shown that the system has large
entanglement for various initial states �n0 ,N−n0� for strong
coupling �c=4,8 ,12�. The entanglement dynamics with clas-
sical chaotic phase space for the other systems were studied
by previous researchers �40–48�. Furuya et al. studied the
entanglement process for the N-atom Jaynes-Cummings
model �40�, and some properties of coupled quantum kicked
tops �for example, rate, the entanglement production, and the
dynamics of entanglement in classically chaotic system, etc.�
were also investigated �41,43,44,47�. The other interesting
systems �biparticle system, AMOL �a magneto-optical lat-
tice�, etc.� were also considered �42,45,46,48�. In contrast to
previous studies, we here analytically obtain the entropies
and the Lyapunov function from the quantum Hamiltonian.
Based on this work, we can also study the connection be-
tween quantum dynamical entanglement and classical chaos
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FIG. 1. �Color online� The von Neumann entropy Sn�t�, linear
entropy Sl�t�, and Lyapunov function V�t� versus initial states
�n0 ,N−n0� for the integrable dimer system. The total boson num-
bers N=10, n0=0,1 ,2 ,3 ,4 ,5. The coupling parameters are c=0.5,
2, and 12.
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FIG. 2. The mean value �Sn�, �Sl�, �V� versus the initial state
�n0 ,N−n0�. The n0=0, . . . , N

2 for even N �or N−1
2 for odd N� with

total boson numbers N=10 �top three figures�, N=15 �bottom three
figures�. Five different coupling parameters are considered here, c
=0.5, 2, 4, 8, and 12.
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in phase space and the corresponding properties, such as the
rate and the entanglement generation. The entanglement dy-
namics of the systems with classical chaotic phase space can
be investigated via the classical limits of the quantum Hamil-
tonian. The classical limit of the quantum Hamiltonian Eq.
�2� �and Eq. �5�� can be obtained by calculating the expecta-
tion value of quantum Hamiltonian over the coherent state
�49�. However, a possible simple approach could be the use
of the intensive collective boson operators introduced by
Gilmore �50�. This method was used to extract the potential
energy surface for small molecules �51�.

For weak coupling, the average entropy increases as the
initial n0 increases, and the system is also in “chaotic sea” in
this case of large n0. It is interesting that the average values
of the entropies for the strong coupling case are almost the
same. Our calculations show that such a fixed value of cou-
pling strength is 3.8, 5.6, 7.4, 8.2, and 9.6 for N=15, 20, 25,
30, and 35, respectively. These values are in good agreement
with the classical separatrix coupling energy �22�.

2. Small molecules

In this section we calculate the linear entropy and the
Lyapunov function of the small molecules H2O, O3, C2H2,
C2D2, SO2 for the initial states �n0 ,N−n0�. The algebraic
Hamiltonian Eq. �5� developed by Kellman �26� is employed
in this work. In our numerical calculations, the physical pa-
rameters of the molecules are used and they are taken from
Ref. �26�. This Hamiltonian was used to study the vibrational
levels, etc. �26�. In Fig. 3, we show the linear entropies �left
column� and the Lyapunov function �right column� for N
=10. We can see that the linear entropies of the molecules
H2O, O3, and C2H2 change explicitly among all the initial
states, but for the molecules C2D2 and SO2 the linear entro-
pies do not vary obviously for all initial states. This could be
the reason that the molecules H2O, O3, and C2H2 have both
local and normal mode character, while the molecules C2D2,
SO2 have only normal mode character. The entropies for

local initial states are quasiperiodic for molecules H2O, O3,
and C2H2. In Fig. 3, we can also see that the entropies in-
crease for large n0 in the initial states �n0 ,N−n0� for those
three molecules. Our calculations show that the oscillation
frequencies become large for large N. By contrast, the entro-
pies stay almost the same for all the initial states of the
molecules C2D2 and SO2. The oscillation frequencies for
those two molecules become small for large N.

In Fig. 4 we plot the mean entanglement. The turns of the
mean entropies display the normal-to-local transition. The
Lyapunov function also displays a similar nature to the linear
entropy. The periodicity and distance between the initial
states and the final states are related to the local and normal
modes. This means that there is a probability to completely
stay at the initial state for the local mode case and a prob-
ability to transit from the initial state to other states for the
normal mode case.

3. Contributions of states to the entropy

We can understand the nature of the entropies and the
contributions of states �n0+ l ,N−n0− l� to the entropies by
analyzing the distributions of the probability �P�l��t��2 of
states �n0+ l ,N−n0− l�. In the figures showing the distribu-
tions �Figs. 5–7� of the probabilities �P�l��t��2 of states �n0
+ l ,N−n0− l�, the heights of color strip are employed to de-
note quantitative values of �P�l��t��2, and the different colors
are used to denote the different probability �P�l��t��2. The de-
tailed descriptions can be found in the figure captions.

Integrable dimer. Figure 5 shows the results of the prob-
abilities �P�l��t��2 as a function of the evolution time for N
=10 of the integrable dimer for weak �the first row, c=0.5�,
medium �the second row, c=2�, and strong �the third row,
c=12� coupling for the initial states �0,10� �the left column�,
�2,8� �the central column�, and �5,5� �the right column�. The
corresponding entropies and Lyapunov function are shown in
Fig. 1. From Fig. 5, for weak coupling, the main contribu-
tions are the first two states �0,10� and �1,9� for initial state
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molecules are used, and they are taken from Ref. �26�.
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�0,10�. Their distributions are periodic with the evolution
time, which leads to periodic entropies in this case. However,
with increasing n0 in this case �the first row in the figure�, the
contributions of the two states decrease and the contributions
of the other states �P�l��t��2 increase; at the same time, the

contributions become irregular. For the symmetric initial
state �5,5� the contributions from the states besides the initial
state are also symmetric. This is shown in the right column in
Fig. 5. Clearly, the main contributions are also from the
states nearing initial states. For strong coupling, although the
distributions of the states are regular at the initial time �t
�0.4 ps�, this regularity becomes faint and it is finally “cha-
otic” for long times. The states �0,10� and �10,0� in two sides,
however, have also the same contributions. For the medium
coupling case, the distributions �P�l��t��2 of states are com-
plex, as shown in Fig. 5.

To see the effect of total boson number N for the dimer
system, we plot the results of the cases N=7,10,13,16 �from
first row to fourth row� with the coupling strength c=1.2 in
Fig. 6. The initial states are chosen as �n0 ,N−n0� for n0=0
�the left column�, n0=Fix�N /4� �the central column�, and
n0=Fix�N /2� �the right column�. For the initial state �0,N�
��P�0��t��2, the left column in Fig. 6�, the contribution of the
initial state increases with increasing N. The contributions of
the first two states �here they are �P�0��t��2 and �P�1��t��2� are
obviously periodic for big N=13,16. However, the other ini-
tial states are not the case �the central and right columns in
the figure�. Especially, the contributions of “medium initial
states” ���0��= �Fix�N /4� ,N−Fix�N /4�� are complex. Al-
most all the states, for this case, have their contributions to
the entropies of the system. Similarly, for the
�quasi-�symmetric initial states ���0��= �Fix�N /2� ,N
−Fix�N /2��, the contributions of the states on the two sides
of the initial states have the �quasi-�symmetric contributions.
It is clearly shown that the states far from the initial states
have less contributions to the entropies of the system.

Realistic molecules. In Fig. 7, we plot the �P�l��t��2 of the
five realistic molecules with multiplet quantum numbers N
=10 and the initial states �0,10� �the left column�, �2,8� �the
central column�, and �5,5� �the right column�. It is clearly
shown that the �P�l��t��2 of molecules H2O, O3, C2H2 have
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periodicity �see Fig. 3�. Again, the probabilities �P�l��t��2 of
states �n0− l ,N−n0+ l� have the symmetric distributions for
the symmetric initial states �the right column in the figure�.
This demonstrates that the vibrations of the three molecules
are in the local mode. By contrast, the molecules C2D2, SO2

have no periodicity, and they are in the “chaotic sea.” Physi-
cally, the two molecules exhibit strong entanglement, and
their vibrations are in the normal modes.

The contributions of the states in the H2O molecule are
periodic. The entropies of the H2O molecule are �quasi-
�periodic for all initial states with N=10, and the entropies
increase with increasing n0 �from the left to the right column
in the figure�. This leads to the periodicity of entanglement
and the disentanglement of the H2O molecule. The �P�l��t��2
of molecules O3 and C2H2 have no periodicities for n0=2
and 5. It is shown, in Fig. 3, that their entropies vary irregu-
larly for the initial states �2,8� and �5,5�. However, the mol-
ecules C2D2 and SO2 are different from the other three mol-
ecules. Even the distributions of �P�l��t��2 seem regular at the
starting time for �0,10�; the distributions are becoming “cha-
otic” with time evolution, especially for the molecule C2D2.

B. Coherent states

Figures 8 and 9 show the von Neumann entropy with
initially disentangled coherent states. In Fig. 8, we plot the
von Neumann entropy for different coupling parameter c and
coherent amplitude � for the integrable dimer. The system
has purification time or near disentangled states for small
coherent amplitude �=0.2, and 0.6 from weak coupling to
strong coupling. It is interesting that the von Neumann en-
tropy of the disentangled dimer has good periodicity for the
strong coupling but for the weak coupling c=0.2 for the
small coherent amplitude �. However, for weak coupling
�c=0.2�, this periodicity disappears completely with increas-
ing coherent amplitude �. The amplitude of the entropies
increase with the coherent amplitude � for all the coupling
cases.

The von Neumann entropies of the molecules H2O, O3,
C2H2, C2D2, SO2 are given in Fig. 9. The von Neumann
entropies are �quasi-�periodic for small coherent amplitude
except for the H2O molecule. It is interesting that the von
Neumann entropy of the H2O molecule has “classical”-like
beat phenomena. This could show the properties of the weak
coupling strength of the H2O molecule, physically. It is also
shown that, for the small coherent amplitude �=0.2, the en-
tropies of the other four molecules �O3, C2H2, C2D2, and
SO2� have a good periodicity. With the increasing of the
coherent amplitude �, the more frequencies of the entropy
for coherent states are presented.

IV. CONCLUSION

We studied the dynamical entanglement of the integrable
dimer and the realistic small symmetric molecules in the
initial Fock states and the coherent states. Our studies show
that the periodicity of entanglement not only depends on the
coupling strength of the two subsystems but also the initial
states. For the integrable dimer system, in the case of weak
coupling and initial state �0,N�, the purification time is the
recurrence time. For the molecules H2O, O3, C2H2, C2D2,
SO2, it is found that the periodicity of the entanglement with
local-mode initial states is better than with normal-mode ini-
tial states. The explicit changes of the entropy and the sharp
peak of their mean values display the normal-to-local transi-
tion of the molecular vibrations. For the “biased initial state”
���0��= �0,N�, only a few states “close to” the initial states
have obvious contributions to the entropies. However, with
the increasing of the boson number n0 of initial state �n0 ,N
−n0� in “subsystem 1,” the more states will have contribu-
tions to entropy and the contributing weights of the states
close to the initial states become less. When the initial state
is �quasi-�symmetric state ���0��= �Fix�N /2�, N−Fix�N /2�,
the contributions to the entropy from the two sides of the
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initial state ���0�� are also �quasi-�symmetric. For the initial
coherent states, the von Neumann entropy is periodic for
small coherent amplitude even for the strong coupling of the
dimer and molecular system.

More fundamental extensions are also possible. The dy-
namical entanglement of realistic small molecules in an ex-
ternal laser field could be �analytically� studied via the alge-
braic approach in the interaction picture.
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