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The quantitative analysis of the electromagnetic spectra of isolated neutron stars by means of model atmo-
sphere calculations requires extensive data sets of atomic energy values and transition probabilities in intense
magnetic fields. We present a method for the fast computation of wave functions, energies, and oscillator
strengths of medium-Z atoms and ions at neutron star magnetic field strengths B�107 T which strikes a
balance between numerical accuracy and computing times. We use a Hartree-Fock ansatz in which each
single-electron orbital is expanded in terms of Landau states with one longitudinal expansion function, and
each Landau level contributes with a different weight to the orbital. Both the longitudinal expansion functions
and the Landau weights are determined in a doubly self-consistent way. Hartree-Fock equations are solved by
decomposing the z axis in finite elements and expanding the longitudinal wave functions in terms of sixth-order
B-splines. The contributions of the eight lowest Landau levels are taken into account. The procedure can be
efficiently parallelized. Results are presented for the ground states and different excited states of atoms and
ions for nuclear charges Z=2, . . . ,26 and N=2, . . . ,26 electrons, and for oscillator strengths. Wherever pos-
sible, a comparison with the results of previous calculations is made.
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I. INTRODUCTION

The observation of the thermal emission spectra of iso-
lated neutron stars with temperatures of a few 105 K, made
possible by the launch of two x-ray satellites at the end of the
1990’s, the Chandra X-Ray Observatory by NASA and the
XMM-Newton Observatory by ESA, and the subsequent dis-
covery of features in the x-ray spectra of the neutron star 1E
1207 �1,2� and three other isolated neutron stars �3–5� has
given new impetus to studies of atoms and ions with
medium-Z nuclear charge numbers in strong magnetic fields
�6–8�. The reason is that the observed features could be due
to atomic transitions in elements that are fusion products of
the progenitor star, and thus constituents of the thin atmo-
spheres that cover the neutron star surfaces. The elemental
compositions of the atmospheres are presently not yet well
known, and any element between H and Fe is feasible �7�.
However, to calculate synthetic spectra for model atmo-
spheres, and thus to be in a position to draw reliable conclu-
sions from observed spectra to the elemental composition of
the atmospheres and the distribution of elements on different
ionization stages, accurate atomic data for these elements at
very strong magnetic fields are indispensable.

Atomic structure is entirely rearranged in neutron star
magnetic fields since the effects of the magnetic field be-
come of the same order of or even larger than those of the
Coulomb binding. In particular, the familiar shell structure of
atoms is completely lost. While the atomic properties of hy-
drogen and partly also helium at such field strengths have
been elucidated in great detail in the literature over the past
25 years, for elements with nuclear charge numbers Z�2
atomic data with the accuracy required for the calculation of
synthetic spectra are available to a much lesser extent �ref-
erences to the methods used and results obtained can be
found, e.g., in Ref. �9��. The challenge is to develop methods
which allow one to calculate the energies �ground states and

excited states� and oscillator strengths of medium-heavy at-
oms and ions up to iron �Z=26� fast, routinely, and with
sufficient accuracy.

In a parallel approach �9� we have tackled the problem
from the side of diffusion quantum Monte Carlo �DQMC�
simulations. The method has the advantage that ground state
energies can be calculated practically free of approximations.
The price to be paid, however, is computing times, even with
parallelization, of up to a few hours for the heavy elements.
Moreover, so far the DQMC method has been restricted to
ground states.

In this paper we will pursue a different avenue, namely, a
Hartree-Fock approach. Our starting point is the expansion
of the single-electron orbitals from which the Slater determi-
nants are constructed in the complete basis of Landau states
�Landau quantum numbers n�0�, with z-dependent expan-
sion functions for each Landau state �the magnetic field is
assumed to point in the z direction�. The self-consistent cal-
culation of all longitudinal expansion functions would lead
to a computational effort which is comparable to that of the
DQMC method, and thus would entail no progress as far as
the routine production of atomic data with sufficient accu-
racy is concerned. The feature of our approach then is to
introduce the approximation that the expansion functions for
each definite orbital are identical, for all Landau levels, while
each Landau level contributes with a different weight to the
expansion of the single-electron orbital. This approximation
is based on the observation made in calculations for the hy-
drogen atom in a strong magnetic field �10� that the
z-dependent expansion functions belonging to excited
Landau levels essentially follow the character of the expan-
sion function of the lowest Landau level.

Both the z-dependent expansion functions of the indi-
vidual orbitals and their Landau weights are determined self-
consistently. Since the energy terms depend on all longitudi-
nal wave functions and all Landau weights, in each iteration
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step the expansion functions determine the weights, and the
weights the expansion functions. As usual the iteration is
continued until convergence is achieved. The expansion of
orbitals in terms of a sum of given orbitals with unknown
weight coefficients is known in quantum chemistry as a
Hartee-Fock-Roothaan ansatz �see Refs. �11,12��. Since we
describe the longitudinal wave functions by B-spline interpo-
lation on finite elements, we adopt for our method the name
Hartree-Fock-Finite-Element-Roothaan �HFFER� method.

Our method contains as a special case �inclusion of the
lowest Landau level n=0 only� the Hartree-Fock ansatz in
“adiabatic approximation” �13� used in the literature before
�14–17�. Our method also is the self-consistent extension
of the MCPH3 �multiconfigurational perturbative hybrid
Hartree-Hartree-Fock� method introduced by Mori and
Hailey �6�. In that method the exchange energy is taken into
account only in first-order perturbation theory, in a basis of
Hartree states obtained in adiabatic approximation, and the
back-reaction of the excited Landau states, whose weights
are taken into account perturbatively, on the effective inter-
action potentials is neglected. By contrast, our method in-
cludes both exchange terms and Landau weights in a fully
self-consistent way.

In Sec. II we present in detail the constituent stages of our
Hartree-Fock-Finite-Element-Roothaan method. Results are
discussed in Sec. III and conclusions drawn in Sec. IV.

II. THE HFFER METHOD

A. Variational principle

Measuring energies in units of the Rydberg energy ERyd,
lengths in units of the Bohr radius a0, and the magnetic field
strength in units of B0=2�2me

2c2 / �e���4.701�105 T, one
can write the nonrelativistic Hamiltonian of an atom or ion
with nuclear charge Z and N electrons in a uniform magnetic
field as

Ĥ = �
i=1

N �− 	zi,
i,�i
− 2i�

�

��i
+ �2
i

2 + 2�̂zi
−

2Z

�ri�
	

+ �
i,j=1

i�j

N
2

�ri − r j�
. �1�

In Eq. �1�, �=B /B0 is the dimensionless magnetic field pa-
rameter. Since at neutron star magnetic field strengths the
single-particle Coulomb excitation energies are much smaller
than the spin flip energies, i.e., the cyclotron energy
��B��1 keV for B�107 T�, we can restrict ourselves to
electrons in spin-down states and ignore the spin quantum
number in what follows.

The reference magnetic field B0 is characteristic of the
switch-over from Coulomb to magnetic field dominance in
the hydrogen atom. For nuclear charges Z�1 the switch-
over is shifted to the higher magnetic field strengths BZ
=Z2B0�Z2 4.701�105 T. The physical meaning is that for
B=BZ the Larmor radius aL=
2� /eB becomes equal to the
effective Bohr radius aZ=a0 /Z2, and the cyclotron energy is

four times the effective Rydberg energy EZ=Z2ERyd.
The most general Hartree-Fock ansatz is to construct a

Slater determinant

��r1, . . . ,rN� =
1


N!
det��i�
 j,� j,zj�� �2�

from single-electron orbitals which are expanded in the com-
plete basis of Landau states �i�
 ,� ,z�=�n=0

� Pni�z��ni�
 ,��
and to determine the longitudinal expansion functions self-
consistently. Here we make the approximation that, for a
given single-electron orbital, the expansion functions are
identical for all Landau quantum numbers n, while every
Landau level contributes with a different weight coefficient
tin,

�i�
,�,z� = Pi�z��
n=0

NL

tin�ni�
,�� . �3�

For practical reasons the expansion has to be cut off at some
maximum Landau quantum number NL. This approximation
is motivated by the fact that in calculations in the Landau
basis for the hydrogen atom in a strong magnetic field the
overall character of the longitudinal expansion functions was
found to be identical in all Landau levels �cf. Fig. 4.3 in Ref.
�10��. Note that in terms of the Landau states the form �3� is
a true multiconfigurational approach. As already mentioned
the adiabatic approximation �14–17� is contained as a special
case: The weights of all Landau levels are zero except for the
lowest Landau level n=0. The condition for the adiabatic
approximation to be valid is �Z=B /BZ�1, which has the
intuitive meaning that the magnetic field is strong enough
that the “gyration” of the electrons in the plane perpendicular
to the magnetic field in quantized Landau orbits is “fast”
compared with the oscillating motion of the electrons in the
direction of the field, which is caused by the Coulomb attrac-
tion of the positively charged nucleus or core. By contrast
our method will also cover the range of magnetic field pa-
rameters �Z�1, where the adiabatic approximation breaks
down.

The self-consistent-field equations for determining the
longitudinal wave functions Pi�z� and the weights tin of all
orbitals i are obtained in the usual way by inserting the Slater
determinant �2� with the orbitals �3� into the variational prin-
ciple for the total energy. They are solved iteratively in a
doubly self-consistent manner. In every iteration step, first
the Landau weights are kept fixed and the longitudinal wave
functions are obtained by solving the Hartree-Fock equa-
tions. Then the longitudinal wave functions are kept fixed
and new Landau weights are determined by solving the
Hartree-Fock-Roothaan equations. The iteration can be ini-
tialized by adiabatic approximation wave functions, i.e., with
weight vectors ti= �1,0 ,0 , . . . �, and simple forms for Pi�z�.
We next describe the two procedures in more detail.

B. Hartree-Fock finite element (HFFE) procedure

In this step of the iteration all Landau weight coefficients
are fixed, tin=const, and the total energy is minimized with
respect to the expansion functions. This yields the following
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system of Hartree-Fock equations for the longitudinal orbit-
als Pi�z�

�−
d2

dz2 + �i
�L� + Vi�z� − �i + �

j=1

j�i

N

Yij�z�

ci�z�

�Pi�z� = �
j=1

j�i

N

Pj�z�Xij�z� .

hi�z� �4�

They manifestly depend on the Landau weights tin. Specifi-
cally,

�i
�L� = 4��

n=0

NL

�tin�2n �5�

is the average single-particle Landau energy,

Vi�z� = �
n,n�=0

NL

tintin�Vi
�n,n���z� �6�

is the average single-particle potential, built from the effec-
tive Landau-Landau potentials

Vi
�n,n���z� = − 2Z� �

ni
* �r���n�i�r��

�r�
dr�, �7�

and the direct and exchange potentials in Eq. �4� are given by

Yij�z� = �
n,n�,k,k�=0

NL

tintin�tjktjk�Yij
�nk,n�k���z� , �8�

Xij�z� = �
n,n�,k,k�=0

NL

tintin�tjktjk�Xij
�nk,n�k���z� �9�

with

Yij
�nk,n�k���z� = �

−�

�

�Pj�z���2Uij
�nk,n�k���z,z��dz�, �10�

Xij
�nk,n�k���z� = �

−�

�

Pi�z��Pj�z��Aij
�nk,n�k���z,z��dz�, �11�

and the effective two-particle Landau-Landau direct and ex-
change potentials

Uij
�nk,n�k���z1,z2�

= 2� � �
ni
* �r1

���
kj
* �r2

���n�i�r1
���k�j�r2

��

�r1 − r2�
dr1

�dr2
�,

�12�

Aij
�nk,n�k���z1,z2�

= 2� � �
ni
* �r1

���
kj
* �r2

���n�i�r2
���k�j�r1

��

�r1 − r2�
dr1

�dr2
�,

�13�

respectively. The calculation of the potentials �6�, �12�, and
�13� is explained in the Appendix.

To solve Eq. �4� we use finite elements and B-spline in-
terpolation. The z axis is divided into M finite elements with
quadratically widening element borders

Im = �zm−1,zm� for m = 1, . . . ,M

with z0 = 0, zm = �m/M�2zmax. �14�

The quadratic widening accounts for the fact that the wave
functions are richer in structure closer to the nucleus than
further away from it.

The longitudinal part of each single-particle orbital �i�r�
�i�
 ,�� Pi�z� is expanded in terms of B-splines of order k,

Pi�z� = �
l

�l
�i�Bl�z� . �15�

They are polynomials of degree k−1 and represent a decom-
position of the unity on the interpolation interval �see Refs.
�18,19��. The advantage of using B-splines, as opposed to
Lagrange or Hermite interpolation, lies in their global defi-
nition on the interval �0,zmax�. For illustration Fig. 1 shows
an example of a complete quadratic �k=3� B-spline basis set
for quadratically widening element borders. The outer edges
of the interpolation interval have to be considered as k mul-
tiple nodes to guarantee the �k−2� times continuous differ-
entiability over the interpolation interval.

The sequence of nodes defined by Eq. �14� does not be-
long to the class of quasi-uniform grids, which have proved
advantageous in calculations using finite-difference approxi-
mations for differentiation operators �see, e.g., Refs.
�20–22��. This circumstance, however, does not affect ad-

FIG. 1. �Color online� Complete quadratic �k=3� B-spline basis
sets for interpolation in the interval �0, 36� with quadratically wid-
ening nodes. The vertical dashed lines indicate the positions of the
nodes. The borders of the complete interpolation interval are triple
nodes.
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versely the present finite-element calculations using
B-splines, which can be differentiated analytically, and there-
fore no discretization of differentiation operators is required.

The task of finding self-consistent solutions of the
Hartree-Fock equations �4� is now reduced to determining
the expansion coefficients �l

�i� for the N single-electron orbit-
als Pi�z�. Expressing the total energy as as a real-valued
function of all expansion coefficients and minimizing with
respect to the expansion coefficients leads to the system of
inhomogeneous linear equations

Ai�i = bi for i = 1, . . . ,N , �16�

with the matrices

�Ai�kl = �
m=1

M ��
Im

Bk��z�Bl��z� + ci�z�Bk�z�Bl�z�dz	
�17a�

and the vectors

�bi�k = �
m=1

M ��
Im

hi�z�Bk�z�dz	 . �17b�

The functions ci�z� and hi�z� are defined in the Hartree-Fock
equations �4�.

In our calculations, we use sixth-order B-splines and typi-
cally 15–20 finite elements. The maximum integration radius
zmax is chosen such that all longitudinal wave functions have
decayed exponentially �zmax�2–30 atomic units�.

C. Hartree-Fock-Roothaan (HFR) procedure

In the Hartree-Fock-Roothaan step all longitudinal wave
functions are kept fixed and new Landau weight coefficients
are determined by minimizing the energy functional with re-
spect to the coefficients. This leads to the Hartree-Fock-
Roothaan equations

Fiti = �iti for i = 1, . . . ,N , �18�

where the matrices Fi are composed of five contributions

�Fi�nn� = �Fi
�L��nn� + �Fi

�K��nn� + �Fi
�V��nn�

+ �Fi
�Y��nn� + �Fi

�X��nn�. �19�

The five terms represent, in this order, the Landau energy, the
kinetic energy of the longitudinal motion, the effective po-
tential of the nucleus and the direct and the exchange poten-
tials

�Fi
�L��nn� = 4�n�nn�, �20a�

�Fi
�K��nn� = �

−�

�

�Pi��z��2dz�nn�, �20b�

�Fi
�V��nn� = �

−�

�

�Pi�z��2Vi
�n,n���z�dz , �20c�

�Fi
�Y��nn� = �

j=1

j�i

N

�
k,k�=0

NL

tjktjk��
−�

�

�Pi�z��2Yij
�nk,n�k���z�dz ,

�20d�

�Fi
�X��nn� = − �

j=1

j�i

N

�
k,k�=0

NL

tjktjk��
−�

�

Pj�z�Pi�z�Xij
�nk,n�k���z�dz .

�20e�

Since the matrices depend on the Landau weights, the equa-
tions �18� have to be solved iteratively, using the weights of
the previous step for constructing the matrices to determine
new Landau weights, until convergence is achieved. The
converged Landau weights then enter into the next Hartree-
Fock-Finite-Element stage of the calculation. The conver-
gence criterion in both the HFR and the HFFE stage is that
the absolute energy values between two successive iteration
steps differ by less than 1.0�10−5 keV. A schematic flow
chart of the complete Hartree-Fock-Finite-Element-Roothaan
procedure is shown in Fig. 2.

D. Choice of initial wave functions

The calculation is initialized by setting all Landau weights
to ti= �1,0 ,0 , . . . � and distributing the electrons on magnetic
sublevels according to the level scheme of the hydrogen
atom in intense magnetic fields. As simple initial longitudinal
wave functions we choose the approximate wave functions
of the hydrogen atom in a strong magnetic field suggested by
Canuto and Kelly �23�. They have the advantage that they
can be expressed in analytical form. According to the level
scheme one has to distinguish between “tightly bound” and
“hydrogenlike” states.

FIG. 2. �Color online� Simplified flow diagram of the HFFER
algorithm. In the HFFE stage the Hartree-Fock equations are solved
to determine the B-spline expansion coefficient vectors �i of the
orbitals. The converged values �i

conv are handed over to the HFR
stage, where the Hartree-Fock-Roothaan equations are solved to
obtain new converged Landau weights ti

conv, which in turn serve as
“frozen” input for the next HFFE stage of the iteration. Both the
HFFE and the HFR stage are MPI parallelized. Adiabatic approxi-
mation wave functions coefficients �i

ini enter the initial HFFE itera-
tion, with ti

ad= �1,0 ,0 , . . . �.
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1. Tightly bound states

For tightly bound states, with number of nodes �=0, and
magnetic quantum numbers m�0, Gaussian-type orbitals

Pm�z� � exp�−
�m

2

2

z2

aL
2� �21�

are adopted whose widths �m are gained by minimizing the
expectation value of the Hamiltonian of the hydrogen atom
in a magnetic field. This leads to the transcendental equation

�m =
4aL

a0

�

�ln� 2

�m
� − 1 −

1

2
Am	

with A0 ª 0 and Am = �
k=1

−m
1

k
for m � − 1, �22�

which in the code is solved numerically using the Brent
method �24�. The magnetic field dependence is contained in
the Larmor radius aL=a0 /
�.

2. Hydrogen-like states

The effective potentials V�m��z�, obtained by averaging the
electron-nucleus interaction over the Landau state �0m�r��,
have finite values and a cusp at z=0, and behave as 1 / �z� for
large z. They can be modeled by truncated Coulomb poten-
tials V�m��1 / ��z�+dm�. For excited states, with quantum num-
bers m�0, ��0 �“hydrogenlike” states� we therefore
choose as initial wave functions solutions of the one-
dimensional Schrödinger equation with these potentials,
which are Whittaker functions W�,1/2

Pm�z� � W�,1/2��� with � ª
2z

�ma0
+

2dm

�ma0
. �23�

The width parameters dm and the parameter �m follow from
the condition that the expectation values of the exact Cou-
lomb potential and the truncated Coulomb potential coincide.

For excited states with negative z parity �odd number of
nodes �=2p−1� this leads to �23�

�m
odd = p +

2dm
odd

a0
with p = 1,2, . . . , �24a�

dm
odd =

pa0

�m
�ln��m� − 1�, �m =

4p2a0
2

�1 − m�aL
2 , �24b�

while for excited states with positive z parity �even number
of nodes �=2p� one has

�m
even = p +

1

tm +
tm
2 +

�2

3

with p = 1,2, . . . ,

and

tm = − 0.58 −
dm

even

a0
−

1

2
ln�2dm

even

a0
� +

1

24p2 , �25a�

dm
even =
1 − m

�

aL

2
, �25b�

with ��0.577 the Euler-Mascheroni constant. The magnetic
field dependence of the length parameters dm again is con-
tained in the Larmor radius. The Whittaker functions are rep-

TABLE I. Single-particle energies � in adiabatic approximation
�NL=0� and with eight Landau channels �NL=7�, and Landau
weights t0, t1, and t7 for the ground state of neutral silicon at B
=1.0�108 T.

m

NL=0
�E=−18 618 eV�

NL=7
�E=−19 176 eV�

t7� � /eV � /eV t0 t1

0 0 −3279.5 −3692.6 0.98446 0.15886 0.00699

−1 0 −1580.2 −1632.8 0.99710 0.07183 0.00146

−2 0 −1016.7 −1028.9 0.99896 0.04360 0.00053

−3 0 −730.23 −733.28 0.99952 0.02977 0.00024

−4 0 −557.90 −558.29 0.99975 0.02157 0.00012

−5 0 −444.52 −444.07 0.99986 0.01620 0.00007

−6 0 −365.57 −364.90 0.99992 0.01246 0.00004

−7 0 −308.20 −307.54 0.99995 0.00977 0.00003

−8 0 −264.81 −264.23 0.99997 0.00781 0.00002

−9 0 −230.34 −229.87 0.99998 0.00638 0.00001

−10 0 −200.89 −200.52 0.99999 0.00533 0.00001

0 1 −195.17 −187.08 0.99989 0.01429 0.00008

−11 0 −172.45 −172.17 0.99999 0.00455 0.00001

−12 0 −137.67 −137.46 0.99999 0.00389 0.00001

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

1 / ( N L + 1 )

- 1 0 9 . 0

- 1 0 8 . 5

- 1 0 8 . 0

- 1 0 7 . 5

- 1 0 7 . 0

- 1 0 6 . 5

- 1 0 6 . 0

E
[k
eV

]

H F F E R

D Q M C

FIG. 3. �Color online� Energy values obtained by the HFFER
procedure as a function of the inverse number of Landau levels
considered, for the ground state of neutral iron at B=5�108 T. The
value at 1 / �NL+1�=1 corresponds to that of the adiabatic approxi-
mation. For comparison the very accurate result of a DQMC calcu-
lation �9� is shown by the horizontal line. It is seen that the HFFER
values saturate at E�−108.0 keV. The remaining error with regard
to the DQMC result is the consequence of our approximation �3�.
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resented numerically by confluent hypergeometric functions
U�a ,b ,x� which are evaluated in the code using the algo-
rithm of Ref. �25�.

The only free parameter a0 determines the extension of
the initial wave functions. For tightly bound states a0=1 /Z
turned out to be a good choice. In many cases even and odd
initial wave functions with a0=1 yield converging results. In
other cases values a0�1 must be varied separately for even
and odd states to achieve convergence.

III. RESULTS AND DISCUSSION

To speed up the calculations both the Hartree-Fock-Finite-
Element procedure and the Hartree-Fock-Roothaan proce-
dure were parallelized using the MPI �message passing inter-

face� library. Typically each MPI process deals with one
electron. For 26 MPI processes this results in a run time of
less than 500 s for the ground state of iron at B=5�108 T.
The parallelization efficiency was about 80 per cent. Our
calculations were performed on the cacau cluster of the High
Performance Computing Center Stuttgart �HLRS�, where we
used up to 13 double-processor nodes �3.2 GHz, 1 GByte
RAM per node�.

A typical example for the convergence behavior of the
HFFER procedure with increasing number NL of Landau
channels is shown in Fig. 3 for the ground state of neutral
iron at a magnetic field strength of 5�108 T. This corre-
sponds to a magnetic field parameter of �Z�1.57 for which
the adiabatic approximation should be poor. Indeed it can be
seen that the energy value in adiabatic aprroximation �NL
=0� is already considerably lowered if only one more Lan-
dau level is taken into account. With increasing number of
Landau channels the energy runs into a regime of saturation
at E�108.0 keV. For comparison, Fig. 3 contains the result
of a recent highly accurate DQMC calculation �9�. Compared
with the adiabatic approximation energy value the HFFER
procedure reduces the error with respect to the DQMC result
by a factor of 3 �reduction to 1 /3 of the original error�. The
remaining deviation from the correct energy value is less
than 1%, and a consequence of our approximation �3�.

For the ground state of silicon at B=1.0�108 T ��Z
�1.1� Table I lists converged single-particle energy values
of the HFFER procedure and the Landau weights for the two
lowest and the highest Landau channel considered in our
calculations. The adiabatic approximation result E=
−18616 eV is improved to E=−19176 eV by taking eight
Landau channels into account. It can be recognized from the
single-particle energies that it is the innermost electrons
which contribute to the lowering of the energy because they
possess a relatively large first Landau weight coefficient t1.

TABLE II. Energy values in keV for the ground states of the neutral atoms from helium to silicon at B
=5.0�107 T. NL=0: adiabatic approximation; NL=7: HFFER method with 8 Landau channels; DQMC:
released phase diffusion quantum Monte Carlo �9�; MCPH3: multiconfigurational perturbative hybrid
Hartree-Hartree-Fock �6�; 2DHF: two-dimensional Hartree-Fock �26�; 1DHF: one-dimensional Hartree-Fock
�15�. Numbers in brackets designate the number of electrons occuping a one-node excited orbital, all other
electrons are in a tightly bound state.

Z NL=7 NL=0 DQMC MCPH3 2DHF 1DHF

2 −0.4575 −0.4551 −0.4626 −0.4567 −0.46063 −0.454

3 −0.9538 −0.9458 −0.9661 −0.9526 −0.96180 −0.944

4 −1.601 −1.582 −1.622 −1.600 −1.61624 −1.580

5 −2.386 −2.349 −2.421 −2.390 −2.41101 −2.347

6 −3.299 −3.237 −3.349 −3.308 −3.33639 −3.22

7 −4.333 −4.234 −4.402 −4.353 −4.38483 −4.22

8 −5.481 −5.336 −5.573 −5.517 −5.55032 −5.32

9 −6.739 −6.534 −6.857 −6.803 −6.82794 −6.51

10 −8.102 −7.825 −8.250 −8.198 −8.21365 −7.819

11 −9.566 −9.204 −9.752 −9.718 −9.197

12 −11.182�1� −10.728�1� −11.400 −11.410�1� −10.72�1�
13 −12.898�1� −12.330�1� −13.163 −13.251�1� −12.32�1�
14 −14.712�2� −14.019�2� −15.031 −15.246�2� −14.00�1�

FIG. 4. �Color online� Comparison between the longitudinal or-
bitals obtained in adiabatic approximation, and with eight Landau
channels for the ground state of neutral silicon at B=1.0�108 T
�four innermost electrons�. Note the increase of the wave function
amplitude close to the nucleus for NL=7.
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The corrections stemming from the higher Landau quantum
numbers are seen to be small. For the four innermost elec-
trons �magnetic quantum numbers m=0,−1,−2,−3� Fig. 4
shows a comparison between the longitudinal wave functions
obtained in adiabatic approximation, and with eight Landau
channels. It is evident that the energy lowering follows from
the increase of the wave function amplitude in the vicinity of
the nucleus.

We now present numerical results obtained by the HFFER
method with eight Landau channels and compare them with
both the results in adiabatic approximation �NL=0� and the
results of other methods. Table II lists the ground state ener-
gies of the neutral atoms from helium to silicon at 5
�107 T �corresponding to the magnetic field parameter
range �Z=2=26.6 to �Z=14=0.543�. The numbers in brackets
designate the number of electrons occupying an excited hy-
drogenlike single-particle longitudinal state. The improve-
ment on the energy values in the adiabatic approximation is
evident, in particular for higher Z, where the �Z values be-
come of the order of unity. As reference values the results of
the diffusion quantum Monte Carlo calculation �DQMC� �9�
are listed. The DQMC values are presently the most accurate
energy values available, since their calculation practically
involves no restricting approximations. Compared with these
values the absolute error of the adiabatic approximation en-

ergies shrinks by roughly one third for helium, and by two
thirds for silicon �the relative deviation is 1.1% for helium
and 2.1% for silicon�. Deviations of this order as compared
with the DQMC results have been found typical of the
HFFER results with NL=7.

For comparison Table II also contains literature values
obtained by Ivanov and Schmelcher �26� using a two-
dimensional Hartree-Fock method �2DHF�, by Mori and
Hailey �6� �MCPH3, multiconfigurational perturbative hybrid
Hartree-Hartree-Fock�, and the results of an older one-
dimensional Hartree-Fock �1DHF� calculation �15�. The
1DHF results should conincide with the energies calculated
in adiabatic approximation �NL=0� but are clearly seen to lie
above them. This suggests that the old 1DHF results were
numerically flawed. While the 2DHF method is an ab initio
method, the MCPH3 method is not, since it evaluates the
exchange energy in first-order perturbation theory in a basis
of Hartree states obtained in adiabatic approximation, and it
does not include the back-reaction of the excited Landau
states, whose weights are taken into account perturbatively,
on the effective interaction potentials. Therefore the method
need not necessarily produce an upper bound on the energy.
This may explain why for large nuclear charges the MCPH3

results also fall below the accurate DMQC values �Z
=12–14 in Table II�.

TABLE III. Energy values in keV for the ground states of the neutral atoms from helium to iron at B
=1.0�108 T. Designations as in Table II.

Z NL=7 NL=0 DQMC MCPH3 2DHF 1DHF

2 −0.5771 −0.5753 −0.5827 −0.5766 −0.57999 −0.574

3 −1.217 −1.211 −1.230 −1.214 −1.22443 −1.209

4 −2.059 −2.044 −2.081 −2.056 −2.07309 −2.042

5 −3.085 −3.057 −3.122 −3.085 −3.10924 −3.054

6 −4.284 −4.236 −4.338 −4.288 −4.31991 −4.20

7 −5.645 −5.568 −5.716 −5.657 −5.69465 −5.54

8 −7.159 −7.045 −7.252 −7.176 −7.2249 −7.02

9 −8.818 −8.658 −8.938 −8.845 −8.90360 −8.63

10 −10.617 −10.400 −10.766 −10.664 −10.72452 −10.39

11 −12.551 −12.265 −12.725 −12.625 −12.25

12 −14.615 −14.248 −14.827 −14.745 −14.23

13 −16.803�1� −16.351�1� −17.061 −16.973�1� −16.34�1�
14 −19.176�1� −18.618�1� −19.480 −19.408�1� −18.60�1�
15 −21.678�1� −21.001�1� −22.022 −21.987�1� −20.95�1�
16 −24.286�2� −23.480�2� −24.700 −24.718�2� −23.43�2�
17 −27.083�2� −26.129�2� −27.541 −27.618�2� −26.07�2�
18 −30.008�2� −28.889�2� −30.529 −30.766�2� −28.82�2�
19 −33.056�2� −31.755�2� −33.650 −34.036�2�
20 −36.243�3� −34.750�3� −36.891 −37.500�3�
21 −39.574�3� −37.866�3� −40.296

22 −43.026�3� −41.084�3� −43.867

23 −46.617�4� −44.427�4� −47.526

24 −50.342�4� −47.881�4� −51.360

25 −54.179�5� −51.432�5� −55.279

26 −58.167�5� −55.111�5� −59.366 −55.410�5� −55.10�6�
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This behavior is even more conspicuous in Table III
where the ground state energies of the neutral atoms from
helium up to iron are given for the magnetic field strength of
1�108 T �corresponding to the range from �Z=2=53.2 to
�Z=26=0.315�. Compared with the DQMC value for the
ground state energy of iron the HFFER method reduces the
relative deviation of the adiabatic calculation from 7.2% to
2.0%.

The ground-state energies for helium up to iron at B=5
�108 T are given in Table IV �range from �Z=2=266 to
�Z=26=1.57�. Here the HFFER method reduces the error for
iron from 2.7% �adiabatic� to 1.0% �nonadiabatic�.

Compared with the DQMC method the HFFER method
has two essential advantages. Firstly it includes both the cal-
culation of energies and wave functions and thus allows for
the calculation of electromagnetic transition rates. Secondly
the computing times required are considerably shorter. For
the ground state of neutral iron at B=5�108 T �example of
Fig. 3� the parallelized execution of the DQMC method on a
26 processor cluster takes 8.6 h, while the parallelized
HFFER code with eight Landau channnels on the same clus-
ter only runs 463 s. This is 67 times faster than the DQMC
run, and only by a factor of 5.4 longer than the run time of
the simple adiabatic calculation of 85 s. This clearly demon-
strates that the HFFER method is optimally adapted to the

fast and routine calculation of atomic data with sufficient
numerical accuracy in neutron star magnetic fields.

We now proceed to results for oscillator strengths of elec-
tromagnetic transitions. As an example Table V shows the
oscillator strengths for transitions between the carbon ground
state and an excited state in which one electron is raised from
a nodeless to a one-node orbital. Three magnetic field
strengths for which comparison values exist in the literature
are considered, corresponding to values of the magnetic field
parameter �=200,500,1000 ��Z=6=5.6,13.9,27.8�. Results
are shown for NL=7 and for the adiabatic approximation, and
compared with the values given by Mori and Hailey �6�
�MCPH3�. It must be noted that the latter values were cor-
rected by the authors on account of the not highly accurate
longitudinal Hartree wave functions by an auxiliary factor. It
can be seen that the oscillator strengths are comparable in
magnitude but deviations from the adiabatic approximation
results and those obtained with MCPH3 appear in particular
in excitations at intermediate magnetic quantum numbers.

The HFFER method aims at the calculation of large atoms
and ions in intense magnetic fields. As an example, Table VI
shows results for iron ions with 5 �Fe XXII� to 25 �Fe II� elec-
trons in a magnetic field of 5�108 T. The table lists the
energies of the ground state and an excited state in which the
electron with the maximum modulus of the magnetic quan-

TABLE IV. Energy values in keV for the ground states of the neutral atoms from helium to iron at B
=5.0�108 T. Designations as in Table II.

Z NL=7 NL=0 DQMC MCPH3 2DHF 1DHF

2 −0.9596 −0.9589 −0.9664 −0.9574 −0.96191 −0.9580

3 −2.083 −2.080 −2.103 −2.078 −2.08931 −2.0760

4 −3.598 −3.591 −3.630 −3.586 −3.61033 −3.5840

5 −5.479 −5.465 −5.525 −5.478 −5.49950 −5.4560

6 −7.704 −7.679 −7.766 −7.695 −7.73528 −7.60

7 −10.254 −10.214 −10.343 −10.231 −10.29919 −10.20

8 −13.115 −13.054 −13.224 −13.099 −13.17543 −13.00

9 −16.272 −16.185 −16.412 −16.264 −16.34997 −16.10

10 −19.712 −19.592 −19.881 −19.702 −19.81072 −19.57

11 −23.425 −23.267 −23.635 −23.406 −24.64

12 −27.402 −27.197 −27.655 −27.436 −27.17

13 −31.633 −31.374 −31.931 −31.675 −31.35

14 −36.111 −35.789 −36.442 −36.154 −35.74

15 −40.829 −40.435 −41.203 −40.915 −40.35

16 −45.780 −45.306 −46.214 −45.881 −45.22

17 −50.957 −50.393 −51.445 −51.067 −50.30

18 −56.356 −55.693 −56.894 −56.530 −55.95

19 −61.971 −61.198 −62.584 −62.181

20 −67.798 −66.904 −68.447 −68.031

21 −73.919�1� −72.902�1� −74.669 −74.184�1�
22 −80.275�1� −79.116�1� −81.071 −80.602�1�
23 −86.844�1� −85.533�1� −87.633 −87.263�1�
24 −93.623�1� −92.146�1� −94.561 −94.259�1�
25 −100.61�1� −98.952�1� −101.615 −101.25�1�
26 −107.96�2� −106.13�2� −109.079 −108.64�2� −106.09�2�
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tum number is raised into a one-node orbital, while all other
electrons successively occupy nodeless orbitals with decreas-
ing m. In addition, the oscillator strengths of transitions from
the excited to the ground states are given. To emphasize the
improvement over the adiabatic approximation, the corre-
sponding results for NL=0 are also tabulated. Finally ground
state energy values of the DQMC calculation are also shown.

It can be seen that the relative deviation of the ground state
energies from the DQMC values are reduced from 6.8%
�adiabatic� to 2.0% �nonadiabatic� for Fe XXII, and from
2.6% to 0.9% for Fe II.

Oscillator strengths are found to be very large when in the
ground state none of the electrons occupies a one-node or-
bital �N=5–11�. If in the ground-state configuration elec-

TABLE V. Oscillator strengths of transitions to the carbon ground state at three values of the magnetic
field parameter �. The transitions occur between the orbitals �m*,0�↔ �m*,1�, all other other electrons
remain in their nodeless orbitals �m ,0�. NL=0: adiabatic approximation; NL=7: HFFER with eight Landau
channels; MCPH3: results of Ref. �6�.

�m ,��↔ �m� ,���

�=200 �=500 �=1000

NL=7 NL=0 MCPH3 NL=7 NL=0 MCPH3 NL=7 NL=0 MCPH3

�0,0�↔ �0,1� 0.0416 0.0477 0.0410 0.0118 0.0126 0.0130 0.00603 0.00628 0.00581

�−1,0�↔ �−1,1� 0.0675 0.0708 0.0598 0.0264 0.0270 0.0225 0.0150 0.0152 0.0128

�−2,0�↔ �−2,1� 0.0988 0.101 0.0797 0.0447 0.0450 0.0392 0.0268 0.0268 0.0247

�−3,0�↔ �−3,1� 0.135 0.136 0.114 0.0667 0.0668 0.0611 0.0413 0.0412 0.0377

�−4,0�↔ �−4,1� 0.172 0.172 0.156 0.0917 0.0916 0.0863 0.0585 0.0584 0.0572

�−5,0�↔ �−5,1� 0.205 0.205 0.197 0.119 0.119 0.116 0.0794 0.0792 0.0783

TABLE VI. Iron ions with 5�N�25 electrons: ground state energies E in keV, energies of excited states
E* in keV, and oscillator strengths f at B=5.0�108 T. In the excited states the electron with the highest �m�
is raised to a �=1 orbital, the others occupy a nodeless orbital. For the ground states, the number of electrons
in one-node orbitals is added in brackets. HFFER �NL=7� values are compared with the corresponding
adiabatic �NL=0� results. The last column contains the ground state energies computed by diffusion quantum
Monte Carlo �9�.

N

NL=7 NL=0 DQMC

E E* f E E* f E

5 −58.267 −54.494 0.882 −56.455 −52.708 0.890 −59.141

6 −64.214 −60.973 0.891 −62.386 −59.161 0.896 −65.079

7 −69.466 −66.630 0.896 −67.629 −64.802 0.900 −70.362

8 −74.143 −71.627 0.899 −72.298 −69.790 0.902 −75.047

9 −78.327 −76.077 0.900 −76.478 −74.232 0.903 −79.250

10 −82.083 −80.056 0.899 −80.231 −78.207 0.902 −82.992

11 −85.459 −83.625 0.898 −83.604 −81.773 0.900 −86.375

12 −88.617�1� −86.827 0.300 −86.773�1� −84.986 0.216 −89.550

13 −91.469�1� −89.848 0.312 −89.624�1� −88.005 0.229 −92.401

14 −94.018�1� −92.548 0.323 −92.172�1� −90.703 0.241 −94.979

15 −96.291�1� −94.957 0.333 −94.445�1� −93.111 0.252 −97.238

16 −98.310�1� −97.100 0.340 −96.463�1� −95.253 0.261 −99.260

17 −100.09�1� −98.997 0.346 −98.247�1� −97.151 0.269 −101.06

18 −101.66�1� −100.67 0.350 −99.811�1� −98.822 0.275 −102.64

19 −103.02�1� −102.13 0.351 −101.17�1� −100.28 0.279 −104.00

20 −104.19�2� −103.35 0.0758 −102.35�2� −101.51 0.0487 −105.12

21 −105.22�2� −104.48 0.0822 −103.39�2� −102.64 0.0552 −106.19

22 −106.08�2� −105.43 0.0858 −104.24�2� −103.59 0.0599 −107.08

23 −106.77�2� −106.22 0.0841 −104.93�2� −104.38 0.0607 −107.70

24 −107.31�2� −106.85 0.0721 −105.47�2� −105.01 0.0541 −108.26

25 −107.70�2� −107.34 0.0447 −105.86�2� −105.51 0.0345 −108.70
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trons occupy orbitals with one node the oscillator strengths
are generally much smaller because of less overlap between
the two states. The relative corrections of the oscillator
strengths in adiabatic approximation by the HFFER results
are large in particular for transitions with small oscillator
strengths �up to �50% for the entries with N�20�, while for
large oscillator strengths the adiabatic calculation yields a
good approximation. This may be due to the fact that the
errors in the energy values cancel when the difference of the
energy values is taken.

IV. CONCLUSIONS

In this paper we have introduced the Hartee-Fock-Finite-
Element-Roothaan method. We have demonstrated that it is a
powerful tool with which the energies and wave functions of
ground states and excited states of many-electron atoms and
ions in neutron star magnetic field strengths can be calcu-
lated. It also allows the calculation of oscillator strengths of
bound-bound transitions between the states.

We have not considered relativistic effects, which are ex-
pected to be on the order of �Z��2, and the effects of the
finite nucleus mass. These effects are small compared with
the observational uncertainties of spectral features and the
smearing of spectral lines by the variation of the magnetic
field across the neutron star’s atmosphere.

The method systematically takes into account the influ-
ence of higher Landau channels on both energy values and
oscillator strengths, and is superior to previous calculations
using the adiabatic approximation or variants of it, at only a
moderately higher computational expense. The method
strikes a balance between numerical accuracy and computing
times. It is therefore well adapted to routine computatons of
the atomic data required by astronomers for their calcula-
tions of synthetic spectra of model atmospheres of magne-
tized neutron stars. Calculations of extensive tables of atomic
data in neutron star magentic fields using the HFFER method
presented in this paper are under way.
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APPENDIX: EFFECTIVE POTENTIALS

The calculation of the effective potentials �6�, �12�, and
�13� resorts to the method developed by Pröschel et al. �27�.
The effective potentials can all be expanded in terms of the
expectation values of the Coulomb potential with respect to
the Landau states in the lowest Landau level and with differ-
ent magnetic quantum numbers mi=−s �s=0,1 ,2 , . . . �,
which are given by the z-dependent functions

Ṽs�z� =
1

s!
�

0

� xse−x


x + z2
dx . �A1�

The expansions read

Vi
�n,n���z� = − 2Z
� �

s=�mi�

n+n�−mi

bis
�n,n��Ṽs�
�z� , �A2�

Uij
�nk,n�k���z1,z2� = 
2��

s=0

q

cijs
�nk,n�k��Ṽs�
�/2�z1 − z2�� ,

�A3�

Aij
�nk,n�k���z1,z2� = 
2��

s=0

q

dijs
�nk,n�k�� � Ṽs�
�/2�z1 − z2�� ,

with q = n + k + n� + k� − mi − mj . �A4�

The expansion coefficients are given by �27�

bis
�n,n�� =
�n − mi�!�n� − mi�!

n!n�!

�− 1�s+�mi�s!

�s + �mi��!

� �
k=0

n

�
k�=0

n�

k+k�=s−�mi�

�n

k
��n�

k�
��s + �mi�

k + �mi�
� , �A5�

cijs
�nk,n�k�� = c̃�n − mi,k − mj,n� − mi,k� − mj;n,k,n�,k�;s� ,

�A6�

dijs
�nk,n�k�� = c̃�n − mi,k − mj,k� − mj,n� − mi;n,k,k�,n�;s� ,

�A7�

where the auxiliary functions c̃ are defined by

c̃�s1,s2,s1�,s2�;n1,n2,n1�,n2�;s�

=
1

s!

s1�!s2!n1�!n2!

s1!s2�!n1!n2�!

� �
i,j,k,l

��1

2
�q−i−j−k−l �− 1��s1�−i�+�s2−j�+�n1�−k�+�n2−l�

�s1� − i�!�s2 − j�!�n1� − k�!�n2 − l�!

� �s1

i
��s2�

j
��n1

k
��n2�

l
�

��q − i − j − k − l�!�i + j + k + l − q�s	 . �A8�

In Eq. �A8� in the second-last bracket the integer q is given
by q= �n1+n2+n1�+n2�+s1+s2+s1�+s2�� /2, and the last bracket
with a subscript denotes a Pochhammer symbol �rising fac-
torial� defined by �x�n=x�x+1�¯ �x+n−1�. Finally, the sum-
mation boundaries in the quadruple sum are i=0, . . . ,
min�s1 ,s1��, j=0, . . . ,min�s2 ,s2��, k=0, . . . ,min�n1 ,n1��, l
=0, . . . ,min�n2 ,n2��.
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In this work, the b, c and d coefficients were computed
separately for 8 Landau channels �0�n�NL=7� for the
magnetic quantum numbers m=0 to m=−25 with an
accuracy of 25 decimal digits and stored in data and pointer

fields. At each program call the fields necessary for a
given configuration were read in. The coefficients are dis-
tributed over the cluster nodes used in the parallelized
calculation.
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