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Variational calculations for the energy levels of doubly excited 3dnf �1,3D�� states �n=4–12� for helium
have been performed using the extended Hylleraas basis set. No previous calculations for the energy eigen-
values for the 3dnf �1,3D�� states for �n=7–12� exist. Prediction of two-electron–one-photon peaks at 12.220,
12.649, 12.859, 12.978, 13.054, 13.110, 13.141, 13.168 and 13.213 eV corresponding to the transitions 2p2

�3Pe�→3dnf �3D�� �n=4–12�, respectively, is reported here. Highly precise energy eigenvalues of doubly
excited 2pnd states �1,3D�� �n=3–8� for helium are also reported and the upper bound energies are the lowest
yet obtained. The effective quantum numbers �n*� of the above mentioned states are calculated using quantum
defect theory.
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I. INTRODUCTION

Two-electron–one-photon transitions in atoms were pre-
dicted long ago by Heisenberg �1�, Condon �2�, and
Goudsmit and Gropper �3�. After almost thirty years, Mad-
den and Codling �4� first observed the two-electron–one-
photon peaks while recording the photoabsorption spectra of
helium placed in the field of synchrotron radiation. Since
then, the study of doubly excited states of heliumlike sys-
tems has become a subject of interest of both theoreticians as
well as experimentalists. A detailed list of references is given
in a recent publication by Bhattacharyya et al. �5�. It is now
well known that the origin of the three series of two-
electron–one-photon peaks of heliumlike systems are due to
the transitions between 1s2 �1Se� �lying below the N=1 ion-
ization threshold of He+� and three 1P� states �sp ,2n+ �,
�sp ,2n− � and �2pnd� �lying below the N=2 ionization
threshold of He+�. With improved experimental technique
due to Domke et al. �6� and Schulz et al. �7�, the respective
three series for helium have been observed within accuracy
limits of 4 and 1 meV, respectively.

In a recent paper, the possibilities of observing another set
of three series of two-electron–one-photon peaks due to the
transitions from 2p2 �3Pe� state �lying below the N=2 ion-
ization threshold of He+� to three 3D� states �pd ,3n+ �,
�pd ,3n− �, and �3dnf� �lying below the N=3 ionization
threshold of He+� are given by Bhattacharyya et al. �5� and
energy values were predicted for the first three members of
the third �3dnf� Rydberg series of helium originating from
the lowest 3Pe→3dnf �3D�� �n=4,5 ,6� transitions. In this
paper, we extend the doubly excited state wave function of
Bhattacharyya et al. �5� to estimate the energy of 2pnd

�1,3D�� �n=4–8� of helium and the energy of 3dnf �1,3D��
�n=7–12� states using elaborate trial basis functions.

II. METHOD

The 1,3D state wave function of odd parity due to the �df�
configuration of two electrons is given by

� = sin �12���f � f̃�cos 1
2 �12�5 cos �12 − 1��D2

1+

+ ��f � f̃�sin 1
2�12�5 cos �12 + 1��D2

1−� , �1�

where the D’s are the rotational harmonics depending on
Eulerian angles �, �, � �8�. The upper sign in Eq. �1� corre-
sponds to the singlet state and the lower sign to the triplet
state.

The trial wave function f�r1 ,r2 ,r12� is given by

f�r1,r2,r12� = �b1�1�1��1�2� + b2�1�1��2�2�

+ b3�2�1��2�2��g�1,2� , �2�

where

g�1,2� = r1
3r2

2�
l�0

�
m�0

�
n�0

Clmnr1
l r2

mr12
n , �3�

�i�j� = e−	irj , �4�

and

f̃ = f�r2,r1,r12� , �5�

b1, b2, b3 are linear parameters, and 	 is the nonlinear pa-
rameter. The symbols used are the same as in Bhattacharyya
et al. �5�. The energy eigenvalues are determined by the ma-
trix diagonalization method. We use atomic unit throughout.
The nonlinear parameters 	1 and 	2 are optimized by the
Nelder-Mead procedure �9�. We have carried out all calcula-
tions in quadruple precision.
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Transforming the rotational harmonics D2
1+ �� ,� ,�� and

D2
1− �� ,� ,�� in polar angles of two electrons ��1, �1; �2, �2�,

it can easily be shown that the wave function � given by Eq.
�1� corresponds to the configuration �df� for two electrons
with angular momentum equal to 2. Similarly it can be
shown �5� that the wave function � given in Eq. �1� with a
replacement in the �12 dependent part associated with D2

1+

and D2
1− by sin �12 cos 1

2 �12 and sin �12 sin 1
2�12, respec-

tively, represents the 1,3D� state wave function due to �pd�
configuration. The separability of odd parity D states into
�pd� and �df� configurations is remarkable. It is interesting to
note that the 1,3D� state wave functions due to the �pd� and
�df� configurations are orthogonal to each other. This can be
demonstrated easily by performing integrals over the �12 part
of the respective wave functions. The above physical inter-
pretation of Eq. �1� enables us to apply the Hylleraas-
Undheim theorem �10� successfully to obtain the energy val-
ues of the first nine 1,3D� states of helium due to �df�
configuration.

The aim of the present paper is to raise the question of
whether or not the mixing of �pd� and �df� configurations in
1,3D� state is inherent in nature. Bhatia �11� included both the
configurations and obtained the energy values of 2pnd
�1,3D�� states by using the Ritz variational method. Accord-
ing to Bhatia �11� this mixing of �pd� and �df� configurations
is necessary to facilitate only the convergence of energy ei-
genvalues. In the previous paper �5� we have calculated only
the energy of the 2p3d �1,3D�� state of helium by excluding
the �df� configuration and obtained the lower energy values
than that of Bhatia �11� without loss of convergence. The
present calculation for the energy eigenvalues of the 2pnd

�1,3D�� state with n=4–8 also confirms the fact that better
energy eigenvalues without loss of convergence can be
achieved by excluding �df� configuration. Besides excluding
�pd� and �df� configuration mixing our basis set differs from
that of Bhatia �11� in the sense that we used the triple expo-
nential basis set as is evident from expression �2� whereas
Bhatia �11� adopted the single exponential basis set. The ef-
fect of �pd� on �df� configuration cannot be studied within
the purview of the Ritz variational method. Complex rotation
�12� or stabilization methods �13� may be useful for this
purpose.

We have calculated the effective quantum number n* for
3dnf �1,3D�� �n=4–12� and 2pnd �1,3D�� �n=3–8� states of
helium by using the formula �14� given by

E = −
1

2
�	 Z

N

2

+ 	Z − 1

n*

2� , �6�

Where E is the energy of the state below total ionization, N is
the inner electron quantum number, and Z is the atomic
number.

III. RESULTS AND DISCUSSION

The energy eigenvalues of different 3dnf �3D��
�n=4–12� states of helium are given in Table I. In the first
column of Table I the total number of terms �M� in the wave-
function is given. In other columns, the energy values of
different states are shown in accordance with increasing M.
A similar presentation of the energy eigenvalues for 3dnf
�1D�� �n=4–12� states of helium is given in Table II. Avail-

TABLE I. Nonrelativistic energy eigenvalues −E �a.u.� and effective quantum numbers �n*� for 3dnf �n=4–12� 3Do states of helium. 	1,
	2 are the nonlinear parameters.

M

3d4fa

	1=0.3233
	2=0.6777

3d5fa

	1=0.2581
	2=0.6590

3d6fa

	1=0.1113
	2=0.6451

3d7f
	1=0.1402
	2=0.6825

3d8f
	1=0.1135
	2=0.6664

3d9f
	1=0.0781
	2=0.4371

3d10f
	1=0.1171
	2=0.6096

3d11f
	1=0.1223
	2=0.6548

3d12f
	1=0.1285
	2=0.6797

12 0.25888 0.24366 0.23506 0.20255 0.18024 0.16615 0.14715 0.13706 0.13102

27 0.25949 0.24487 0.23712 0.23280 0.21651 0.18863 0.19106 0.18040 0.15592

51 0.25994 0.24509 0.23757 0.23330 0.23047 0.20371 0.20465 0.19665 0.19141

84 0.26049 0.24528 0.23773 0.23345 0.23063 0.22230 0.21085 0.20522 0.19933

129 0.26061 0.24537 0.23782 0.23349 0.23072 0.22463 0.22513 0.20993 0.20347

186 0.26088 0.24545 0.23786 0.23351 0.23075 0.22750 0.22717 0.22285 0.21126

258 0.26105 0.24553 0.23790 0.23353 0.23076 0.22842 0.22754 0.22579 0.21904

345 0.26125 0.24560 0.23792 0.23354 0.23077 0.22867 0.22758 0.22643 0.22342

450 0.26142 0.24566 0.23795 0.23357 0.23078 0.22872 0.22759 0.22659 0.22493

0.2501b 0.2402b

0.251106c 0.240946c 0.235351c

0.2512d 0.2403d

0.25118595e

n* 3.5715298 4.6187748 5.6383408 6.6378830 7.6437152 8.7720798 9.6513427 10.699284 13.588718

aReference �5�.
bReference �20�.
cReference �14�.
dReference �21�.
eReference �12�.
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able other theoretical energy values of 3dnf �1,3D��
�n=4–6� states of helium are included in Tables I and II for
a comparison with the present results. The energy of the
2p2 �3Pe� state of helium is taken as −0.710 50 a.u. �15�.

Energy eigenvalues of different 2pnd �1,3D�� �n=3–8�
states are displayed in Tables III and IV, respectively. The
energy eigenvalues for 2pnd�1,3D�� �n=3–6� states as ob-
tained by Bhatia �11� are included in Tables III and IV for
comparison with the present results. It is remarkable that for
a given number of terms �M� the results of the present basis
set are better than those of Bhatia �11�, e.g., our results of the
2p4d �3D�� state for the 69-parameter calculation is better
than that of the 112-parameter calculation of Bhatia �11�;
again, our 51-parameter result for 2p5d �1D�� is better than
that of the 112-parameter result of Bhatia �11� as is evident
from the data presented in Tables III and IV, respectively.
Substantial reduction of the number of terms i.e., the basis
set size, is a clear advantage of the present method for a
particular energy value. To the best of our knowledge, the
nonrelativistic energy eigenvalue obtained by us for each of
the 2pnd �1,3D�� �n=3–8� states is the lowest yet obtained
and is in good agreement with the experimental value ob-
tained by Berry et al. �16�. Recently Coreno et al. �17� ob-
served 2p7d and 2p8d�3D�� states of helium by photon in-
duced fluorescence spectroscopy. Present results of 65.126
and 65.194 eV for 2p7d and 2p8d, states, respectively, are in
reasonably good agreement with those observed by Coreno
et al. �17�. The latest calculation of energies of 2pnd �3D��
�n=3–8� states is due to Zitnik et al. �18�. They added a
spin-orbit mixing term to the nonrelativistic Hamiltonian and
expanded the wave functions in a basis set which contains

272 configuration state functions of symmetry 3D� and 393
functions for each symmetry 1P� and 3P�. Although it was
noted that energy of the 2pnd �3D�� states is lowered for a
fraction of meV due to the spin-orbit interaction with the
neighboring n+ 1P� state, present results show that nonrela-
tivistic �correlation� effects are still more important to accu-
rately determine the energy states with low n. For example,
for the 2p4d�3D�� state we obtained energy −0.532 678 a.u.
compared to −0.532 541 a.u., the value obtained by Zitnik et
al. �18�. This confirms the well known fact that the Hylleraas
basis set is much more effective in describing correlations
than expansion in terms of single configurations in the cen-
tral field of hydrogenlike helium. The calculated effective
quantum numbers for 3dnf �1,3D�� �n=4–12� and
2pnd �1,3D�� �n=3–8� states of helium are displayed in the
last line of each Table I–IV. From a closer look on the ef-
fective quantum number values, we observe loss of accuracy
for higher n values. This is possibly due to the finite size of
the basis set. For higher n values like 3d11f and 3d12f �3D��,
more accurate energy values can be achieved by increasing
the number of parameters in the basis set. As there were no
prior results for these states, the present results may serve as
a future reference.

Different theoretical methods have been applied to incor-
porate electron correlation effects in the doubly excited states
of two electron atoms. Calculations involving the group the-
oretical approach by Herrick and Sinanoglu �19� �compiled
by Shearer-Izumi �20��, truncated diagonalization method by
Lipsky et al. �14�, pseudopotential Feshbach formalism by
Bachau et al. �21�, a complex rotation method by Ho and
Bhatia �12�, were performed to estimate energy values of

TABLE II. Nonrelativistic energy eigenvalues −E �a.u.� and effective quantum numbers �n*� for 3dnf �n=4–12� 1Do states of helium.
	1, 	2 are the nonlinear parameters.

M

3d4fa

	1=0.3663
	2=0.7268

3d5fa

	1=0.2655
	2=0.6354

3d6fa

	1=0.1211
	2=0.6351

3d7f
	1=0.1401
	2=0.6977

3d8f
	1=0.1072
	2=0.6647

3d9f
	1=0.1297
	2=0.5235

3d10f
	1=0.1153
	2=0.6125

3d11f
	1=0.1128
	2=0.6310

3d12f
	1=0.1240
	2=0.6630

12 0.26018 0.24438 0.23592 0.20236 0.17992 0.17371 0.15529 0.14653 0.13825

27 0.26114 0.24556 0.23758 0.23312 0.20696 0.20071 0.19196 0.18483 0.17808

51 0.26130 0.24563 0.23788 0.23341 0.23054 0.20908 0.20572 0.19752 0.19179

84 0.26183 0.24576 0.23801 0.23359 0.23075 0.22361 0.21230 0.20871 0.20069

129 0.26213 0.24587 0.23807 0.23364 0.23081 0.22754 0.22562 0.21321 0.20724

186 0.26244 0.24600 0.23811 0.23367 0.23084 0.22843 0.22734 0.22451 0.21386

258 0.26261 0.24606 0.23815 0.23369 0.23086 0.22888 0.22760 0.22624 0.22063

345 0.26284 0.24612 0.23819 0.23371 0.23087 0.22896 0.22763 0.22660 0.22418

450 0.26299 0.24617 0.23822 0.23373 0.23088 0.22897 0.22764 0.22661 0.22530

0.2513b 0.2410b

0.252640c 0.241913c 0.235935c

0.2528d 0.2416d

0.252743435e

n* 3.5020834 4.5693286 5.5905582 6.5915761 7.5994434 8.6080467 9.6067040 10.674872 12.725123

aReference �5�.
bReference �20�.
cReference �14�.
dReference �21�.
eReference �12�.
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TABLE III. Nonrelativistic energy eigenvalues −E �a.u.� and effective quantum numbers �n*� for 2pnd �n=3–8� 3Do states of helium. 	1, 	2 are the nonlinear parameters.

M

2p3da 2p4d 2p5d 2p6d 2p7d 2p8d

Bhatiab

Present
	1=0.390 205 72
	2=0.989 089 83 Bhatiab

Present
	1=0.264 085 22
	2=1.005 384 78 Bhatiab

Present
	1=0.203 105 91
	2=0.996 510 74 Bhatiab

Present
	1=0.172 479 28
	2=1.002 961 38

Present
	1=0.172 479 30
	2=1.002 962 40

Present
	1=0.160 000 00
	2=0.990 000 00

8 0.558858 81 0.531554825

12 0.559233 91 0.532491 37 0.510118 05

20 0.559294 75 0.532542790 0.517015550

27 0.559324 23 0.532654 25 0.520674 22

40 0.559325785 0.532669585 0.520590355 0.508968105

51 0.559328 07 0.532676 73 0.520700 51 0.514282 88

69 0.559328 23 0.532678 49 0.520703 18 0.514287 86

70 0.559328 16 0.532674725 0.520682045 0.513684750

84 0.559328 24 0.532678 51 0.520703 20 0.514287 88 0.509617 98

111 0.559328 25 0.532678 59 0.520703 42 0.514288 26 0.510378 84

112 0.559328 25 0.532678075 0.520693865 0.514235780

129 0.559328 26 0.532678 59 0.520703 43 0.5142882 66 0.510378 85

186 0.559328 26 0.532678 60 0.520703 45 0.5142882 97 0.510448 40

258 0.559328 26 0.532678 60 0.520703 45 0.5142883 03 0.510452 67 0.507945 30

n* 2.9030053 3.9115058 4.9147319 5.9151926 6.9171446 7.9355083

aReference �5�.
bReference �11�.
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TABLE IV. Nonrelativistic energy eigenvalues −E �a.u.� and effective quantum numbers �n*� for 2pnd �n=3–8� 1Do states of helium. 	1, 	2 are the nonlinear parameters.

M

2p3da 2p4d 2p5d 2p6d 2p7d 2p8d

Bhatiab

Present
	1=0.396 016 60
	2=0.975 740 14 Bhatiab

Present
	1=0.263 635 30
	2=0.959 997 94 Bhatiab

Present
	1=0.206 658 23
	2=0.993 129 72 Bhatiab

Present
	1=0.172 479 28
	2=1.002 961 38

Present
	1=0.102 777 00
	2=0.950 412 84

Present
	1=0.127 603 85
	2=1.438 851 27

8 0.562662 06 0.529565525

12 0.563676 20 0.534372 24 0.515562 81

20 0.563733795 0.533483235 0.519026430

27 0.563795 27 0.534556 23 0.521587 79

40 0.563796245 0.534505525 0.521244140 0.504391695

51 0.563799 81 0.534575 24 0.521655 64 0.514815 61

69 0.563800 29 0.534576 23 0.521658 74 0.514832 53

70 0.563800235 0.534562695 0.521602520 0.512079175

84 0.563800 37 0.534576 25 0.521658 75 0.514832 55 0.510436 32

111 0.563800 41 0.534576 35 0.521658 98 0.514833 52 0.510725 47

112 0.563800405 0.534576015 0.521642770 0.51426906

129 0.563800 41 0.534576 36 0.521658 99 0.514833 52 0.510725 49

186 0.563800 42 0.534576 38 0.521659 01 0.514833 58 0.510772 83

258 0.563800 42 0.534576 38 0.521659 01 0.514833 59 0.510787 23 0.508014 58

n* 2.7994626 3.8025288 4.8045838 5.8065000 6.8072904 7.9007577

aReference �5�.
bReference �11�.
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various doubly excited states of helium. However, as far as
1,3D� states are concerned, the calculations are limited to
�3dnf , n
6� of helium. This is clearly reflected in Table I
and II. As no previous calculations for energy values of
3dnf �1,3D�� �n=7–12� states of helium exist, no comparison
with the present results is possible.

Doubly excited states could also be detected in electron
impact excitation experiments �22,23� where both dipole al-
lowed and forbidden transitions are possible. The energy lev-
els above the ground state of helium can be observed in
electron energy loss spectra. We predict the peak positions at
71.902, 72.331, 72.541, 72.660, 72.736, 72.792, 72.823,
72.850, and 72.895 eV in the electron energy loss spectra

corresponding to the transitions 1s2→3dnf�3D�� �n=4–12�,
respectively. The ground state energy of helium is taken
as −2.903 784 1 a.u. �24�. Conversion factor 1 a.u.
=27.211 383 86 eV �25� is used.
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