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The formalism of complex rotation of the radial coordinate is studied in the context of time-dependent
systems. The applicability of this method is discussed and illustrated with numerical examples involving atoms
exposed to electromagnetic field pulses. Complex rotation proves to be an efficient tool to obtain ionization
probabilities and rates. Although, in principle, any information about the system may be obtained from the
rotated wave function by transforming it back to its unrotated form, a good description of the ionized part of
the wave function is generally subject to numerical challenges. It is, however, found that the combination of
complex rotation and Floquet formalism offers an alternative and promising possibility to retrieve the physical

information.
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I. INTRODUCTION

To describe processes induced when atomic systems inter-
act with electromagnetic fields or with impinging particles,
an adequate description of excited states is necessary. Of
special interest are resonance states. These are states that are
mainly localized, but with a coupling to the continuum. The
coupling can be due to the electron-electron interaction (the
Auger effect), as well as to static or time-dependent external
fields (field ionization). The large spatial overlap between
resonance states and bound states can result in substantial
transfer of population from the latter to the former when the
system absorbs energy. Due to the coupling to the con-
tinuum, the net result is an efficient path to ionization, often
manifested in strong resonances in ionization spectra.

A widespread theoretical approach to handle resonance
states is that of complex scaling (also called complex rota-
tion), see, e.g., Refs. [1,2]. The radial coordinate is then
scaled by a complex phase factor, and as a consequence the
energy positions and half widths of the resonances are ob-
tained as real, respectively, imaginary parts of complex ei-
genvalues to a non-Hermitian Hamiltonian matrix. The
imaginary part, the half width, gives directly the transition
rate from the localized part of a resonance state due to the
coupling to the continuum. For states that decay through Au-
ger emission the method has, in its traditional form of uni-
form scaling, been combined with a number of calculation
schemes such as Hylleraas wave functions [3-5], configura-
tion interaction [6], many-body perturbation theory [7-9],
parametric coordinates [10,11], or the hyperspherical har-
monic method [12]. Most studies have focused on the deter-
mination of resonance parameters, but the method has also
been employed to calculate resonances in the photoabsorp-
tion cross section [13—15] as well as electron-ion recombina-
tion cross sections, both in a nonrelativistic and a relativistic
framework [16-25]. Also states that couple to the continuum
due to the interaction with a static electric field have been
successfully treated with complex rotation [26-28]. Here, as
in the case of Auger decay, it is a time-independent interac-
tion that causes the decay. The interaction between an atom
and an ac field is in contrast time-dependent. With the Flo-
quet formalism by Shirley [29] it was shown that the com-
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bined atom-field system can, for a time-periodic field, any-
how be characterized by eigenstates and eigenvalues of a
time-independent, albeit in principle infinite-dimensional,
matrix. Upon diagonalization of this matrix the atom-field
interaction is included nonperturbatively; the atomic states
are dressed by the field. The combination of the Floquet
approach with complex rotation, proposed by Chu, Rein-
hardt, and co-workers [26,30,31], allowed for an efficient
inclusion of the field-induced coupling to the continuum. As
in the time-independent case, this results in complex eigen-
values (this time to the Floquet Hamiltonian matrix) and
again the imaginary parts give the transition rate to the con-
tinuum. This combination has since then successfully been
used to examine various strong field phenomena, a rather
recent review can be found in Ref. [32].

An alternative to the uniform complex scaling (used in the
studies mentioned so far) is exterior complex scaling, where
the scaling of the coordinates starts at some finite distance
from the origin. Also this method has been applied to obtain
resonance parameters in connection with electronic autoion-
ization [33,34], but it has been even more utilized to obtain
cross sections for electron impact ionization [35,36], and
nonresonant photoionization [37,38]. The key interest here
has not been the calculation of resonances, but to profit from
the fact that the complex scaling at large radial distances can
act as an absorbing boundary while at the same time the
unscaled inner region allows extraction of cross sections in
the same manner as with real coordinates.

The last decade has seen a rapid development of the abil-
ity to produce laser pulses of shorter and shorter time dura-
tion. Furthermore, the free-electron facilities coming into op-
eration will provide pulses that are also highly energetic. Due
to this development, experimental studies of several atomic
processes can nowadays be made in the time domain. Natu-
rally, this development has been accompanied by theoretical
efforts to handle truly time-dependent Hamiltonians and to
model the time-evolution of the wave functions. For this sev-
eral successful schemes aiming for straightforward solutions
to the time-dependent Schrodinger equation have been devel-
oped, involving both basis sets and finite difference methods,
see, e.g., Refs. [39-41].

The first authors that used the method of complex scaling
together with explicit time propagation of wave packets were
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McCurdy et al. [42,43], who argued [43] that the key fo
practical applications of complex coordinates to time depen-
dent problems is exterior complex scaling. More recent stud-
ies using the same approach can be found in Refs. [44,45].
However, 10 years ago Scrinzi and Piraux [46], in a calcula-
tion on two-electron atoms exposed to short intense laser
pulses, demonstrated convincingly that also uniform com-
plex scaling may fruitfully be applied to study dynamics.
Later related studies can be found in Refs. [47,48]. Regard-
ing the combination of the Floquet approach and complex
scaling, few attempts seem to have been made to use it to
study explicit time evolution, although an important excep-
tion is the work by Buchleitner er al. [49].

The most obvious benefit from complex rotation is the
ability to account for effects due to resonances when an atom
is exposed to time-dependent perturbations. However, as we
will demonstrate, the method has additional advantages
which are valuable also in the absence of resonances. For
instance, convergence with respect to the number of basis
states is achieved with surprisingly few states for uniform
complex scaling. The purpose of the present work is to fur-
ther investigate the possibilities with this type of scaling. We
have used three different procedures, all based on uniform
complex rotation, to solve the time-dependent Schrodinger
equation for our model system; the hydrogen atom exposed
to a short laser pulse. Two of the methods solve the time-
dependent Schrodinger equation directly, while the third
method utilizes the Floquet formalism. The basic concepts
with complex rotation are reviewed and discussed in relation
to the solution of explicitly time-dependent problems in Sec.
II. We penetrate especially the question of what information
can be obtained from the time-propagated complex rotated
wave function. In this respect we show, in Sec. III C, that the
Floquet formalism offers unique possibilities. Numerical ex-
amples supporting these findings are shown in Sec. IV, where
also solutions with and without complex rotation are com-
pared, and the dramatically improved convergence for the
latter is discussed.

II. COMPLEX ROTATION

In this section we review and discuss the proper calcula-
tion of different quantities with complex rotation. Of special
interest is the form of the inner product. This has earlier been
discussed in detail by Moiseyev et al. [50], who introduced
the label ¢ product. A later study focused on the time-
dependent case [51]. As will be discussed below our conclu-
sions about the inner product in a time-dependent framework
differ from those of Ref. [51].

The complex rotation of the Hamiltonian, H — H ? is usu-
ally performed by a direct transformation of the radial vari-
able

r— re'. (1)

A well-studied example is the one-particle hydrogenlike
Schrodinger equation without external fields which trans-
forms as
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For the discussion on complex rotation it is useful to note
that the same transformation can be obtained through the
rotation operator exp(A) [49], where

-6 -p+p-r)

A=
2h

3)

To see this we apply exp(A) from the left to the time-
independent Schrédinger equation

AHW(r) = EAW(r). (4)

Noting that exp(~A) is the inverse of exp(A), we insert unity
in the form of exp(—A)exp(A),

A He e (1) = B (). (5)
With the help of the Baker-Hausdorf lemma [52],

AHeh=H+ [A,H] + %[A[A,H]] + %[A,[A[A,H]]] 4o

(6)

it is readily shown that
I He A = HY (7)

for any Hamiltonian, H, that can be written as sums of the
operators r"" and p”, with n being a positive or negative in-
teger. In particular, this is true for the atomic Schrodinger
Hamiltonian in the presence of an electromagnetic field ex-
pressed in either length or velocity gauge, see further Sec.
III. We thus have

HOeAW(r) = EMV(r) (8)

and it is obvious that exp(A)¥(r) is an eigenfunction to H’
with eigenvalue E. The rotated eigenfunction, W(re'?), must
then, up to a possible constant, be obtained from the appli-

cation of exp(A) on W(r). From the fact that the operator A
can be rewritten as

R 0 0 i36
A=-—-r-p— —[p.r]l=ifr-V+— 9
2T P lpr]=i 5 )
and since exp(ifr-V)r=r exp(i6), which can be seen from a
Taylor expansion of the exponential operator, it is possible to
find this constant;

AW (r) = P02P (rei?). (10)

This constant assures that a normalized function stays nor-
malized after rotation as will be seen below. Similarly, a
rotated wave function can be transformed back to the unro-
tated one through the inverse transformation

M (peit) = ¢ B30 (r) (11)

Note finally that the eigenenergy, E, in Eq. (8) is nor affected
by the rotation.
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The rotation operator can now be used to investigate the
connection between calculations with and without complex
rotation. We start with how the inner product should be cal-
culated with rotated wave functions, a question that has been
discussed in quite some detail in the literature, see, e.g., Ref.
[51]. Starting with the expression used for ordinary unrotated
wave functions in the Hermitian formulation of quantum me-
chanics,

f P*(r)¥(r)av, (12)
we insert unity in the form of the rotation operators

f O*(r)e AW (r)dV = f [(e) D) [ P (r)dV.

(13)

For wave functions ® and W that vanish asymptotically, this
equals

f [eAD(r)[*e W (r)dV, (14)

since A is Hermitian. From Eq. (3) it is clear that if exp(fi)

rotates the wave function with 6, exp(—A) rotates it with —6.
The expression in Eq. (14) can thus be written in coordinate
form as

f O*(re )W (re'?)dve®?, (15)

where the complex constant follows from Egs. (10) and (11).
We note that with this constant it is also clear that for nor-
malizable states, complex rotation will be equivalent to a
variable transformation through Cauchy’s theorem. In addi-
tion, although the choice of normalization is to some extent
arbitrary, it is convenient that a wave function normalized
according to the usual inner product in Eq. (12) stays nor-
malized after complex rotation. It is finally worth noting that
if the unrotated wave function, ®(r), is real, then ®*(re=%)
will be equal to ®(re'?), ie., the inner product will be cal-
culated as

J D(re!®)W(re'?)dve’. (16)

This is the type of inner product always used in complex
rotation calculations, although often stated in a less formal
way. As an example Ref. [13] expresses it as “®* is defined
by taking the complex conjugate of all angular functions, but
not of the radial coordinates.” This inner product is, except
for the explicit appearance of the factor exp(3i6), what Moi-
seyev and co-workers have labeled the ¢ product, see Refs.
[50,51,53-55].

One might think that the question how to calculate inner
products after complex rotation is solved with the expression
in Eq. (15). The situation is, however, somewhat more com-
plicated. This complication is related to how calculations are
performed in practice. In a practical calculation the goal is
generally to obtain a finite number of solutions to a given
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Hamiltonian. The calculation is consequently usually con-
fined to a space that is finite, but still adequate to describe the
desired solutions. Typically this means that it is restricted in
r, for example, restricted to a box with »r<<R, and that it
allows only a finite number of nodes. As a consequence of
these restrictions, the space can now be spanned by a finite
basis set. The expansion in such a basis set can be found by
diagonalization of a matrix representation of the Hamiltonian
in the finite space. It is important to notice that the space
restrictions imply a modification of the Hamiltonian. If, for
example, the calculation is constrained to a space r<<R, this
is equivalent to the addition of a potential V(r) —o for r
=R. The original Hamiltonian and that of which we have a
matrix representation will in fact only have some eigenstates
in common, namely those of the original Hamiltonian for
which the space is adequate. The Hamiltonian obtained when
the space is restricted is further not possible to rotate as in
Eq. (7) since the implicitly added potential destroys the
equivalence between this rotation and the Hamiltonian ro-
tated through r— r exp(i6) as in Eq. (2). One clear manifes-
tation of this is that although the eigenvalues to the true
rotated Hamiltonian, Eq. (8), are real, those of its finite space
matrix representation, %, are generally complex. The fact
that this complexity arises due to the use of a restricted space
can be seen as follows. The asymptotic form of the con-
tinuum solutions to the Schrodinger equation for hydrogen-
like systems is proportional to

7z {r

~sin| kr — — In(2kr) - — + oy |, (17)
kao 2

where a is the Bohr radius and o, is the Coulomb phase

shift. The requirement that all eigenvectors should vanish at

the border of a finite space, R, i.e.,

V(r=R)=0, (18)

leads to a quantization of k. When r— rexp(i6), Eq. (17)
transforms to

. VA ) O
~sin(kre'”— . In(2kre'?) — -t a'g) ) (19)
0

For Eq. (18) still to hold, k must be rotated into the complex
plane so that it compensates the rotation of r. For Z=0 this
amounts to a transformation k— k exp(—i#), leading to

Ek*}Eke_Zio. (20)

For Z#0 the relation in Eq. (20) is an approximation. It
improves with increasing k, however. Hence it is the combi-
nation of complex rotation and boundary conditions that re-
sults in complex energies for the pseudocontinuum. Although
well-known, see, e.g., Ref. [56], this is not always pointed
out in the literature on complex rotation.

We conclude thus that Eq. (7) does not hold for a Hamil-
tonian that we can represent with a matrix, and consequently
a general eigenstate to the rotated matrix representation can-

not be obtained through operation with exp(/i). Again, only
those eigenstates for which the space is adequate, obey the
relation in Eq. (8). This might seem as a severe limitation,
but in practice all interesting cases fall into this category.

032502-3



BENGTSSON, LINDROTH, AND SELSTQ@

First, any bound state can be well-described in a finite space
(although this finite space may still have to be large). Sec-
ond, an outgoing wave packet, representing, e.g., an electron
leaving the system, can for a finite time be well-represented
in a finite space.

A. Calculating the eigenfunctions in a finite space

When we want to work with a matrix representation of the
Hamiltonian, it is reassuring to know that the form of the
inner product follows directly from matrix algebra and is a
consequence of the symmetry of the matrix. A general diag-
onalizable n X n-matrix has n right (column) eigenvectors,
R;, corresponding to n eigenvalues, \,. It has also n left (row)
eigenvectors, L;, corresponding to the same n eigenvalues.
Left and right eigenvectors associated with different eigen-
values are orthogonal to each other, i.e., Li~R]~:0 if \;# A
As is well-known, the left eigenvector of a symmetric matrix
(real or complex) is identical to the transpose of the corre-
sponding right eigenvector, while for a Hermitian matrix it
also has to be complex conjugated. Below we derive a gen-
eral relation between right and left eigenvectors to any ma-
trix representing an initially Hermitian operator that has been
complex rotated. The matrix representation of an unrotated
Hermitian operator is a Hermitian matrix B;

B:BRe+iBIm» (21)

where By, and By, are real matrices. Since B is Hermitian,
Bg. is symmetric and By, antisymmetric, i.e.,

B’ =B, - iBy,. (22)

The matrix elements in both By, and By, will be built from
terms which, when the matrix representation of the rotated
operator is constructed, are multiplied with exp(nif), where
n is a positive or negative integer given by the r-dependence
of each term. For example, in the matrix representation of
the Hamiltonian in Eq. (2) the kinetic energy terms are mul-
tiplied with exp(-2i6) and the potential energy terms with
exp(—i#). This will make the matrices By, and By, complex,
but they will still be symmetric, respectively, antisymmetric,
with respect to transposition, i.e.,

(B)T=B§. - B} . (23)

We now return to the question of how a left eigenvector to a
matrix relates to the corresponding right eigenvector. Ac-
cording to the definition, a left eigenvector to a matrix B is a
row vector, L, that fulfills

LB=\L. (24)

When the transpose is taken of both the left- and the right-
hand side of Eq. (24) it reads

(LB)"=\L"
=
B7L7=\L". (25)

Before proceeding we note that if B is symmetric, BT=B,
Eq. (25) is identical to the corresponding right eigenvalue
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equation and thus L’=R. If we further take the complex
conjugate of Eq. (25), we get

BT*LT* — )\*LT*
(=1

BLT=\*L". (26)

We see that if B is Hermitian, i.e., B'=B, \ is real and Eq.
(26) is identical to the corresponding right eigenvalue equa-
tion, and consequently L'=R. For the matrix in Eq. (23),
which has the symmetry of the matrix representation of the
rotated Hamiltonian, we have

(BT = (BE)* +i(Bf,)*. (27)

Since all the complexity in the matrices By, and By, comes
from the factors exp(ni6) introduced through complex rota-
tion, complex conjugation simply means that exp(nif)
—exp(—nif), which identically gives the matrix representa-
tion of the operator rotated with —§, i.e.,

B =B +iB; =B’ (28)
From Eq. (26) it now follows that
(BY)TLT=\*LT,
BL7=\L7, (29)

and we can conclude that the left eigenvectors of the matrix
after rotation with 6 are the complex conjugated transpose of
the right eigenvectors to the matrix after rotation with —#,

L’= R, (30)

where the eigenvalue associated with R~? is \* if that asso-
ciated with L? is . Equation (30) is valid for left eigenvec-
tors to all matrices, symmetric or not, produced by complex
rotation of an initially Hermitian matrix. It is further consis-
tent with the expression in Eq. (15). The ordinary Hermitian
formulation is found as the special case when 6=0.

B. Time development

We now consider the time development, which is gov-
erned by the Schrodinger equation,

iﬁg‘lf(r,t) =HWY(r,1). (31)

The rotation operator can again be used to obtain the corre-
sponding complex rotated equation,

A~ 19 ~ A A
eAihgt‘I’(r,t) =e"He eV (r,1)
&

d
ihE\P“’(r,t) =H"Wr,1), (32)

where W/=W(re'? ). When the Hamiltonian, H, is time-
independent, eigenstates to it multiplied with exp(—iE,t/#),
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where E, is the corresponding eigenenergy, will be solutions
to Eq. (31). The time evolution of a wave function that is not
an eigenstate to H can be found by expanding it in eigen-
states. In a practical calculation this expansion will be made
not in eigenstates to the true Hamiltonian H but in eigen-
states to the matrix representation of it. In the case of com-
plex rotation the pseudocontinuum eigenstates to the matrix
representation, H? will have complex eigenenergies, as in
Eq. (20). As a consequence the exponent in the time-
dependent part, exp(—iE,t/f), will no longer be purely
imaginary, and the magnitude of the time-dependent function
will, if >0, decrease exponentially when ¢ increases. A
rotated wave packet traveling out from the origin will thus be
strongly suppressed before it reaches the boundary of the
space used for its description. A rotation with §<<0 will con-
sequently result in the opposite behavior. Which conse-
quences does this have? Can we use the time-propagated
complex rotated wave function to obtain physical informa-
tion about our system? One approach to try and answer these
questions is naturally to rotate back the complex rotated
wave function to recover the unrotated one. If this is pos-
sible, all information should be available. In principle such a
back rotation can be done either by the variable transforma-

tion r— r exp(~i6) or by invoking exp(-A). We have studied
both these approaches in practice and they are discussed in
Sec. IV. Another possibility is to follow the procedure indi-
cated by the expression in Eq. (15). The identity between the
expressions in Egs. (12) and (15) holds at each instant in
time, as long as the wave function W(r,7) is well-represented
in the space we use to describe it. The original (time-
independent) norm can thus, at any time ¢, be recovered from
the integral between the time propagated wave function ro-
tated with @ and the complex conjugated corresponding func-
tion rotated with —6,

fq}*(r’t)q}(r’t)d‘/:f[q’_g(r,t)]*\I’(’(r,t)e3i”dV,

(33)

The norm calculated as on the right-hand side of Eq. (33) is
clearly identical to the norm in the Hermitian formulation, in
spite of the fact that the integrands themselves are not iden-
tical. The norm is calculated with the so-called ¢ product,
which in Ref. [51] is dismissed due to what is called the
“time-asymmetry problem.” Although a calculation as on the
right-hand side of Eq. (33) presents complications, we want
to emphasize that it is formally correct. The challenge for the
calculation is to preserve enough information in the time
propagated states W¢ (exponentially decreasing) and W~
(exponentially increasing) that the integrand on the right-
hand side of Eq. (33) remains finite. For long enough times
the numerical accuracy required during the time-propagation
will eventually grow beyond what is practically achievable,
although it might be possible for a limited time. With the
Floquet formalism, where the wave function at any time, z, is
obtainable from the eigenstates to the time-independent Flo-
quet matrix, the situation is radically different. Here it is
possible to directly construct the integrand on the right-hand
side of Eq. (33). This promising result for practical calcula-
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tions of the ¢ product will be further discussed in Sec. III C.
A related issue is that of the correct calculation of expecta-
tion values. The same argument as for the norm can be ap-

plied to a matrix element of a general operator O taken be-
tween states for which the restricted space is adequate.

Application of the operator exp(A) as before gives

J V(6,00 (1, 1)dV = J T (r, e AeADe e (x, )V
(=1

f W (0,0) O, (r,1)dV = f [V (r,0) e Oe W Y(r,1)e¥0aV
(=1

f ‘I’Z(l‘,t)é‘l’b(r,t)dv= f [W-%r,0)]* O™ {(r, 1)V,
(34)

where 0%=0(r— rei?), cf. Eq. (7). We conclude, in contrast
to what is stated in Ref. [51], that the so-called ¢ product will
for bound states and physical wave packets give the same
result as a Hermitian formulation for expectation values of
any operator which is possible to rotate with the rotation
operator, i.e., all operators which can be written as a sum of
operators r"” and p”.

With many schemes for time-propagation neither the pro-
cedure to propagate both W% and W¥ nor the back rotation
of the complex rotated solution will be practical due to the
numerical limitations. It is thus important to establish what
information we can get from W? alone. Consider the wave
function

W(r,1) = 2 d,())®,(r), (35)

where each @, is an eigenstate with energy E, to a matrix
representation of a time-independent Hamiltonian H,. The
set of @,’s thus span the restricted space to which we limit
our calculation. If also the full Hamiltonian is time-
independent, the time-dependence of d,(¢) is, as mentioned
above, readily obtained from the Schrodinger equation, Eq.
(31). We choose to keep that part separate and write

W(r,0) = >, e Enlte (1D, (r). (36)

Assuming that the restricted space is adequate to describe
W(r,t), it can then be complex rotated by application of

exp(A),

B3I 1) = AW (r 1) = eAE d,(HP,r). (37

The rotated wave function can also be expressed in eigen-
states to Hg, the time-independent part of the complex ro-
tated Hamiltonian,
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Vo(r,1) = > dA)DAr) = S, e Bt () Dir).  (38)
Thus

A d (HD,(r) = 7S d¥) D). (39)

Note that generally exp(i3 0/2)@3(r) +* exp(A)CDn(r) since
most of the states ®,,(r) will be eigenstates only to the matrix
representation of the Hamiltonian. If now a specific ®,(r) is
an eigenstate to the true Hamiltonian, and not only to a ma-
trix representation of it, then indeed

e/id)n(r) — ei30/2q)3(r) (40)

and consequently the coefficients d'g(t) in Eq. (38) and d,(7)
in Eq. (35) are equal. Furthermore, m this case E? will be
real and equal to E, %0 and thus also c in Eq. (38) and ¢, in
Eq. (36) are equal. The same conclus10n was also reached by
Scrinzi and Piraux [46]. The population of any bound state,
well-represented in the finite space addressed by the calcula-
tion, can thus be calculated as |d%]>=]c|%.

Consider now a general wave function W(r,?), e.g., rep-
resenting an atomic state after exposure to a laser pulse, de-
scribed in a restricted but adequate space. The complex ro-
tated counterpart, Wor,r), will be a superposition of
eigenstates d),f to a matrix representation of the complex ro-
tated Hamiltonian. This superposition may represent the situ-
ation discussed above; a state that is a mixture of a bound
part and a wave packet traveling out from the atom. The
eigenstates building up the wave packet will in general have
complex energies. The magnitude of the coefficients d: in
Eq. (38) will, when E, is complex, decrease exponentially
with time. The sum of the absolute squares of the d%s will
therefore after sufficient time approach the sum of the abso-
lute squares of coefficients of the bound part of the wave
function, or more precisely the bound part of the wave func-
tion that is adequately described in the restricted space, i.e.,
it will approach the survival probability,

> el @

i=bound

D diPr== > |dP=

i=bound

We have thus found that if the time-dependent Schrodinger
equation is solved with complex rotation, the coefficient pre-
ceding each bound state is identical to what would be found
in a Hermitian calculation, and thus its absolute squared
value can still be interpreted as the probability to find the
system in that particular state. Furthermore, after some inter-
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action, the sum of the absolute squares of all coefficients,
preceding bound as well as pseudocontinuum states will ap-
proach the survival probability of the system as time in-
creases. This statement also holds when resonances are
present. Important information about the process at hand can
thus be obtained from the time-propagation of W¥(r,7) only.

Finally we want to discuss one physically interesting
quantity that cannot be obtained with W%r,7) alone, the pho-
toelectron spectrum. To obtain it we see at least two possi-
bilities. The first is to back-rotate W(r,7) to obtain W(r,1).
How this is done in practice will be described in Sec. V B.
The second possibility is to utilize the decomposition in Eq.
(38) and the fact that the ¢ product norm, the right-hand side
of Eq. (33), is time-independent. Assuming a normalized
wave function at =0 we have

f[\I"‘g(r,t)]*\lfa(r,t)e3i0dv

=> f ;0@ (r) 1d% (1) DV(r)e¥0av

m,n

=2 [, (n]*d%n =1. (42)

For the bound states in the sum over n, each term [d,%(1)]*
d’(r) gives the probability to find the electron in that state.
For the part of the electron spectrum that lies in the con-
tinuum, the ionization probability per energy interval,
dP;,,/de, can be extracted through

dPigy _ (E[ 9(:)]%1“’0))’

43
de En (“43)

where € is the continuum energy and Ea is the (generally
complex) eigenvalue associated with P, (r) The sum over n
runs over the whole spectrum since each pseudocontinuum
state contributes over a wide range of energies, see further
the discussion in Sec. V. The above relation is analogous to
the optical theorem. By considering the Hermitian expecta-
tion value of the Green’s operator, é(s):l/ (H-¢g), it is
found that Im(W|G(&)| W)= m|(yh, | W)= 7d P,/ de, see, e.g.,
Ref. [13]. As previously discussed, expectation values calcu-
lated with rotated wave functions and operators using the ¢
product should reproduce the corresponding Hermitian re-
sult. Hence the expectation value may be calculated using
the rotated wave function and the rotated Green’s operator

GY(¢) instead of the Hermitian representation. By applying
the closure relation we find that

f (W) D, (r)e*?av f (D) W) i aV’

, 44
5 (44)
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which is equivalent to Eq. (43). Calculations using both Eq.
(43) and the back-rotated wave function are presented in Sec.
V.

III. METHOD

In the following we will be concerned with the solution of
the time-dependent Schrodinger equation, Eq. (31), where
the time-development is governed by the Hamiltonian H,

H=H,+H,, (45)

with H, being the time-independent part, e.g., for a one-
particle system
P>z

Hy="—"—- , 46
O om 4areyr (46)

and H; an explicitly time-dependent perturbation from a light
pulse. The interaction between an electron and the light pulse
is in the velocity gauge given by

Hy= n%p CAG). 47)

We work here in the dipole approximation and do not con-
sider any spatial dependence in the vector potential A. We
assume linearly polarized light and consider in most cases
sin?-shaped envelopes

A(t) = A, sin(wt + @)sin’(7t/T)z, (48)

where T is the pulse duration. Also the length gauge version
of Hj,
JA(1)

H;=—er P (49)
has been used to check for gauge invariance, but all the
presented examples are calculated in the velocity gauge. Our
prime interest is to investigate advantages and possible prob-
lems with complex rotation. As discussed in Sec. II, this
rotation is performed by the transformation r— re’’, which
also implies that p— pe~’.

To obtain a complete and finite basis set well-suited to
solve the Schrédinger equation, Eq. (31), we use so-called B
splines, see, e.g., Ref. [57]. The use of B splines in atomic
physics was pioneered by Johnson and Sapirstein [58]
20 years ago and later it has been the method of choice in a
large number of studies, as reviewed, e.g., in Ref. [59]. B
splines are piecewise polynomials of a chosen order k de-
fined on a so-called knot sequence, and they form a complete
set in the space defined by the knot sequence and the B
spline order [57]. If N is the number of knots there are N
—k B splines in the set. The radial part of the eigenstates to
the Hamiltonian, R, ¢, is expanded in B splines

N—k-1
MR, () =P, (r)= 2 EB(r), (50)
=2

where the first and last B spline have been removed. Hereby
the boundary conditions that P, ,(r=0)=0 and P, (r=R)
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=0 are imposed. Typically 40-70 points are used in the knot
sequence, distributed either linearly throughout the domain
or linearly in the inner region and then exponentially further
out. The last knot, defining the box to which we limit our
problem, is in most cases around 100 Bohr radii and the
polynomial order k is seven. The coefficients ¢ in Eq. (50)
are found by diagonalization of the matrix

%= eB¢, (51)

where
HY = f Bi(n)Y, (WH(re')B/(r)Y e, ()dV  (52)

and

B;;= f B(r)B;(r)dr. (53)

Equation (51) is a generalized eigenvalue problem that can
be solved with standard numerical routines. The angular
parts of the eigenstates are given by the spherical harmonics,
Y, and for each angular symmetry we get N—k—2 eigen-
states. For the lower energy eigenstates the box and the knot
sequence provide an adequate description of the real physical
space. For these states we find the solution to the true physi-
cal Hamiltonian. The higher energy eigenstates are deter-
mined mainly by the box. They are thus unphysical, but still
essential for the completeness of the basis set. As discussed
in connection with the relation in Eq. (20), the energy of the
latter will be complex.

For the solution to the Schrodinger equation, Eq. (31), we
have investigated three different procedures. Two of the
methods solve the problem on a time grid. With the first
method, Sec. III A, we work with eigenstates to Hg, ie.,
H”:Hg in Eq. (51), and Hf(t) is treated as a perturbation.
With the second method, Sec. III B, we use eigenstates to
Hg+H10(t,~) for each time interval, i.e., it is an expansion in
field dressed basis sets. The third method, Sec. III C, is an
implementation of the Floquet formalism. Here eigenstates
to the unperturbed Hamiltonian, Hg, are used to expand the
spatial part of the eigenstates to the time-dependent Floquet
Hamiltonian.

A. Time propagation in eigenstates to the unperturbed
Hamiltonian

Consider the expansion of ¥¥r,s), Eq. (38), in eigen-
states, <I>g, to the time-independent Hamiltonian Hg. To first
order in time the coefficients cia () obey

e+ Ar)= (o) + Arcl(1). (54)

Insertion of Eq. (38) into the Schrédinger equation, Eq. (31),
then gives
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X f [@;H(r)]*Hf(r,t)d).f(r)ewdv. (55)

Hence Eqs. (54) and (55) allow a stepwise evaluation of W
in time. The efficiency of this method is improved consider-
ably with some higher order Runge-Kutta scheme that can
provide a better estimate of cf (t+Ar) by weighting several c'f
at different times. The scheme used here is a fifth order
Runge-Kutta method with Cash-Karp coefficients [60]. This
scheme has also the advantage that it allows a simple error
analysis, which here is explored in an adaptive step-size con-
trol. We have further found that -calculation of
'H(t)exp[ iE(t+Ar)/h] and storage of c; (t)exp( iEt/h) is
numerically more stable than calculation of ¢; (t) and storage
of cg(t) This is due to numerical dlfﬁcultles in the calcula-
tion of exp[— 1(Ef E?)t/%] with complex eigenenergies.

B. Expansion in field dressed basis sets

Another possibility is to find the eigenfunctions to H(r;)
for each ¢;. Between the time-points the system is allowed to
develop according to H(z;). At the next point in the time grid
the system is just projected onto the solutions of H(7;;).
Assuming the solutions to the full Hamiltonian to be known
at the time 7;, i.e.,

Ht)|x") = EJX5), (56)

a state that is in a superposition of solutions to H%r;) will
develop in time as

[P (1)) = 2 xRy = [P (1, + M)y = D [y RyeEise

(57)

and can then be projected onto solutions to H(z;,;). For this
we need the closure relation

2 |)/i’+1§><xl+l| =1, (58)

where the labels R and L denote the right and left eigenvec-
tor to the Hamiltonian, H(t;,), as discussed in Sec. IT A.
There is an important difference between the Hamiltonian
expressed in the length, respectively, velocity gauge when
complex rotation is used. The matrix representation of the
field free Hamiltonian is symmetric. If the interaction with
the electromagnetic field is expressed in the length gauge,
this symmetry is preserved and the left eigenvectors are just
the transposes of the right eigenvectors, cf. Eq. (25). When
the interaction with the electromagnetic field is expressed in
the velocity gauge, on the other hand, the Hamiltonian will
be of the general form of Eq. (21), and the left eigenvectors
are distinctly different from the right eigenvectors. However,
standard numerical routines provide right as well as left
eigenvectors, and we can easily construct W(z,,,) in the new
basis
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|\P(ti+1)> = 2 |Xz1+lle><Xz+l|\P(t + At > 2 l+l|Xz+1

(59)

The procedure is then repeated from Eq. (57) to obtain the
wave function at the next time step. Compared to the method
outlined in Sec. IIT A, substantially fewer time points are
needed. On the other hand, the Hamiltonian has to be redi-
agonalized at every time step.

C. Floquet theory

The third and last method investigated in this work is
based on Floquet’s theorem [61]. We follow the formulation
proposed by Shirley [29] and truncate an infinite-
dimensional, time-independent matrix representation of the
Floquet Hamiltonian, H;. The quantum state vector is then
retrieved, at any finite time 7, from the eigenstates and eigen-
values of Hy. However, we differ from Shirley’s formulation
in that we examine the application of Floquet’s theorem to
quantum systems in the context of complex rotation. Com-
bining complex rotation with Floquet theory means specifi-
cally that we consider a non-Hermitian matrix H. The Her-
mitian description can be recovered with 6=0. Although the
combination of Floquet theory and complex rotation has
been used before, see, e.g., Ref. [32] and references therein,
we repeat the basic steps here in order to be able to discuss
the time propagation of wave functions.

For Hamiltonians periodic in time, H%(t+27/ w)=HYt),
we may make use of Floquet’s theorem and express the as-
sociated state vector as

Wi(r,1) = E ale ’EJ’/ﬁX(’(r ) (60)
with the constants a; % given by

al= f [x;(r,0)]*%’(r,0)e*’dV . (61)
0

/] . . . .
’fl"he X; states are obtained, along with the quasienergies €,
rom

< ) HIWE € xa(r 1. (62)

Thus exp(— i€ %/ ﬁ))(l (r,7) are solutions to the complex ro-
tated time- dependent Schrodinger equation, and conse-
quently they form a complete basis set. Furthermore, the
1mag1nary part of 6 gives the half width of the field dressed
state x; %r,t). The operator H’—ihd, is usually referred to as
the Floquet Hamiltonian.

An important property of the solutions )( easily seen
from Eq. (62), is that they evolve with the same periodicity
in time as the Hamiltonian describing the system. The peri-
odicity of X]'?, as well as that of the Hamiltonian, is frequently
used to expand both of them in complex Fourier series. The
idea is thus to expand X in products of a spatial function,
K; k(r) and a time- perlodlc function. Subsequently, the spa-
tlal functions are expanded in the box-normalized eigen-
states, @Y to the unperturbed Hamiltonian HY,

n’
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0

X0 =2 gl (r)= 2 " bdlr).

k=— k=—

(63)

If the X](? states, constructed using Eq. (63), are normalized at
time r=0, they remain orthonormal to each other at later
times, a property very convenient for an instantaneous basis
in space. The full Hamiltonian is given in the velocity gauge
for light linearly polarized along the z direction as

H0=Hg+ € E A etqwtpz (64)
g=—»
with
2w
w .
A=~ J A(r)e 4 ds. (65)
2 0

For monochromatic light we have only two nonzero A,’s
correspondmg to g= * 1. If the expansion of ¥ in the set of
functions q)n is known at time =0, the expression for the
coefficients aj?o in Eq. (61) can be given in a more convenient
form. Comparing the general expansion of ¥, Eq. (38), in
the unperturbed atomic states q)g at r=0, with that of Eq.
(60), i.e.,

2 dJ0)®)(r) = Eaexe(r 0), (66)

n

we find that

a —Ed”(O) f [x; (r,0)F*®(r)e* v

= 2 d’(0) E U (67)

k=—00

where the expansion in Eq. (63) and the orthonormality of
the basis ®’(r) are used in the last step. Finally, combining
Eqgs. (60), (63), and (67) we find the expression for d(’(t) as

dg(t) 2 (Ed 0) 2 (bJ—ZIn ) —iej‘-)t/ﬁ 2 €ikwtbﬁ’:.

k=—oc

!
n k' =—o0

(68)

The sum over j in Eq. (68) will in practice run over a finite
number of N, states. This number, N,, is furthermore identi-
cal to the number of included basis states ®(r). The num-
ber of B splines, discussed in connection with Eq. (50), along
with the number of partial waves is therefore what deter-
mines the number of basis states Xf-

For a wave function rotated in the opposite direction,

e, 1) = >, d (1) r), (69)

the expression corresponding to Eq. (68) is given by
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N . . —on
0([) 2 (2 d 0(0) 2 (bj . )e—z(ej) t'h E elszbj’](:, )
k=—

n k' =—c0

(70)

In Eq. (70) the relation € —(69)* is used, analogous to what
is discussed in connection w1th Eq. (30).
Combining Eq. (68) and Eq. (70) gives

[, %01 dl() = X (a;)*ale

Jid'

. 4
—t(ef—ej,)t/h

X 2 SR (71)
kk'=—o0

with

(@) ?-(E[d‘%on* ) bfkr)

K/ ==

(2 d9<0)2 (7" ) (72)

k=—oc

In disagreement with Buchleitner and co-workers, see Eq.
(36) of Ref. [49], we argue that e, in Eq. (71) is not to be
complex conjugated. For bound states as discussed in con-
nection with Eq. (42), [d;e(t)]*dg(t) gives the probability of
the system to be in the particular state <D,‘f. We want to em-
phasize that a numerically more stable approach to finding
this probability is to follow the procedure indicated in Eq.
(41) and compute |d’? using Eq. (68). For unbound states,
however, d is not given from d and a general expression
such as Eq (71) is required. Unlike the corresponding ex-
pressions obtained with the methods in Secs. III A and III B,
in which we would have to evaluate W~¢ and W7 separately
and stepwise in time, the convenient form of Eq. (71) allows
a simple numerical analysis of [d, a(t)]*d,f(t). We notice first
that as long as the sums over j and j' run over a finite
number of states, [d g(t)]*de(t) will eventually diverge be-
cause of the imaginary parts of e] and 66, However, for
moderate times, convergent results are obtamable with Eq.
(71). A higher density of pseudocontinuum states in the
imaginary region of ef, made possible by choosing a larger
box and/or a smaller scaling angle 6, will suppress this di-
vergence and thus prolong the applicability of Eq. (71). In
practice, however, since any numerical error is blown up by
the exponential factor, the divergence will generally occur
earlier than expected. The numerical error is, if larger than
machine accuracy, usually caused by the early truncation of &
in Eq. (63) necessary to keep the size of 2 down, as will be
discussed shortly. To reduce this error a cut in Im(e]‘?— eje,) is
introduced. It is important that with this cut the largest al-
lowed exponent is large enough to include all the significant
terms in Eq. (71) but still small enough to suppress the terms
that blow up due to numerical limitations. Also it is impor-
tant that the truncation of k is such that significant terms
associated with large exponential factors are accurately com-
puted. Checking whether Eq. (42) holds offers a possible test
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for accuracy. Finally we want to point out that expectation
values should in principle be possible to compute using this
technique as discussed in Sec. II B

We will now focus on how €7, bg”, and bja” are com-
puted in practice. By introducing Eqs. (63) and (64) in Eq.
(62) we obtain an infinite set of coupled equations:

2 E |:(E +kﬁw) n' nak’k

n' k'=—o
—Ak iy f [@, () *p.e 0D’ (r)e¥%aV | b T = €bl,

(73)

where Eg is the eigenvalue associated with CDf. An approxi-
mate solution to Eq. (73) is obtained through truncation of k,
—k,,<k=<k,,, in the Fourier expansion of Xf. This truncated
version of Eq. (73) is easily transformed to a matrix repre-
sentatlon asa(2k +1)N,-dimensional matrix, H The quan-
tities E and b] , are subsequently obtained as elgenvalues
and 1nd1v1dua1 elements of the corresponding right eigenvec-
tors. The (b ‘9”)*’5 are, as described in Sec. I A, found as
elements of the left eigenvectors. A set of 2(k,,+1)N, states
X] is generated in this procedure. However, as 1nd1cated ear-
lier, only N, of these states are required in Eq. (68). The
reason why not all states are included in Eq. (68) is that
several states obtained from the diagonalization of the Flo-
quet  Hamiltonian  represent the same  solution
exp(—iej‘?t/ f) Xf- This redundancy is seen from the following
transformation:

€— €+ mjﬁw, (74)

(r 1) — et a(r,t), (75)

with m; being an integer number. Now, as easily verified, Eq.
(62) remains satisﬁed after this transformation. Hence, both
X and exp(im; wt)x! X; are eigenvectors to the truncated ver-
sion of Eq. (73) Wlth eigenvalues €; and €;+mfiw, respec-
tively. Although they represent the same solunon to the ro-
tated time-dependent Schrodinger equation, a subtle
difference exists between the two states. This difference is

caused by the imposed truncation of k,
) . 0 .
€_l5jt/ﬁ)(j€(l',l) — e—tejt/h 2 elkle bﬁfq)z(r)
n

k=—c0
=4

—l(E +m; ﬁw)t/h im: thQ(r t)

=g z(e +m hw)t/ﬁ E elk'wtz bﬂﬂ H(r) (76)
n )

J.k'— —m;
k' =—c0
with k'=k+m;. Hence as k and k' are truncated, the two
formulations will use different sets of spatial functions Kjak
The last part of this section will be devoted to the limita-
tions of the method just described. One significant limitation
is obviously that Floquet’s theorem only applies to periodic
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perturbations. This means specifically that atoms exposed to
finite laser pulses cannot be treated within this formalism.
Several modifications have, however, been suggested to
evade this theoretical restriction. For pulses lasting a sub-
stantial number of optical cycles, one successful approach
[62] is to express the electromagnetic field as

ENzZ=Eyt)sinfw()t + ¢(1)]Z (77)

and treat the amplitude E(z), frequency w(r), and phase ¢(z)
as a slowly varying modulation on some periodic carrier
wave. Another possible modification is the use of the many-
mode Floquet theorem, as described by Ho and co-workers
[63], for systems exposed to multicolor lasers with incom-
mensurate frequencies. For sin>-shaped pulses with duration
of only a few optical cycles we would like to introduce the
possibility of yet another approach: If, instead of a single
laser pulse, a train of identically shaped pulses perturbs the
atom, the Hamiltonian becomes periodic in time. In this case,
Egs. (63) and (64) are adequate expressions if used with a
period defined by the pulse length rather than the period of
the carrier. Furthermore, if the single pulse consists of an
integer number of optical cycles (as will be considered in
this work), the Fourier expansion of A, Eq. (65), consists
generally of only six nonzero A,;’s. Now, the spatial indepen-
dence of A (as assumed in the dipole approximation) implies
that the interaction between the atom and the very first pulse
in the infinite sequence of pulses is identical to that experi-
enced between the atom and the single pulse in our original
problem. However, if we were to examine the system at a
finite time after its exposure to the first pulse, the two physi-
cal descriptions will obviously differ. Hence time has to be
divided into two regions; one in which the atom is exposed
to the single laser pulse and another in which it is not. In the
first region propagation using Floquet theory, as described
here, is applicable and in the second the field-free evolution
of the atomic states has to be used. Alternatively, if the fre-
quencies defined by the envelope and the carrier wave are
incommensurate, a bicolor laser field could be generated by
allowing for nonidentical pulses in the pulse train. The sys-
tem could then be treated with the many-mode Floquet theo-
rem. This alternative approach was earlier used by Huang
and Chu [64]. A second limitation of the method just consid-
ered is that the Floquet matrix usually becomes extremely
large in practice. However, only a fraction of the eigenstates
and eigenvalues are required which improves the situation,
see, e.g., the techniques used in Refs. [65,66]. Since we only
consider hydrogen here, diagonalization of the entire matrix
is still possible. Instead, we are faced with the difficulty of
selecting a complete set of Xf out of all eigenvectors ob-
tained from the diagonalization of H2. For the identification
of a complete set the basic problem is that we lack knowl-
edge of m;, see Eqgs. (74) and (75), for the different Xf—states
obtained. However, this knowledge could be retrieved
through the parameter

2k2|<b,‘2’_” v
X; = .
bR E e, ) b
k n

(78)

For infinite Fourier series, x; will differ by m; between two

states with quasienergies €; and €+mfiw, respectively.
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FIG. 1. (Color online) Upper panel: The population of the
atomic ground state of hydrogen obtained using the method of Sec.
III A. The atom is perturbed by a sin’-shaped pulse that has a peak
intensity of 1.5X 10" W/cm?, a central frequency of w=0.6 a.u.,
and a duration corresponding to four optical cycles. The scaling
angle @ is here 30°. Middle panel: The relative difference between
the population of the ground state as calculated using Floquet
theory, Eq. (68), and that obtained in the upper panel. Convergence
is seen with increasing k,,,, i.e., with increasing limit to the Fourier
series expansion of x;(r,f). A complete set of y; states is identified
based on Eq. (78). Lower panel: Identical to the second panel ex-
cept that the set of x; states is obtained by choosing those with
~hw/2<Re(¢) <hw/2.

Hence a complete set of X]Q is obtained from choosing those
with x; in any interval of unity length. The truncation of k
spoils this nice behavior. Nevertheless, the most converged
eigenstates are likely to be located in an interval centered at
x;=0. In practice, the interval could be expanded slightly to
include a minimum of N, states before choosing those best
satisfying the closure relation. Fortunately, however, for k,,
large enough to accurately describe the dynamics of the sys-
tem, N, states will generally be found having —0.5<yx;
<0.5 and the later modification is not necessary. Thus in
comparison (see Fig. 1) to the frequently used technique of
excluding all states except those with real parts of €; located
in some window of size fiw, this approach has two advan-
tages. First, it always identifies a complete set of x; states,
even for moderate values of k,,. Second, the states identified
are likely to be the most accurately described.

IV. EXAMPLES

In the following we aim to illustrate some of the numeri-
cal advantages and challenges related to the application of
uniform complex scaling to dynamical systems. We have
demonstrated in Sec. II that all physical information obtain-
able with a Hermitian formalism may be obtained also with a
complex rotated formalism. The drawback is that “left state”
refers to the Hamiltonian H~Y, instead of H?, and propagation
with H~% may not be very convenient. The following numeri-
cal examples will focus on the propagation of the “right
state,” W? only. In addition, to illustrate which numerical
benefits that may be achieved with complex rotation, we will

PHYSICAL REVIEW A 78, 032502 (2008)
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FIG. 2. (Color online) Population of the initial state and the sum
of the absolute squares of the amplitudes as functions of time for a
hydrogen atom initially in the ground state exposed to an oscillating
electric field with a sin?-shaped envelope with a duration of five
optical cycles. The maximum electric field strength is 10 a.u. (cor-
responding to a peak intensity of 3.5 X 10'® W/cm?), and the cen-
tral frequency is 2.0 a.u. (corresponding to a photon energy of about
54 eV). The thin black curve is the vector potential. The full (red)
curve is the population of the initial state in the velocity gauge
obtained as described in Sec. III A, which is checked to coincide
with the solution according to the methods of Secs. III B and III C.
The scaling angle 6 is here 15°. The dashed (green) one is the same
quantity obtained by numerical integration of the Hermitian
Schrodinger equation on a grid. The dash-dotted (blue) curve is the
sum Z,,|dg(t)|2 where the df’s are the coefficients in an expansion of
the rotated wave function in eigenstates of the unperturbed Hamil-
tonian, Hg. The inset shows how this sum converges towards the
probability of the system not being ionized, see the limit in Eq.
41).

also discuss to what extent physical information may be ex-
tracted from the rotated wave function.

We have argued, cf. Eq. (41), that the population of the
nth bound state can be obtained as |d,f(t) 2, which should be
independent of 6 as long as the allocated space is adequate.
If the left eigenstates of the unperturbed Hamiltonian, (I);H,
are known, each d’(7) is found through the projection

R
d’= f [, ()W O(r,1)e V. (79)
0

This is illustrated in Fig. 2, which shows the population of
the ground state of the unperturbed hydrogen atom when the
atom is exposed to a sin’-shaped laser pulse of a duration
corresponding to five optical cycles, a maximum electric
field strength of 10 a.u. (corresponding to a peak intensity of
3.5x 10" W/cm?), and a central frequency w of 2.0 a.u.
(corresponding to a photon energy of about 54 eV). The
population is seen to coincide with the result of a corre-
sponding Hermitian calculation. The latter is performed by a
split operator scheme on a spherical grid [41,67]. It has also
been checked that the methods of Secs. III A-III C all give
the same result. Since the amplitudes of the pseudocon-
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tinuum states in the expansion in Eq. (38) vanish exponen-
tially after the interaction, it is also seen that the sum of the
absolute square of all the amplitudes, ,|d%(#)|? in the limit in
Eq. (41), converges towards the survival probability of the
system. Interestingly, during the interaction this sum, indi-
cated by the dash-dotted curve in the figure, is not a strictly
decreasing function of time; in several intervals it increases.
These fluctuations are consequences of the fact that the for-
malism is not Hermitian when only propagation of the
“right” state W is considered. The anti-Hermitian part of the
representation of the Hamiltonian is the reason why the sum
En|d5(t) 2, which in general does not represent any physical
quantity, is not conserved in time. The anti-Hermitian contri-
bution from the matrix representation of the unperturbed
Hamiltonian, H? —(H? )*=2i3,,, Im(E’), will always lead
to a decrease in the magnitude of the amplitudes correspond-
ing to pseudocontinuum states since it is never positive
[Im(EZ) <0]. The anti-Hermitian contribution from the inter-
action alternates in sign, however, causing 2n|d,(f(t)| to in-
crease at certain times. Another manifestation of this phe-
nomenon is the fact that the eigenenergies of the full, time-
dependent Hamiltonian, Eq. (57), have, depending on the
phase of the field, positive imaginary parts in certain time
intervals. In order to avoid this increase in the magnitude of
the rotated wave function, He et al. [45], who used exterior
complex scaling as a way of imposing an absorbing bound-
ary, removed the complex scaling of the interaction term
altogether. For stronger fields, the sum 3,|d%(¢)|> may in fact
even exceed unity. This clearly demonstrates that it may not
be interpreted as any probability. Analogously, the integral
J|W¥r)[>dV does not have any meaningful physical interpre-
tation either. This disagrees with the statements made in con-
nection with Eq. (15) of Ref. [47]; the equation may hold in
the specific case of a single populated bound state, but it is
formally incorrect for the general case.

For weaker fields the fluctuations in the above-mentioned
sum are absent or at least very small. Since we know that the
sum eventually is to converge towards the survival probabil-
ity of the system, physical information may in this case be
extracted from the coefficients df also during the interaction
with the laser pulse. It has been demonstrated that for atoms
exposed to dc fields, the ionization rate may be found di-
rectly from the imaginary part of the ground state energy of
the full Hamiltonian [27]. Figure 3 demonstrates how ioniza-
tion rates may be found also for atoms exposed to ac fields
through the sum =,|d%(r)|?. Here a hydrogen atom is exposed
to an oscillating electric field with a constant amplitude of
0.1 a.u. (corresponding to a peak intensity of 3.5
X 10" W/cm?) between a two-cycle ramp on/off. The fre-
quency  is 0.7 a.u. (corresponding to the photon energy
hw=19 eV). The sum ,|d%? is shown for three different
choices of 6 on a semilogarithmic scale along with the prob-
ability of being in a bound state (in the velocity gauge). It is
clearly seen that after a certain time the three curves are
parallel on such a plot and that they all eventually coincide
with the final survival probability. Thus we may use this
time-dependent sum to assign an ionization rate to the pro-
cess. This rate may also be extracted from the imaginary part
of the quasienergy, eg, associated with the field-dressed
ground state of the Floquet Hamiltonian, cf. Eq. (62), of an
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FIG. 3. (Color online) The sum E,,|dg(t) 2, see the caption of
Fig. 2, during interaction between a hydrogen atom initially in the
ground state and an electric field oscillating with a constant ampli-
tude (indicated by the black curve). The field is “ramped on/off”
over a period of two optical cycles. This sum is shown for three
choices of 6, namely, from the top, 5° (full blue curve), 10° (dashed
red curve), and 15° (dash-dotted magenta curve). The oscillating
curve below these three is the population of all bound states in the
velocity gauge (full green curve). Finally, the survival probability of
the “ground state” of the Floquet Hamiltonian for monochromatic
laser light (dotted curve) is also shown. These curves are shown on
a semilogarithmic scale in order to demonstrate that they are all
parallel, i.e., they all correspond to the same ionization rate. The
field has a peak intensity of 3.5X 10" W/cm? a frequency of
0.7 a.u. (corresponding to the photon energy Aw=19 eV), and a
duration corresponding to 15 optical cycles.

atom exposed to a monochromatic field [30]. The corre-
sponding time evolution of the population of this state,
exp[2 Im(eg)t/h]:exp(—Ft/h), is included in Fig. 3 as a dot-
ted line. As is seen from the figure, the two procedures yield
the same ionization rate. In this particular case it is I'/#
=7.0X 107 a.u.=2.9x 10" s7".

One advantage of complex scaling, compared to the ordi-
nary Hermitian formalism, is that the coupling between
bound states and the continuum is adequately described with
surprisingly few pseudocontinuum states. In Fig. 4, where
again the population of the atomic ground state of hydrogen
is considered, this advantage is easily seen. As the number of
unrotated pseudocontinuum states increases, the population
converges towards that computed using complex rotation—
even when the number of unrotated basis states exceeds the
number of rotated ones by far. It should further be empha-
sized that the number of rotated states used in this calcula-
tion is not the lowest number possible for convergent results.
Longer pulses, corresponding to narrower energy distribu-
tions, require a denser set of unrotated pseudocontinuum
states. For the cases of complex rotation, on the other hand,
each pseudocontinuum state is, as we will discuss in the
following section, associated with a broader energy width
which makes accurate predictions possible with relatively
few states even for pulses with narrow frequency distribu-
tions.
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FIG. 4. (Color online) Upper panel: The population of the
atomic ground state of a hydrogen atom is computed with and with-
out complex scaling. In the latter case the calculation was per-
formed using 50 (blue line with circles) and 100 (red line with
triangles) atomic states for each angular symmetry. For 6=20°
(black line) the corresponding number of states is 30. As seen, the
significantly lower number of rotated states gives an accurate popu-
lation during the entire pulse. The better description is explained by
an energy width associated with each rotated pseudocontinuum
state. Lower panel: The vector potential, corresponding to a peak
intensity of 5.0 10'> W/cm? and carrier frequency of w=0.6 a.u.

V. TRANSFORMATION TO THE TRUE CONTINUUM

The fact that convergence of the “right” rotated wave
function, with respect to the number of pseudocontinuum
states, is achieved faster for higher values of # may be un-
derstood from the relation between rotated pseudocontinuum
states and rotated true continuum states. When the energy
spectrum of the continuum is discretized through a “box po-
tential,” one may somewhat simplified think of each pseudo-
continuum state as effectively representing an interval, with
a certain width, of the true energies. When complex scaling
is imposed, the width of this interval is increased, and as the
scaling angle 6 increases, so does the energy interval repre-
sented by each rotated pseudocontinuum state. This phenom-
enon is illustrated in Fig. 5, which shows the projections of a
particular box normalized complex rotated eigenstate onto
rotated continuum functions for the hydrogen atom. The lat-
ter behave asymptotically as outgoing plane waves. More
specifically the figure shows

Fl (k)= f [@, 5, (xe)e¥dv.  (30)

The left function, [CDn ¢m(D)]*, coincides with CDn ¢.m Since all
complexity arises from the complex scaling in this case. The
rotated outgoing wave is defined by

YR (re'®) = r[gl (re'®) +if  (re' )Y, (Q),  (81)

where fy, and gy, are the regular and irregular Coulomb
wave functions, respectively. This representation is chosen
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FIG. 5. (Color online) The figure shows the projection of a box
normalized pseudocontinuum state onto rotated analytical con-
tinuum states with outgoing, plane wave asymptotic behavior, i.e.,
F f’&m in Eq. (80). The x axis shows the energy of the analytical
continuum states. The half width of the distribution increases with
increasing 6. More specifically, the width of |F 3’ f,m|2 coincides quite
well with twice the absolute value of the imaginary part of the
energy of the box normalized pseudocontinuum state, Im(E,,). This
particular case corresponds to the €=0 channel with the scaling
angle #=5° and a box state with Re(E,)=2.0 a.u.

because of its behavior for large r; it falls off exponentially,
whereas any other linear combination of the two Coulomb
functions would grow exponentially. A program for calculat-
ing these functions numerically for complex arguments is
provided in Ref. [68]. The eigenenergy corresponding to the
box normalized state in Fig. 5 is complex, whereas the
eigenenergies of the ¢y, states are real. For the illustration
in Fig. 5 a “box energy” E‘9 with a real part of 2.0 a.u is
chosen, the angular quantum number € is zero and the scal-
ing angle 6 is 5°. The ﬁgure clearly shows a broad distribu-
tion in the projection F? n.o=o centered around the real part of
Ea The width of the dlstrlbutlon is dictated by the scaling
angle 0.

If we, in the €=0 channel, neglect the Coulomb potential,
both the outgoing wave and the pseudocontinuum states
have very simple analytical forms; the reduced wave
functions are rexp(if) Wpro=\2/ 2/ mexplikr exp(if)] and
rexp(z&)@nem(r)—\2/Rs1n(k r) with k,=nm/R. The latter
wave function is thus unaffected by the complex scaling,
although the energy E is, as in the Coulomb case, complex:

O— (hk,)? exp(- 219)/2m cf., the relation in Eq. (20). In this
context the projections F ¢ may be found analytically:

21 |E,]
mmR |EY? + &7 - 2|E¥e, cos(26)

|F ool = (82)

with &,= (fik)?/2m. Although the neglect of the Coulomb
potential is a rather crude approximation, the simple function
of Eq. (82) exhibits most of the relevant features of the one
which includes the Coulomb potential. For fixed “box en-
ergy” Ef, the function has its maximum value for
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¢ = |E|cos(26) = Re(E?), (83)

and the half width is
A
%‘ = |EYsin(26) = Im(E?). (84)

Numerical inspection shows that the identification of the
maximum of |F ,|* with the real part of EJ, as well as that of
the half width of |F{ |* with the imaginary part of E}, remain
very reasonable estimates also when the Coulomb potential

is included.

A. Obtaining the true wave function through back rotation

As we have seen, the wave function may be well-
represented with rather few basis states in a complex rotated
context. This raises the question of whether information con-
tained in the wave function is lost when complex scaling is
imposed—at least from a numerical point of view. Analyti-
cally, all information about the system should, in principle,
be obtainable from W(re'?) simply by a variable transforma-
tion back to the unrotated coordinate, i.e., r exp(—i6) is used
instead of r in the complex rotated wave function, as sug-
gested in Ref. [46]. It is not obvious, however, to what extent
this is feasible in practice. To illustrate how it can be done,
we use as an example the same simple case as above, namely
an isotropic wave subject to no interaction. If we start out
with a wave packet with the initial momentum distribution
o(k), its evolution is given by

” hi? 2 sin(k
W(r,t):f q;(k)exp(—i—t) \/jsm( r)deoo.
0 2m T r '

(85)

With no boundary condition imposed, the corresponding
complex rotated wave function, W%r,7), is obtained by the
usual substitution. Note that in this representation, our basis
functions, 2/ sin[kr exp(i6)]/r exp(if), grow exponen-
tially with . However, a propagating wave packet may still
be well-represented by these functions. The box representa-
tion of this rotated wave function is found as

fik2e~2i0
Pl (r0)=2,cf (— ——¢
box(7>1) %cnexp i o
2¢7sin(k,r) nar
XAy k= (86
R ret? 00 R (86)

0

where the coefficients ¢’ are obtained from W? by c?

=[5l f§ V2/R sin(k,r) \s‘r2n/_7'r sin(kre'®)exp(3i6/2)drdk.
The integral over r is easily done analytically. Now, if Eq.
(86) is a good representation of the rotated wave function,
the unrotated wave function should be reobtainable from

Wl by back substitution:

box
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FIG. 6. (Color online) The propagation of an isotropic outgoing
spherical wave subject to no potential in five different representa-
tions. From top to bottom: The true wave function |r¥|?, Eq. (85),
an unrotated box representation of the wave |rWy|?, the corre-
sponding representation of the complex rotated wave |r\If,fOX|2 in the
box, Eq. (86), the “back-rotated” wave function [rBR2 obtained
via a variable substitution, Eq. (87), and finally, the back-rotated
wave function obtained by applying the rotation operator, Eq. (89).
The scaling angle 6 is here 5°. The wave functions are shown at
three instances, namely t=3 a.u. (left), /=6 a.u. (middle), and ¢
=10 a.u. (right). The vertical bars in the four lowest panels indicate
the box size, which is R=30 a.u.

fik2e~2i0 2¢7sin(k, re”!
WBR(p )=, ct exp(— — t ¢ (kyre™™) Yoo
B 2m R r

(87)

Although complex scaling is not simply a variable substitu-
tion when a confining potential is imposed, this “back sub-
stitution” should still give us the true wave function back as
long as it has not reached the boundary. The fourth panel in
Fig. 6 demonstrates that the unrotated wave function may
indeed be obtained from the rotated one in this way. It also
demonstrates, in agreement with Ref. [42], that complex ro-
tation may provide a description superior to the unrotated
one. Figure 6 will be discussed in detail shortly.

The downside of this “back substitution” method is its
lack of numerical stability. It is evident that since the basis
functions at hand diverge as r becomes large, the upper limit
of the integration cannot be too large when projections and
expectation values are calculated in practice with these basis
functions. However, it must be chosen large enough to actu-
ally include the wave packet.

B. Restoring the wave function using the rotation operator

The rotation operator formalism, Egs. (3)—(11), represents
an alternative way to perform the back rotation. By diago-
nalizing the operator A=—6(r-p+p-r)/2#, the exponent of
the rotation operator, in a basis set consisting of, e.g., B
splines, we obtain a discrete set of eigenvalues, a;, and
eigenfunctions, a(r), i.e., a spectral representation of the
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rotation operator. Since A is Hermitian, the eigenfunctions
are orthogonal according to the ordinary Hermitian inner
product. Formally, with normalized eigenfunctions, the rota-
tion operator may now be written as

o= > e o)y
’

; (88)

which leads to the following expression for the back-rotated
wave function:

kmax

e‘A‘Iﬁ: E e_"k|: [ak(r)]*‘l'e(r)rzdr:|ak(r). (89)

k=k,

‘min

Analogous to adjusting the upper integration limit in the pre-
vious example, the sum in Eq. (89) may have to be truncated
such that —a; does not become too large. This is due to the
fact that the eigenvalue appears in the exponent, which
causes the sum to be very sensitive to numerical uncertain-
ties in the higher values of —a;. To determine this upper
limit, inspection of whether the norm of the resulting wave
function is unity may serve as a check of accuracy and com-
pleteness.

In Fig. 6 the propagation of a spherical, outgoing wave
packet which is not subject to any potential is shown in five
different representations. The first row corresponds to the
actual, unrotated wave function, Eq. (85), at three different
times. The second row is a box representation of the unro-
tated wave function, whereas the third row shows the corre-
sponding complex rotated wave function in the same box,
Eq. (86). The back-rotated wave function obtained from a
direct variable substitution, Eq. (87), is shown in the fourth
row, and the final row shows the back-rotated wave function
calculated using the rotation operator, Eq. (89). In Fig. 6, the
rotation of the Jacobian (#2) is not included in the notation
since it only constitutes a phase factor which does not affect
the absolute value. We see that |rW¥,.|? second row, is
strongly affected by unphysical reflections when the wave
packet reaches the box boundary. Referring to the wave
packet on the third row, |r¥{_ |?, which does not represent
any physics, we see that it is strongly distorted compared to
the other representations. This is due to the suppression of
high momentum components; the absolute values of the
time-dependent factors in the expansion in Eq. (86),
lexp(=ifhkZe~21%/2m) | =exp[~hk> sin(26)t/2m], are seen to
vanish more rapidly for higher values of k,. This distortion
delays the wave packet’s arrival to the boundary and there-
fore postpones the appearance of reflection effects. Interest-
ingly, since the “backwards rotated” basis functions, propor-
tional to sin[k,r exp(—if)]/r, are nonzero at the boundary,
WEBR on the fourth row may reproduce the true wave function
from W/ even at the boundary and beyond. Hence as is
clearly seen by comparing the second and fourth row of the
figure, a rotated wave function in a box may be able to rep-
resent the true wave function far better than an unrotated
wave function in the same box, cf. Ref. [42]. Since the rota-
tion operator representation is only well-defined in the space
spanned by the B splines, this behavior is not reproduced by
this method. As we see in row five, the wave function be-
comes unphysical as the true wave function reaches the
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FIG. 7. (Color online) The radial part of the wave function for
the €=1 channel of the wave function corresponding to a hydrogen
atom exposed to a sin’-shaped laser pulse of a duration T corre-
sponding to four optical cycles. The central frequency is w
=0.7 a.u., and the peak intensity of the field is 3.5 X 10'* W/cm?.
The upper panels correspond to the wave function rotated by 5°,
and the lower ones correspond to the back-rotated, physical wave
function. The times correspond to, from left to right, when the field
intensity is at its maximum, immediately after the interaction and
about 27 atomic time units after the interaction is over. Note that the
scales of the y axes differ between the upper and lower panels.

boundary, but up to this point the method works well.

Returning to the less trivial case in which the Coulomb
potential is included, it should be possible also here to obtain
the true continuum wave function from the rotated one. As
an example, a hydrogen atom exposed to a 4-cycle laser
pulse of central frequency w=0.7 a.u. (corresponding to a
photon energy of ~19 eV) and maximum electric field
strength E;,=0.1 a.u. (corresponding to a peak intensity of I
=3.5% 10" W/cm?) has been studied. Figure 7 shows the
time evolution of the £=1 component of the wave function.
Both the rotated and back-rotated wave functions are shown
during, immediately after, and at a time of about 27 atomic
time units, 0.65 fs, after the interaction is over. The scaling
angle 6 is here 5°. The back-rotated wave function is ob-
tained through Eq. (89).

As mentioned, the ability to reconstruct the true wave
function enables us to obtain information about the photo-
electron spectrum. For instance, the energy distribution of
the ionized electron, dP;,,/de, may be found. This is shown
for the above case in Fig. 8 along with the corresponding
prediction from Eq. (43), where the [d;ﬁ(t)]*df(t)’s are ob-
tained through Floquet theory, Egs. (71) and (72). The results
of the two methods are clearly seen to coincide. For this
specific case a clear peak corresponding to the absorption of
one photon may be observed. A smaller peak indicative of
two photon ionization may also be seen on a semilogarithmic
plot.

VI. CONCLUSION

The formalism of inner products in the context of uniform
complex scaling was reviewed in detail. We showed that it
may be formulated such that all physical quantities coincide
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FIG. 8. (Color online) The photoelectron spectrum for the same
system as in Fig. 7. The full (red) curve is obtained by using Eq.
(43) where the coefficients are calculated using Floquet theory, and
the dashed (magenta) curve is obtained by rotating back the rotated
wave function and projecting it onto continuum states, dP;,,/de
=3 ¢[(y glexp(=A)|[PU(T))|%. The inset shows the latter on a semi-
logarithmic scale so that a peak corresponding to absorption of two
photons may be seen clearly. The colored curves in the inset are the
contributions from the different channels; the blue, full curve cor-
responds to the =0 channel, the red, dashed curve to €=1, and the
green, dash-dotted curve corresponds to €=2.

with the results of a corresponding Hermitian calculation.
Specifically, left and right wave functions are expanded in
left or right eigenfunctions, respectively, to some complex
scaled operator. The left eigenfunctions are obtained in the
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same manner as the right ones, but with opposite sign of the
scaling angle. In the case of dynamical systems, the right
wave function is found by propagation with the rotated
Hamiltonian, H%(z), whereas the left wave function is ob-
tained from the Hamiltonian with the opposite rotation,
H ().

Furthermore, we demonstrated that uniform complex scal-
ing has considerable advantages when calculating ionization
probabilities. Numerical convergence is obtained faster when
we propagate with the rotated Hamiltonian H? for the right
rotated wave function than for the unrotated one for two
reasons. First, the whole spectrum of continuum energies is
covered by fewer pseudocontinuum states. Second, unphysi-
cal reflection effects at the boundary of the confining poten-
tial are, to a large extent, avoided. An important point here is
that the probability of finding the system in any bound state
can be obtained from the right rotated wave function alone.

Finally, physical information about the continuum state
was shown to be obtainable from the complex rotated wave
function by imposing the opposite variable substitution, as
well as by back-rotation with a spectral representation of the
complex rotation operator. It was further found that the Flo-
quet formalism offers a possibility to directly form the inner
product of the left and right wave function at any time from
the eigenstates to the time-independent Floquet matrix,
thereby a numerically much more robust path to the same
information is obtained.
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