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We illustrate how to apply modern effective field theory techniques and dimensional regularization to
factorize the various scales that appear in nonrelativistic bound states at finite temperature. We focus here on
the simplest case: the hydrogen atom. We discuss in detail the interplay of the hard, soft, and ultrasoft scales
of the nonrelativistic system at zero temperature with the additional scales induced at finite temperature. We
also comment on the implications of our results for heavy quarkonium bound states in the quark gluon plasma.
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I. INTRODUCTION

Finite-temperature effects in atoms were an issue in the
early 1980s �1–4�. The basic physics at low temperatures
was already understood in those days �1� and some experi-
ments displaying finite-temperature effects were successfully
carried out �5�. The motivation for reconsidering this topic is
that QED bound states are a good testing ground for heavy
quarkonium physics �6�. Indeed quite some number of effec-
tive theory techniques, including the use of dimensional
regularization, were first tested in QED �7–13�, and have
now become standard tools in heavy quarkonium physics
�see �14� for a review�. The behavior of heavy quarkonia
states at finite temperature has been believed for a long time
to be a good probe of the so-called quark gluon plasma �15�
�see �16� for a recent overview�. With the advent of current
experiments at the Relativistic Heavy Ion Collider �RHIC�
and the Large Hadron Collider �LHC�, precision in the quan-
tification of this phenomenon will be necessary, and hence
computational tools must be developed. A number of works
in this direction have recently appeared in the literature
�17–21�.

We present in this paper an efficient way to include finite-
temperature effects in nonrelativistic bound states. We focus
here on the simplest of them, namely, the hydrogen atom,
and make extensive use of nonrelativistic QED �NRQED�
�7� and potential NRQED �PNRQED� �8–10�. Since these
effective theories are based on momentum expansions about
the on-shell condition, which do not exist in Euclidean space,
it is compulsory to use the real time formalism �see, for
instance, �22��.

In the hydrogen atom, complications due to hard thermal
loops �HTLs� �24–27� can be ignored at low temperatures
�T�m, m being the electron mass�. This allows one to carry
out precision calculations in two relevant regimes, namely,
when T�E, E being the binding energy, and T� p�E,
where p is the typical momentum of the electron �� inverse
Born radius�. We critically compare with previous results in
the literature. Then we move to the high-temperature case
T�m, which, to our knowledge, has not been studied before.
We carry out the matching from QED to NRQED at finite
temperature and discuss the effects of the HTL in the bound
state dynamics.

We distribute the paper as follows. In the next section we
review the two effective theories mentioned above, which

are extremely useful for the description of QED bound states
at zero temperature, and discuss how they are affected by a
finite temperature. In Secs. III–V we address the cases T
�E, T� p, and T�m, respectively. Section VI is devoted to
a discussion of our results and to some conclusions. Three
Appendixes contain technical details.

II. THE HYDROGEN ATOM

The relevant �energy� scales in the states of principal
quantum number n of a hydrogen atom at T=0 are the elec-
tron mass m �hard�, the inverse Born radius p=m� /n �soft�,
and the binding energy E=−m�2 /2n2 �ultrasoft�. They sat-
isfy the inequalities m� p�E, which are most conveniently
exploited using effective field theories. NRQED is the effec-
tive theory which exploits the inequality m� p ,E. It is ob-
tained from QED by integrating out momentum scales of
order m and is equivalent to it at any desired order in the
p /m, E /m, and � expansions. It reads

L = �+�iD0 +
D2

2m
+

D4

8m3 + cFe
�B

2m
+ cDe

��E�
8m2

+ icSe
��D � E − E � D�

8m2 �� + N+iD0N

−
1

4
F�	F�	 +

d2

m2F�	D2F�	. �1�

D�=��+ ieA� �D�=��− iZeA�, Z is the charge of the
nucleus� when acting on � �N�, E �B� is the electric �mag-
netic� field, and cD, cF, cS, and d2 are matching coefficients,
which encode the nonanalytic dependence on the scale m. At
O��� they read �23�

cD = 1 +
�



�8

3
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m

�
� + ¯ , �2�
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�
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d2 =
�

60

+ ¯ . �5�

The remaining inequality, p�E is most conveniently ex-
ploited using PNRQED. PNRQED is obtained from NRQED
by integrating out energy scales of order p and it is equiva-
lent to it at any desired order in E / p and �. It reads

LPNRQED =	 d3x
�+�iD0 +
D2

2m
+

D4

8m3�� + N+iD0N

−
1

4
F�	F�	� +	 d3x1d3x2N+N�t,x2�
 Z�

�x1 − x2�

+
Ze2

m2 �−
cD

8
+ 4d2��3�x1 − x2�

+ icS
Z�

4m2�� x1 − x2

�x1 − x2�3
� ����+��t,x1� . �6�

The potentials above play the role of matching coeffi-
cients, which encode the nonanalytic dependence on the
scale p. The photon fields in the covariant derivatives contain
only energy and momentum much smaller than p. This La-
grangian can be written in a manifestly gauge invariant form
in terms of a wave-function field S�t ,x�, which describes an
ion of charge �Z−1�e and gauge transforms with respect to
the center of mass only �it is gauge invariant for Z=1; see �9�
for details�. It reads

LPNRQED = −	 d3x
1

4
F�	F�	 +	 d3x S†�t,x�
iD0 +

�2

2m

+
Z�

�x�
+

�4

8m3 +
Ze2

m2 �−
cD

8
+ 4d2��3�x�

+ icS
Z�

4m2� · � x

�x�3
� ���S�t,x�

+	 d3x S†�t,x�ex · ES�t,x� . �7�

The size of each term above can be obtained using �
��x�−1�m�, i�0�m�2, and E�m2�4 �Z�1 will be as-
sumed for the estimates throughout�. The leading order terms
are then in the first line, and produce the well-known Cou-
lomb spectrum at O�m�2�. The spectrum at O�m�5� can eas-
ily be calculated from the Lagrangian above, by treating the
remaining terms as perturbations. The calculation is divided
into two parts: �i� a standard quantum mechanical calculation
of the expectation value of the potentials in the middle line
between the Coulomb states and �ii� the contribution of the
ultrasoft �US� photons, which arise from perturbations in-
volving the last term. The former gives

�SEn = �S,KEn + �S,�En + �S,SEn,

�S,KEn = −
1

8m3 �nlj��4�nlj ,

�S,�En =
Ze2

m2 � cD

8
− 4d2���n�0��2,

�S,SEn = cS
Z�

4m2� j�j + 1� − l�l + 1� −
3

4
��nlj�

1

x3 �nlj �8�

��n= �nlj�, and the latter

�USEn =
4Z�2

3 
�ln
�

m
+

5

6
− ln 2� ��n�0��2

m2

− �
r�n

��n�v�r�2�En − Er�ln
m

�En − Er�
� , �9�

together with the total width

n = �
r�n

4

3
���n�v�r�2�En − Er� , �10�

where v=−i� /m and �n�0� is the wave function at the ori-
gin. The correction to the total energy is given by

�En = �SEn + �USEn, �11�

in which the � dependence is canceled between the ultrasoft
contribution and the one in cD; see �2�.

At finite T, we have to find out how to properly account
for the new scale T. The first important property, which fol-
lows from the Boltzmann distribution, is that fluctuations of
energy much larger than T are exponentially suppressed. This
implies that for m�T the same NRQED Lagrangian as for
T=0 can be used: the temperature dependence of the hard
matching coefficients is exponentially suppressed and hence
negligible. It also implies that for p�T the same PNRQED
Lagrangian as for T=0 can be used: the temperature depen-
dence of the potentials is exponentially suppressed and hence
negligible. We begin by analyzing this case, in which finite-
temperature effects are encoded in the ultrasoft photons, in
the following section. Next we move on to the case m�T
�E. In this case the finite-temperature effects must be taken
into account in the matching between NRQED and PN-
RQED, and are encoded in temperature-dependent poten-
tials. For T�m, the finite-temperature effects must already
be taken into account in the matching between QED and
NRQED, and are encoded in the temperature-dependent
NRQED matching coefficients and in the HTL effective La-
grangian. As in the T=0 case, we will use the Coulomb
gauge for calculations in NRQED and PNRQED, and the
Feynman gauge for calculations in QED.

III. THE CASE pšT

As mentioned before, we can just consider the PNRQED
Lagrangian at zero temperature. The finite-temperature ef-
fects are encoded in the ultrasoft photons, and not in the
potentials, which remain the same as in the zero-temperature
case. Let us count T�E and present the calculation at order
m�5. If we use the Lagrangian �6�, there are two contribu-
tions to the binding energy �and decay width�. The first one
is given by the photon tadpole arising from the kinetic term.
It reads ��=1 /T�
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= − iπα

3mβ2
.

�12�

The wavy line stands for the tranverse photon propagator �in
the Coulomb gauge�, and the solid line for the nonrelativistic
electron propagator. This contribution is bound state inde-
pendent and coincides with the thermal mass shift obtained
in direct QED calculations �3�. The second contribution is
given by calculating the following ultrasoft loop at finite
temperature:

= −e2 lim
p0→En

〈n|viIij(p0 − H0)v
j|n〉

�13�

=− e2 lim
p0→En

�
r

�n�vi�rIij�p0 − Er��r�v j�n . �14�

The double line indicates that the Coulomb potential is taken
into account exactly in the propagator, and

H0 = −
�2

2m
−

Z�

�x�
,

Iij�q� =	 d4k

�2
�3

��k2�
e��k0� − 1

��ij −
kikj

k2 � i

q − k0 + i�
.

�15�

We have displayed only the temperature-dependent piece
�the temperature-independent one has already been given in
�9� and �10��. If the gauge invariant formulation �7� is used
instead, the whole contribution comes from the last ultrasoft
loop. Separating �15� into real and imaginary parts, we ob-
tain

Re Iij�q� =
�ij

6


�q�
e��q� − 1

, �16�

Im Iij�q� =
�ijq

6
2
ln� 2


��q�� + Re �� i��q�
2


�� . �17�

The intermediate calculations for the imaginary part are pre-
sented in Appendix A. We have not been able to proceed
analytically any further in the general case. We may write
down our final results for the thermal energy shift and decay
width in terms of �16� and �17� as

�En =

�

3m�2 + e2�
r

��n�v�r�2 Im Iij�En − Er� , �18�

�n = 2e2�
r

��n�v�r�2 Re Iij�En − Er� . �19�

These final expressions are suitable for numerical treatment.
Further analytical results can be obtained in the limiting
cases E�T and E�T, which we present below.

A. EšT

In this case, the real part �16� is exponentially suppressed,
and hence no temperature-dependent contribution to the de-

cay width �19� arises. The imaginary part can be obtained by
expanding Re ��iy� for large y in �17�,

Re ��iy� = Re ��1 + iy� � ln�y� +
1

12y2 +
1

120y4 + ¯ ,

�20�

or alternatively k over q=En−H0 in the integrand of �15�.
The leading contribution reads

Iij =
i�ij

18�2q
, �21�

so

�En = −
2

9


�

�2 �n�v
P̄n

H0 − En
v�n = −


�

3m�2 . �22�

P̄n=1− Pn, Pn is the projector onto the subspace of energy En
�note that Iij�0�=0�. This contribution cancels exactly that of
the photon tadpole �12�, namely, the first term in the right-
hand side of �18�. This cancellation appears to be automatic
if one uses the gauge invariant Lagrangian �7�. Either way,
the leading nonvanishing contribution comes from the third
term in �20�,

�En = −
4
3�

45�4 �n�v
P̄n

�H0 − En�3v�n . �23�

The matrix element above can be evaluated analytically us-
ing the techniques of �28,29�. We obtain

�n�v
P̄n

�H0 − En�3v�n = �n�x
P̄n

�H0 − En�
x�n =

l

2l + 1
A�n,l�

+
l + 1

2l + 1
B�n,l� , �24�

where

A�n,l� =
1

32nmEn
2 �F�n,− l − 1� − F�− n,− l − 1� + 2�n2 − l2�

��36�l + 1� + 6n�4l + 15� + 72n2�l − 2��� , �25�

and

B�n,l� =
1

32nmEn
2 �F�n,l� − F�− n,l� + 2�n2 − �l + 1�2��− 72

+ 90n − 84n2 + 12l�17 + 8l + 6n2��� , �26�

with

F�n,l� = �n + l + 2��n + l + 1�� �n + l + 3��n − l�
2

+ 4�2n − l�2� .

�27�

The details of this computation are given in Appendix A 2.
Note the strong dependence of the expression above on the
principal quantum number �n6 /m3�4. Let us then summa-
rize our final results for the thermal energy shift and decay
width in this case as
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�En = −
e2�2
�2

210�4 �n�x
P̄n

�H0 − En�
x�n
1 + O�� n2

�m�
�2�� ,

�28�

�n = 0. �29�

B. E™T

In this case, the real part can be easily evaluated by ex-
panding the exponential. At leading order in this expansion,
it leads to an additional temperature-dependent decay width
for all the states:

�n =
4Z2�3

3�n2 . �30�

The total width is obtained by summing the T=0 contribu-
tion �10� to the expression above. The imaginary part is ob-
tained by doing the y→0 expansion in �17�,

Re ��iy� = − � + O�y2� . �31�

Alternatively, one may expand q=En−H0 over k in �15�.
Then the Bethe logarithms from �17� cancel out against those
of the zero-temperature contribution �9�, and we get for the
whole ultrasoft contribution

�USEn =
4Z�2

3

ln���

2

� +

5

6
− ln 2 + �� ��n�0��2

m2 . �32�

The total binding energy is obtained from �11� using the
expression above for �USEn and �8� for �SEn. Alternatively,
we may summarize our final results for the thermal energy
shift and decay width in this case as

�En =
�


3m�2 + e2�
r

��n�v�r�2
En − Er

6
2 
ln� 2


��En − Er�
� − ��

�
1 + O���m�

n2 �2�� , �33�

�n =
4Z2�3

3�n2 
1 + O��m�

n2 �� . �34�

IV. mšTšE

In this case finite-temperature effects are expected to
modify the potential, which might in principle give rise to
qualitatively different effects. However, for QED at energies
below the electron mass the vacuum polarization effects are
suppressed by even powers of m, and hence the full A0
propagator in the Coulomb gauge is not sensitive to the tem-
perature �up to high orders in T /m ��T4 /m4��. Finite-
temperature effects enter only through the tranverse photon
propagators. Since the coupling of these photons to nonrela-
tivistic electrons is suppressed by powers of 1 /m, the finite-
temperature effects modify only the 1 /m corrections and,
hence, the Coulomb potential remains as the leading order
term. This implies that the gross features of the hydrogen
atom spectrum will be kept the same for temperatures
smaller than the electron mass. We proceed then to the
matching between NRQED and PNRQED at finite T. At T
=0 the matching is trivial in the electron sector, since this
sector is insensitive to the momentum transfer �to transfer
momentum one needs the nucleus�, the soft scale to be inte-
grated out. At T�0 the temperature is a scale to be inte-
grated out and the matching becomes nontrivial in this sec-
tor. If we count T� p, for a calculation at order m�5 we need
the contributions of the following diagrams:

= i
2αp2

3πm2
[ln

βµ

2π
+ γ − ln 2 +

5

6
](p0 − p2

2m
) − iπαp2

9m3β2
,

�35�

=
iπαc2

F

6m2β2
(p0 − p2

2m
) − iαπ3c2

F

30m3β4
,

�36�

=
iαπ3cF cS

60m3β4
,

�37�

= − iπα

3mβ2
,

�38�

=
i5απp2

18m3β2
.

�39�
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The last diagram comes from the �†D4� /8m3 term in the
Lagrangian, which contains a piece with two derivatives and
two A fields. Other possible diagrams either are of higher
order or give zero.

The first diagram has an infrared �ir� divergence. We have
followed the same prescriptions as in the T=0 case. We have
regulated it in dimensional regularization �DR� and used the
modified minimal subtraction scheme �MS�. When one will
eventually make calculations in PNRQCD one must regulate

the ultraviolet �uv� divergences which will appear there in
DR and use the same subtraction scheme. The subtraction
point dependence will then cancel out in all observables and
the finite pieces will be consistently calculated �see �9� for
detailed discussions in the T=0 case�.

The matching in the electron-nucleus sector �i.e., the cal-
culation of the potentials� reduces to the calculation of the
following vertex diagrams:

=
2αA(pp′)

3πm2
[ln

βµ

2π
+ γ − ln 2 +

5

6
],

�40�

where

A = ,

�41�

=
αc2

F πA

6m2β2
.

�42�

The dashed line stands for the A0 photon propagator �in the
Coulomb gauge�. As before, other possible diagrams are zero
or of higher order. Putting all these together we obtain the
following temperature-dependent corrections to the PN-
RQCD Lagrangian:

�L�T� =	 d3x
 2�

3
m2�ln���� − ln 2 +
5

6
− ln�2
� − ��

����+��

2m
+ ��+�0�� −


�

6m3�2 � �+ � �

+
2
�cF

2

12m2�2���+ � �

2m
+ i�+�0�� + � �


3m�2��+��
+ d3x1d3x2N+N�t,x2�
 Z�2cF

2
Z

6m2�2�x1 − x2�
�+��t,x1�

+
2

3

�


m2

Z�

�x1 − x2
� �+ � ��t,x1��ln���� − ln 2 +

5

6

− ln�2
� − ��� , �43�

which can be cast into a much simpler form by using the
following field redefinition:

� → 
1 +
2�

3
m2�ln
��

2

+ � − ln 2 +

5

6
�� −


�cF
2

6m2�2�� ,

�44�

�L�T� =	 d3x
−

�

6m3�2 � �+ � � + � �


3m�2��+��
+	 d3x1d3x2N+N�t,x2��−

4Z�2

3m2 
ln���

2

�

+ � − ln 2 +
5

6
��3�x1 − x2���+��t,x1� . �45�

In order to calculate the spectrum at the desired order we
only have to sandwich the potentials between the states and
calculate the US contribution �and, of course, take into ac-
count the relevant mass shifts in �45��. The first contribution
gives

�SEn =
�


3m�2 −

�3

6m�2n2

+
4Z�2

3m2 
ln���

2

� + � − ln 2 +

5

6
���n�0��2. �46�

The US contribution corresponds exactly to the diagram
�13�, but it has to be calculated taking into account that it
contains now only energies much smaller than T. In this case
the Boltzmann factor can be expanded. This may �and will�
introduce uv divergences, which as mentioned before, must
be regulated in DR and MS subtracted in order to be consis-
tent with the calculation of the potential. We obtain

Im Iij�q� = q
1

6
2�ij�ln
�

q
+

5

6
− ln 2� + O�q3�2� , �47�
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Im Iij�q� gives a contribution to the binding energy which
exactly cancels that of the T=0 piece �9�. Then the total
binding energy is obtained by adding to �46� the T=0 soft
contribution �8�. Re Iij�q� gives a contribution to the decay
width that coincides with �30� at leading order in the m� /T
expansion. This contribution is parametrically larger than the
zero-temperature decay width �10�. Notice also that in the
limit p�T the binding energy �46� reduces to �32�, as it
should. We may summarize our final results for the thermal
energy shift and decay width in this case as

�En =
�


3m�2 −

�3

6m�2n2

+ e2�
r

��n�v�r�2
2

3

En − Er

�2
�2 �ln
2


��En − Er�
� − �� ,

�48�

�n =
4Z2�3

3�n2 + 2e2�
r

��n�v�r�2�2

3

�En − Er�
�8
�

� . �49�

The results above are accurate up to corrections of order m�6

for temperatures T�m� /n.

V. THE CASE mÈT

For temperatures of the order of the electron mass,
electron-positron pairs are created in the thermal bath, which
are expected to destabilize the hydrogen atom. In order to
make this expectation quantitative, we will integrate out the
scale m�T. In the photon sector, this will induce a mass-
dependent HTL effective Lagrangian. In the electron sector,
not only will the NRQED matching coefficients now depend
on T, but also new nonlocal terms appear. Let us analyze
these two sectors in the following.

A. Matching QED to NRQED+HTL

1. The photon sector

The HTL effective Lagrangian will be obtained from the
vacuum polarization, by standard techniques �22�. Rather
than depending on the single scale eT, as in the massless
case, the HTL effective Lagrangian is now expected to have
a nontrivial dependence on m�. In fact, this brings in a new
qualitative feature: the angular integration appearing in the
massless case becomes a full three-parameter integration

�31�. In order to illustrate it, let us focus on the longitudinal
component of the retarded self-energy, which will be the
only one needed later on. Using the fact that p0, p�m, T and
expanding them accordingly we arrive at

�R
00�p� = �− i�2e2	 d3k

�2
�2�k2 + m2

�
1

e��k2+m2
+ 1

p2 − �pk�2/k2 + m2

�p0 − pk/�k2 + m2 + i��2
. �50�

Note that when m=0 the integral over k= �k� decouples from
the angular integration and can be carried out analytically.
For m�0, however, the integral over k remains in the effec-
tive theory. If we write it in terms of wªk /�k2+m2 �w
� �0,1��, it is clear that the HTL effective Lagrangian for the
photons can be obtained from the one in the massless case
�see, for instance, �22�� by doing the following substitutions:

k̂ → w ,

d� → d3w ,


2

6�2 →
2m2w2

�1 − w2�2�e�m/�1−w2
+ 1�

. �51�

k̂=k /k and d� is the integration measure of the solid angle.

2. The electron sector (NRQED)

We have just seen that the photon sector at finite tempera-
ture is qualitatively different from the zero-temperature one.
Indeed, in the former case a nonlocal HTL effective Lagrang-
ian is produced, which is much more important than the
1 /m2 suppressed terms that arise at zero temperature �last
term in �1��. The question is then whether in the electron
sector something similar will also happen. In order to find
out, we match QED to NRQED in this sector as follows. We
calculate the two-point Green function of an electron with
momentum p� and sandwich it between P+= �1+�0� /2. Then
we make the change p0=m+k0, p=k and expand for k0
−k2 /2m and k small. We will find that, unlike the photon
sector, the expansion is local. Then it will be possible to
identify �Z��k�, the matching coefficient of the nonrelativis-
tic field �P+�=�Z��0��+O�1 /m�, where � stands for the
relativistic Dirac spinor field of the electron�, and ��k�, the
NRQED self-energy,

1 + γ0

2

1 + γ0

2
=

iδZψ(k)

k0 − k2/2m
+

iΘ(k)

(k0 − k2/2m)2
+ · · ·

�52�

In the real time formalism, the propagators consist of a
sum of the zero-temperature part and the thermal part, which
will be proportional to nB for photons and nF for electrons
�nB�F� are the Bose �Fermi� Boltzmann distributions, nB�F�

=1 / �e��ko��1��. If we consider just the contribution of nB
�nF�, we are taking into account the thermal fluctuations of
the photons �electrons�. It is important to note that in the
diagrams we will consider it will never appear nBnF terms
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because of kinematic constraints �we will never have an in-
ternal electron on shell and an internal photon on shell�.
Hence we can write �Z��k�=�Z�

B�k�+�Z�
F�k� and ��k�

=�B�k�+�F�k�.
Let us first consider the contributions from the thermal

fluctuations of the photon to the electron self-energy. We
obtain

�B�k� =

�

3m�2 −

�k2

6m3�2 + O� k4

m3� ,

�Z�
B�k� =

2�



�IA +

k2

6m2� −

�

3m�2 + O� k4

m4� . �53�

Note that �B�k� corresponds to a thermal mass shift �Bm
=
� /3m�2 for the electron. �Z�

B is ir divergent because of
IA:

IA =
�3+�

�3

�−�

�2
��	
0

� dq

q1−��e�q − 1�
=

1

2
�� + ln

��

2

− ln 2� .

�54�

�D−1 is the solid angle in D−1 space dimensions, D=4+�,
�→0, and we have used the MS subtraction scheme. �Z�

B

will be relevant for the calculation presented in Appendix C.
For the thermal fluctuations of the electrons we find a

similar result. �F�k� gives rise to the following thermal mass
shift:

�Fm =
4�m



h�m�� −

2�g�m��

m�2 . �55�

h�m�� and g�m�� are defined in Appendix B. Note that �Fm
above goes to zero exponentially if m�T. �Z�

F�k� is simply
related to the thermal mass shift �Z�

F�k�=−�Fm /m
+O�k2 /m2�.

In principle we should have taken into account the dou-
bling of degrees of freedoms in this calculation, as we did in
the photon sector. However, the off-diagonal �12� compo-
nents of the self-energy vanish for the same kinematical rea-
sons that forbid terms proportional to nBnF above. Hence, the
self-energy is diagonal and we can safely ignore the dou-
bling.

In view of the above results, we may wonder if any QED
Green function involving electrons will match to local
NRQED operators, as is the case of the two-point function,
or new nonlocal HTL vertices will arise. Let us then analyze
the vertex �three-point function with two-electron and one-
photon legs� next. The calculations are presented in detail in
Appendix C, here we summarize only the more important
results. If we just consider the thermal fluctuations of the
photons, the vertex can indeed be matched to local NRQED
operators. In Appendix C we display the modifications of cD
and cS in �2� due to temperature in the case T�m as an
example. However, if we take into account the thermal fluc-
tuations of the electrons we get a nonlocal vertex �see �C8� in
Appendix C�. This vertex is of the same size as the tree level
contribution when the momentum transfer q�m� �the typi-
cal momentum transfer of the bound state at zero tempera-
ture�, and it is suppressed only by a factor e when q�me

�the scale of the Debye mass�. Hence, it turns out to be much
more important than the local contributions arising from the
thermal fluctuations of the photons when T�m. Neverthe-
less, it goes exponentially to zero when T�m.

The effective theory for a nonrelativistic electron in a
thermal bath of T�m �NRQED+HTL� lies then in an inter-
mediate situation between the case T�m �NRQED�, in
which all contributions are local, and the massless case, in
which all contributions are nonlocal �HTL�.

B. Matching NRQED to PNRQED with HTLs

We shall restrict ourselves to the leading order contribu-
tions. The matching is then analogous to the T=0 case,
which leads to the Coulomb potential, but using the HTL
propagator for the �A0� photons. The latter can be obtained
from the retarded self-energy �50� by a standard procedure
�see, for instance, �32��. It reads

�11�p,p0� = i� 1

p2 + mD
2 −

i16�g�m��
�p2 + mD

2 �2p�3� , �56�

where we have used p0�p, p= �p�, and mD
2 and g�m�� are

defined in Appendix B. By Fourier transforming, we obtain
the following real space potential:

V = −
Z�e−mDr

r
+

i16Z�2g�m��

mD

2 �3 ��mDr� , �57�

where

��x� = 2	
0

� dz z

�z2 + 1�2� sin�zx�
zx

� . �58�

Unlike for the T=0 case, now the A0 photon propagates
over arbitrary times, which, together with the fact that its
propagator contains scales, implies that contributions to the
self-energies of both the electron and the nucleus arise.
These read

�m = −
�mD

2
− i

8�2g�m��

mD

2 �3 �59�

for the electron, and the same expression multiplied by Z2 for
the nucleus. In order to perform this calculation we need, in
principle, �11�p , p0� for any kinematical region. However,
due to the fact that �11�p , p0�=�11�p ,−p0� �see, for instance,
�22�� we have

	 dp0
i

p0 + i�
�11�p,p0� = 
�11�p,0� , �60�

and hence the expression �56� is enough to carry out the
calculation. Formulas �58� and �59� are analogous to the re-
sults obtained in �17� for QCD, which we recover in the m
→0 limit by setting Z=1, and changing e2→g2 and the
group factors in mD

2 , namely, 1→CA+Nf /2. Notice, how-
ever, that our calculation is much simpler: only one tree-level
and one one-loop diagram need to be calculated, instead of
the five one-loop diagrams needed in Ref. �17�. It is impor-
tant to realize that �58� has an imaginary part. The HTLs
induce the scale mD�eT, which for m�T dominates over
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the typical momentum scale of the bound state at T=0, p
�m�, and hence dramatic changes in the bound-state dy-
namics are expected to occur. Indeed, if p�mD then the
imaginary part of the potential is more important than the
real one and no bound state is expected to survive. The typi-
cal momentum for which the imaginary part becomes of the
same order as the real one is p��16��1/3g1/3�m��T= :md. md
may be considered as a new dynamical scale in the system,
which is parametrically larger than mD. Notice that both mD
and md have a nonanalytic behavior in m /T: when T be-
comes smaller than m they go exponentially to zero. The
leading behavior of mD and md for T�m reads

mD
2 � 8��
m3

2�
e−m�, �61�

md
2 � �16�m

�2 �2/3

e−2m�/3. �62�

Note that md is exponentially larger than mD. This allows us
to get more explicit expressions for the energy shift and the
decay width of the bound state in the case mD�md� p
�1 /r, upon expanding �58� on mD, and using the asymptotic
expressions for mD and md above,

�Enl = −
�mD�Z − 1�2

2
−

Z�mD
2

2
�nl�r�nl , �63�

�nl = 2�Z − 1�2�� 2


�3m

−
2Z�md

3

3

�nl�r2�ln mDr + � − 4/3��nl . �64�

The expressions above hold up to corrections
O(�mDn2 /m��2). �nl�r�nl= �3n2− l�l+1�� /2Zm� and
�nl�r2�nl= �5n2+1−3l�l+1��n2 /2�Zm��2 can be found in
standard textbooks, and

�nl�r2 ln r�nl =
9n

2�Zm��2

�n − l − 1�!
�n + l�!

� �
r=n−l−4

n−l−1
�2l + 5 + r�

�r + 1�2�n − l − r�2�5 + l − n + r�

��ln
n

2Zm�
+ ��2l + 5 + r�

+ 2��4� − 2��5 + l − n + r�� , �65�

which may be obtained using, for instance, the techniques of
Ref. �33�.

For Z�1 it is interesting to observe that the system de-
velops a decay width that is not exponentially suppressed
�first term in �64��. This is because a charged ion will tend to
capture electrons from the thermal bath to decay into a less
charged ion and eventually into a multielectronic atom. Let
us focus in the Z=1 case. For n large enough, namely, when
m� /n�mD, the approximation that leads to �64� above fails.
However, much before, when m� /n�md, the states n will

melt, namely, their decay width will become of the same
order as the binding energy. Therefore the expressions in
�64� are appropriated for T�m as far as it makes sense to
speak about states with a narrow width.

VI. DISCUSSION AND CONCLUSIONS

We have developed a formalism which allows us to effi-
ciently factorize the various scales appearing in nonrelativis-
tic bound states at finite temperature. It makes use of dimen-
sional regularization and of the known EFTs both for
nonrelativistic bound states �NRQED, PNRQED� and for
finite-temperature systems �HTLs�. We have focused on the
hydrogen atom.

For T�m we have calculated the finite-temperature ef-
fects to the binding energy and the decay width to a precision
equivalent to O�m�5�. We agree with the early results of �1�,
but disagree with others �2–4�. It is interesting to recall how
the finite-temperature effects were experimentally observed
in atoms in the early 1980s �5�. Since En�m�2 /n2, even if
for the ground state E1�T, there will always be n’s, n�1,
for which En�T. For the ground state, finite-temperature
effects may be very small �given by �23� and �24�� but for
highly excited states the thermal mass shift �12� must arise.
Then transitions from highly excited states to the ground
state are sensitive to the thermal mass shift.

For T�m we have restricted ourselves to discussing the
dominant effects due to finite temperature. In the photon sec-
tor, we have described how to obtain the HTL effective La-
grangian for a finite electron mass. It requires the introduc-
tion of an extra integral in addition to the solid angle one. In
the electron sector we have seen that in addition to
temperature-dependent NRQED matching coefficients, new
nonlocal �HTL-like� terms arise. We have calculated the po-
tential at leading order, which develops an imaginary part.
The massless limit of this potential agrees with the Abelian
limit of the one obtained in �17�. The imaginary part domi-
nates over the real one for momentum transfer smaller than
md�e2/3Tg1/3�m��. For T�m, g�m�� increases exponen-
tially from zero when T increases. Then, for a given bound
state, there will always be a temperature for which the soft
scale equals md, and hence the imaginary part �decay width�
equals the real part �energy�. We call this temperature disso-
ciation temperature and have calculated it in Table I for the
lower-lying states. For temperatures higher than the dissocia-
tion temperature, it does not make much sense to speak about
a bound state anylonger.

We then get the following picture of a hydrogen atom in
the ground state when heated from T=0 to T�m. The effects
are very small until T�m�2. Then it starts developing a
width �T�3, which increases with temperature but remains
much smaller than the binding energy until T�m�2. Then it
starts developing a width �T�3, which increases with tem-
perature but remains much smaller than the binding energy
until T�m. Then, the width starts increasing exponentially
and the hydrogen atom ceases to exist.

From our results we can infer some qualitative features of
heavy quarkonium systems in the weak coupling regime �i.e.,
when the binding is due to a Coulomb-type potential� at
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finite temperature. These states satisfy �QCD�m�s
2, �QCD

being a typical hadronic scale. �QCD affects at most the next-
to-leading-order corrections, and hence these states are ex-
pected to be rather insensitive to the QCD deconfinement
phase transition. When the temperature overcomes the ultra-
soft scale �T�m�s

2�, a decay width proportional to the tem-
perature will be developed, analogously to the hydrogen
atom. As the temperature increases further, gluons and light
quarks will induce a HTL imaginary part in the potential
�17�, which will become comparable to the real part when
T�m�s

2/3. No bound state is expected to survive beyond that
temperature. One should keep in mind, however, that only
the ground states of bottomonium ���1S� and �b�, and to a
lesser extent of charmonium �J /� and �c�, are likely to be in
the weak coupling regime �34�.
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APPENDIX A: CALCULATIONS IN PNRQED

1. Self-energy

We proceed to the detailed calculation of the self-energy
in PNRQED. It is convenient to separate it into real and
imaginary parts. The real part is immediate to obtain and has
been given in �16�, so we will focus on the imaginary part.
We expand the Boltzmann distribution function in �15� as
follows:

1

e�k − 1
= −

1

k
�

n

1

n

d

d�
e−n�k, �A1�

and get

Im Iij = −
2

3

�ij

�2
�2�
n

�

�en��q�E1�n��q�� − e−n��q�E*�n��q��� ,

�A2�

where E1�x�=�x
�dte−t / t and E*�x�=−P�−x

� dte−t / t �P stands
for the principal value�. Now we use the following property
of the above functions �30�:

	
0

� t cos�xt�
a2 + t2 dt =

1

2
�eaxE1�ax� − e−axE*�ax�� , �A3�

and get

�
n

�

�en��q�E1�n��q�� − e−n��q�E*�n��q���

= 2	
0

�

dt t cos���q�t��
n

1

n2 + t2 . �A4�

The sum can be carried out using complex variable tech-
niques. We obtain

Im Iij =
2

3

�ijq

�2
�2	
0

� cos���q�t�dt

t tanh�
t�
�tanh�
t� − 
t� . �A5�

Finally, the integral yields

Im Iij =
2

3

�ijq

�2
�2
ln� 2


��q�� + Re �� i��q�
2


�� , �A6�

where ��x�=��x� /�x�

2. Computation of (24)

We derive here the result displayed in �24�. A similar
computation has been done in the past for QCD �28�. How-
ever, �24� cannot be obtained by just taking the Abelian limit
of the QCD result. The latter is singular because it does not

contain the projector P̄n. We will proceed in a way analogous
to �28�, but keeping E�En in the terms in which the limit
E→En does not exist. We set E=En+� with �→0. If we
drop Pn in the numerator of �24� we get

�n�ri 1

H − E
ri�n =

f�n,l�
�

+ g�n,l� + O��� . �A7�

If we included Pn in the numerator we get an exact cancel-
lation of f�n , l�, so that the limit �→0 can be taken safely:

�n�ri 1

H − E
ri�n =	 d3x d3y�n�ri�x�x�

1

H − E
�y�y�ri�n ,

�A8�

we use ri�x=xi�x and the following formula �28�:

TABLE I. Dissociation temperature, Debye mass mD, and dis-
sociation scale md, as a function of the principal quantum number n.
The dissociation �melting� temperature is defined as the temperature
for which the dissociation scale md equals the soft scale mZ� /n.
Note that mD is smaller than the soft scale but much bigger than the
ultrasoft scale m�Z��2 /n2, which is consistent with our
assumptions.

n Td �keV� mD �keV� md �keV�

1 60.4 0.703 3.73

2 50.1 0.284 1.86

3 45.6 0.167 1.24

4 42.9 0.114 0.932

5 40.9 0.0842 0.746
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�x�
1

H − E
�y = �

l=0

�

�2l + 1�Gl�x,y ;E�Pl� xiyi

xy
� , �A9�

with

Gl�x,y ;− k2/�2m�� =
mk



�2kx�l�2ky�le−k�x+y�

��
s=0

�
Ls

2l+1�2kx�Ls
2l+1�2ky�s!

�s + l + 1 − Zm�/k��s + 2l + 1�!
.

�A10�

Note that if E=En then m� /k=n, so we will have a pole at
s=n− l−1. For the angular integration we take into account
that xiyi=xy�xiyi /xy� and combine it with Pl using that

xPl�x� =
�l + 1�Pl+1�x� + lPl−1�x�

2l + 1
. �A11�

We get finally

�n�ri 1

H − E
ri�n =

mkl�n − l − 1�!
n�2k0�5�2l + 1��n + l�!

��
s=0

�
s!�I�l − 1,x,s��2

�s + l − Zm�/k��s + 2l − 1�!

+
mk�l + 1��n − l − 1�!

n�2k0�5�2l + 1��n + l�!

��
0

�
s!�I�l + 1,x,s��2

�s + l + 2 − Zm�/k��s + 2l + 3�!
,

�A12�

with

I�h,x,s� = 2k0	 dx�2k0x�l+3�2kx�he−�k+k0�x

�Ln−l−1
2l+1 �2k0x�Ls

2h+1�2kx� . �A13�

We define k0 so that, En=−k0
2 / �2m�. For terms in the sum

that are well defined when k→k0 we can just put k=k0. For
the terms in the sum that are singular we have to expand for
small � and then subtract the singular part as we mentioned

before. This is indeed what the introduction of P̄n=1− Pn
does. In order to demonstrate it let us look at the Pn part:

�n�ri Pn

H − E
ri�y = −

1

�
	 d3x d3y�n�ri�x�x�Pn�y�y�ri�n .

�A14�

We will proceed in an analogous way as in the calculation
with no projector above, so that the cancellation will become
apparent:

�x�Pn�y = �
l=0

n−1

�2l + 1�Gl�x,y�Pl� xiyi

xy
� , �A15�

where

Gl�x,y� =
mk0



�2k0x�l�2k0y�le−k0�x+y� k0

2

mn

�
�n − l − 1�!Ln−l−1

2l+1 �2k0x�Ln−l−1
2l+1 �2k0y�

�n + l�!
�A16�

is similar to Gl�x ,y ;−k2 /m� above, but the summation for s
is restricted to singular terms. By comparing �A16� and
�A10� we can easily see that the 1 /� terms cancel even be-
fore doing the radial integration. Since the Pn part is propor-
tional to 1 /� �no finite pieces�, we only have to calculate the
finite contribution �in an expansion in �� to the part with no
projector. This can be easily obtained by expanding k about
k0 in �A13� �recall that the derivative of a Laguerre polyno-
mial is a Laguerre polynomial�. The computation can be ter-
minated in an analytic form using

	
0

�

dx e−xLn
k�x�Ln�

k��x�xs = s! �
r=0

min�n,n��

�− 1�n+n�+r�s − k

n − r
�

��s − k�

n� − r
��− s − 1

r
� . �A17�

APPENDIX B: INTEGRALS IN TERMS OF SPECIAL
FUNCTIONS

We give here the definitions of various functions appear-
ing in the paper in terms of one-parameter integrals and pro-
vide expressions in terms of special functions. The Debye
mass can be expressed as

mD
2
ª

8m2

�2
�2e2�2f�m�� + h�m��� , �B1�

where

f�m�� ª
1

m2 	 dk
k2

�k2 + m2�e��k2+m2
+ 1�

= − �
n=1

�

�− 1�nK1�n�m�
n�m

, �B2�

h�m�� ª 	
0

�

dk
1

�k2 + m2�e��k2+m2
+ 1�

= − �
n=1

�

�− 1�nK0�n�m� , �B3�

and g�m�� as
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g�m�� ª �2	
0

�

dk
k

e��k2+m2
+ 1

= m� ln�1 + em�� + Li2�− em�� +

2

6
−

m2�2

2
.

�B4�

K0�x� and K1�x� are Bessel functions and Li2�x� the diloga-
rithmic function.

APPENDIX C: MATCHING THE VERTEX FUNCTION

1. Matching QED to NRQED+HTL

In order to carry out the matching for the vertex function
�� we have to deal with the doubling of degrees of freedom.

There are three external particles in the vertex, and each one
can be of type 1 or type 2 �following the notation of �22��, so
 is a tensor with eight components. But, because of kinetic
constraints, it cannot happen that there is an internal photon
on shell and an internal electron on shell at the same time, so
the only components that are nonvanishing are 111, 121, 212,
and 222 �the middle index corresponds to the photon�. If we
take into account that the matrix elements of the propagators
in the real-time formalism are not independent, we obtain
111=222 and 121=212. Notice also that, for the physics of
an atom with an infinitely heavy nucleus, the only compo-
nents that have a contribution at first order are 111 and 212.

As we did with the self-energy, we calculate first the con-
tribution from the thermal photons. In this case 212=0, so
we only have to calculate the 111 component. The calcula-
tion is done by matching three-point Green functions in QED
and NRQED:

+ + +

�C1�

Zψ[ + + ].=

�C2�

The first row represents QED diagrams �all of them are sand-
wiched between the projectors �1+�0� /2�, and the second
one represents NRQED diagrams. We find

�e = 0, �C3�

cD = 1 +
8�

3

�ln

�m

2

+ � − ln 2 +

5

6
+ O�T2�� , �C4�

�cS = 0 + O��T2� . �C5�

The finite-temperature contribution to cF is irrelevant at first
order for a hydrogen atom since the corresponding operator
contains tranverse photons only. We have restricted ourselves
to calculate the leading order contribution to cD and cS in the
limit of T�m, which is enough for illustration purposes.
This is also justified because for T�m the neglected contri-
butions, as well as the ones taken into account, produce
modifications of the spectrum of order m�5, whereas we will
see in the following that there are contributions from the
thermal fluctuations of the electrons at order m�2, which will
modify the physics of the hydrogen atom in a much more
profound way.

We focus next in the contributions from the thermal elec-
trons. The leading order contribution in QED comes from the
second diagram in �C1�:

�111 = i8
2�me	
0

1 dw

�1 − w2�3/2�e�m/�1−w2
+ 1�

	 d�

�2
�3

��1 −
1

e�m/�1−w2
+ 1

���q0 − q · w� , �C6�

�212 = i4
2�me	
0

1 dw

�1 − w2�3/2�e�m/�1−w2
+ 1�

	 d�

�2
�3

��1 −
1

e�m/�1−w2
+ 1

���q0 − q · w� �C7�

�w=k /�k2+m2, k being the momentum circulating in the
loop�. Note that this contribution is nonlocal and cannot be
matched to any of the NRQED operators. It can be matched
to the following nonlocal operator:

�L =	 d3w f�w�w · E
1

w · �
��i�0 − iw · ���+� , �C8�

where
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f�w� =
�em


2

1

e�m/�1−w2
+ 1

1

w2

1

�1 − w2�3/2�1 −
1

e�m/�1−w2
+ 1

�
�C9�

�E is the electric field�. This operator becomes as important
as the leading order Lagrangian when q�m�, and it is sup-
pressed only by e when q�me, the scale of the Debye mass.
Hence the thermal fluctuations of the electrons have a bigger
impact in the NRQED Lagrangian than any of the relativistic
or radiative corrections.

2. Matching to PNRQED and cancellation of the scale
dependence

The nonlocal vertex above can easily be matched to PN-
RQED at tree level by expanding the energy over the three-
momentum. At leading order we have

�LPNRQED =	 d3w f�w�w · E
1

w · �
��− iw · ���+� .

�C10�

This vertex is ir divergent, so in the calculations in PNRQED
there should appear an ultraviolet divergence, in order to get
a cancellation of the � dependency. It indeed appears in a
diagram of the type

,

�C11�
where the internal lines are now nonrelativistic propagators
for the electrons and HTL propagators for the photons.1

For simplicity, let us check this cancellation in a specific
piece of the tensor vertex �for the remaining pieces it will be
analogous�. We focus on �111, in the case q0→0, and take
into account only the temperature-dependent part in one of
the electron propagators and the zero-temperature part in the
other one, which will be enough for illustration purposes. Let
us call it *.

From the NRQED matching we have �from the first term
in �C6�, by taking q0=0 and undoing the change of variable
w=k /�k2+m2�

* = −
e3


�2
�2�q�	0

� dk�k2 + m2

k�e��k2+m2
+ 1�

. �C12�

Since we are interested in only the ir divergent behavior, we
may substitute the integrand by the following regulated ex-
pression:

* � −
e3
m

�2
�2�q��e�m + 1�
�−�	

0

� dk e−k/m

k1−�

= −
e3


�2
�2�q�
m

e�m + 1

1

�
+ ln�m

�
�� . �C13�

Any calculation in PNRQED+HTL involving the contribu-
tion above will also involve the diagram �C11� with nonrel-
ativistic propagators for the electrons and HTL propagators
for the �A0� photons. Let us take into account only the
temperature-dependent part in one of the two electron propa-
gators and the zero-temperature part in the other one, in ac-
cordance with the evaluation of * above, and call the cor-

responding contribution ̃*. We have

̃* =	 d4k

�2
�4 �− ie�
�− 2
���k0 − k2/2m�

e�m+k0 + 1
�− ie�

�
i

q0 + k0 − �q + k�2/2m + i�
�− ie��11��p − k�,p0 − k0� .

�C14�

Due to the � function and to the fact that p0�p2 /2m� p, we
can use the expression �56� for �11. We focus on the uv
behavior of the expression above, since we are only inter-
ested in identifying the � dependence, which should cancel
that of �C13�. We can then neglect the imaginary part of �11,
which leads to finite expressions, and approximate

̃* � e3m	 d3k

�2
�3

1

e�m + 1

1

− �q · k� + i�

i

�k�2 + mD
2

=
− 
e3m

�e�m + 1��q�
1

�2
�2	
0

� dk k1+�

k2 + mD
2

=
− 
e3m

�e�m + 1��q�
1

�2
�2
−
1

�
+

1

2
ln� �2

mD
2 �� . �C15�

In the second relation we have carried out the angular inte-
gration and introduced DR �neglecting � in the finite pieces�.
If we add * to ̃* we see that the � dependence indeed
cancels, as it should.
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