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One of the remarkable features of quantum mechanics is the ability to ensure secrecy. Private states embody
this effect, as they are precisely those multipartite quantum states from which two parties can produce a shared
secret that cannot under any circumstances be correlated with an external system. Naturally, these play an
important role in quantum key distribution (QKD) and quantum information theory. However, a general
distillation method has heretofore been missing. Inspired by Koashi’s complementary control scenario [M.
Koashi, e-print arXiv:0704.3661 (2007)], we give a new definition of private states in terms of one party’s
potential knowledge of two complementary measurements made on the other and use this to construct a general
method of private state distillation using quantum error-correcting codes. The procedure achieves the same key
rate as recent, more information-theoretic approaches while demonstrating the physical principles underlying
privacy of the key. Additionally, the same approach can be used to establish the hashing inequality for

entanglement distillation, as well as the direct quantum coding theorem.

DOI: 10.1103/PhysRevA.78.032335

I. INTRODUCTION

Appeal to physical concepts such as the uncertainty prin-
ciple and entanglement formed the basis of the original se-
curity proofs of quantum key distribution (QKD). An uncer-
tainty relation between complementarity observables
inspired the first, Mayers’s security proof of the BB84 pro-
tocol [1]. Later, building on arguments from Lo and Chau
[2], Shor and Preskill [3] showed how BB84 could be under-
stood as a virtual entanglement distillation protocol, thereby
using the monogamy of entanglement to ensure the privacy
of the key. This method subsequently found wide application
not only to specific [4—7] and generic [8] ideal protocols, but
also to protocols including a description of realistic devices
[9]. Recently, Koashi combined the two methods [10] and
formulated a simple security proof for BB84 with uncharac-
terized detectors [11].

A somewhat different, more information-theoretic ap-
proach adapts classical schemes of extracting secret bits from
partially private data to the case in which the eavesdropper
holds quantum information. If X, Y, and Z are classical ran-
dom variables held by two honest parties Alice and Bob,
along with an eavesdropping third party, Eve, then a result by
Csiszar and Korner states that by one way communication
from Alice to Bob the honest parties can extract a key at a
rate of I(X:Y)—I(X:Z) bits from asymptotically many such
random variables [12]. Devetak and Winter showed how to
distill secret keys from tripartite quantum states at the quan-
tum version of this rate, obtained by replacing Bob’s and
Eve’s classical random variables with quantum states [13].
Building on a result by Renner and Kénig [14], Kraus, Gisin,
and Renner established the security of generic QKD proto-
cols operating at this rate using arbitrary universal hash func-
tions [15-17].

The essential difference between the two approaches lies
in the basis of privacy and the treatment of the eavesdropper.
In the latter, privacy is established directly. Alice and Bob
employ privacy amplification to eliminate any information
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Eve may have about their prospective classical key, even if
she holds quantum information. This general approach works
in any kind of cryptographic setting, classical, quantum, or
otherwise, provided Alice and Bob have some estimate of
Eve’s information. In the quantum setting, this estimate can
be obtained by assuming Eve holds the purification of the
quantum state held by Alice and Bob; that this limits her
information is the reason QKD is possible from this point of
view.

In the former approach, the honest parties no longer con-
cern themselves with the details of the eavesdropper, but
instead concentrate on creating a quantum state that can pro-
duce a secret key when appropriately measured. For ex-
ample, maximal entanglement will ensure privacy of a key
generated in any basis by the monogamy property mentioned
above. Entanglement is sufficient for this purpose, but un-
necessary; the broader class of states suitable for creating
keys are termed private states [18]. These are closely related
to maximally entangled states, but may also include addi-
tional systems, collectively called the shield. The shield does
not contribute directly to the key, but, as the name suggests,
serves to block its correlations from would-be eavesdrop-
pers. From this perspective, the success of QKD hinges on
the existence of quantum correlations, which implies that the
results of certain measurements are completely secret.

Each approach has its advantages. The physical picture is
perhaps more intuitive, tracing the origins of privacy to
physical concepts such as entanglement, complementarity,
and the uncertainty principle. On the other hand, the
information-theoretic approach has led to more general
proofs with higher lower bounds and lower upper bounds on
the secret key rate [13,15-17].

These results, specifically rates of secret key distillation,
have also been used to derive some of the central results of
quantum information theory, namely the hashing inequality
on the asymptotic rate of entanglement distillation and the
direct quantum coding theorem for the quantum channel ca-
pacity. In principle, it should be possible to arrive at the same
results in the physical picture, as every key distillation pro-
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tocol in principle leads to a private state distillation protocol
by performing the operations coherently [19]. Put differently,
the results from the information-theoretic viewpoint can be
used to construct such distillation protocols, but these have
not yet been fully understood from the more physical point
of view.

We provide the missing piece of the puzzle in this paper
by formulating a new characterization of private states based
on the uncertainty principle and using this to construct a
protocol using Calderbank-Shor-Steane (CSS) codes [20,21],
which distills private states at the quantum Csiszar-Korner
rate. The essential idea is that if and only if measurements on
Alice’s key system in either one of two conjugate bases can
be perfectly predicted by the other systems available to the
honest parties, the joint state is a private state and Eve can
have no correlation with the key. In particular, Bob’s key
system should be perfectly correlated with Alice’s, while the
shield may be used to predict her conjugate observable.

Here, privacy of the key rests on quantum-mechanical
complementarity, since the fact that either of the conjugate
observables could be predicted by the honest parties means
that Eve has no correlation with either. This echoes the re-
cent result by Koashi showing that secret key distillation is
equivalent to a protocol involving complementary measure-
ments he termed complementary control [22], and indeed our
work is inspired by these results.

By explicitly including Bob and the shield into the analy-
sis, the means of private state distillation become clear: Alice
merely needs to reveal some information about her key sys-
tem such that the other systems could in principle predict
both measurements. We shall demonstrate how the syn-
dromes of a CSS code are ideally suited for this purpose, and
that the resulting distillation protocol essentially amounts
to applying a slightly modified Holevo-Schumacher-
Westmoreland (HSW) theorem [23,24] twice. Constructing a
distillation procedure in this manner, one focused on the
shared quantum correlations, generalizes the quantum pri-
vacy amplification method of Deutsch er al. [25] ad recalls
the connection between quantum privacy and quantum co-
herence discovered by Schumacher and Westmoreland[26].

This approach also gives a new proof of the hashing in-
equality, which states that the rate of one-way entanglement
distillation using many copies of the state p,p is lower
bounded by the coherent information 1.(A)B)=S(B)-S(AB)
(the same lower bound applies to the extractable one-way
secure key rate). As discussed in [27], this result combined
with quantum teleportation provides proof of the direct quan-
tum coding theorem, which gives a lower bound to the quan-
tum channel capacity in terms of the coherent information.
The main difference from previous proofs is that we bound
Eve’s information about the key by the amount of informa-
tion that Bob can obtain about Alice’s conjugate basis mea-
surement, which then leads to an explicit construction of the
decoder.

The paper is organized as follows. First we give the char-
acterization of private states in Sec. I, and show how quan-
titative statements of complementarity such as the entropic
uncertainty principle of Maassen and Uffink [28] and a re-
lated mutual information tradeoff given by Hall [29] imply
privacy of the key. We then extend this to the case of ap-
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proximate private states in Sec. III, explaining the relation to
Koashi’s complementary control scenario. Section IV pre-
sents our main results, which we divide into two parts. We
first prove a one-shot distillation theorem showing how to
use the structure of CSS codes for private state distillation, in
a form useful as a building block for QKD security proofs.
We then give a distillation protocol based on these ideas that
achieves the quantum Csiszar-Korner rate. In Sec. V, we use
a coherent version of those arguments to prove the hashing
inequality. In Sec. VI, we discuss relation to previous work,
and we conclude in Sec. VII with a summary and open prob-
lems.

II. EXACT PRIVATE STATES

A perfect secret key shared by Alice and Bob is a uni-
formly distributed random variable about which the eaves-
dropper Eve has zero information, or more formally, «*5E
= ([ PL® PP ® pf for some pf, where Py:=|k)(k| is the
projector onto “standard” basis element |k). Note that this
choice of basis is arbitrary for each system. Although we use
a quantum-mechanical description, note that Alice and Bob’s
systems are essentially classical; states of this form are
sometimes termed ccq states to reflect this fact.

Private states, meanwhile, are quantum states for which
standard basis measurements by Alice and Bob yield a per-
fect secret key. When producing a key from an alphabet of d
letters, the key registers A and B are d-dimensional quantum
systems. Additionally, they may possess some auxiliary
“shield” systems that are not directly involved in creating the
key. These systems are nevertheless important as they are not
held by the eavesdropper and can shield the key correlations
from her. Although the shield may have several parts distrib-
uted between Alice and Bob, here we lump them together
into the system labeled S.

In contrast to the explicit reference to Eve’s system in the
definition of secret keys, the privacy of a state y*®S can be
determined solely from the systems held by Alice and Bob.
The canonical example of such an effect comes from a maxi-
mally entangled state, which by virtue of the monogamy of
entanglement creates secret keys upon measurement. Though
there is no shield in this example, it makes the point that the
quantum correlations between Alice and Bob’s systems are
enough to establish secrecy of the key.

Private states are in fact closely related to maximally en-
tangled states, as shown by [18]. To recapitulate their result,
first define a twisting operator to be a controlled unitary of
the form UABS:=3 jkP;‘ ® Pf ® V;?k for any arbitrary unitaries
V5. Then Theorem 1 of [18] states that y*#% is a private state
iff it is of the form

,)/ABS - UABS((IY;}B ® gS)UTABS, (1)

where & is an arbitrary state and @23 is the density operator
associated with the canonical entangled state |P5%)
= éEZ;Mkk)AB; note that actually only the V,, are relevant.
Clearly, measurement of the A and B systems results in a
secret key since the same key would result if the state were
first untwisted, and Eve cannot distinguish the cases in which
the state has been untwisted or not. Conversely, purifying a
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secret key and using the fact that Eve’s marginal state is
fixed along with the fact that purifications of a fixed marginal
are related by unitaries on the purifying system, i.e., Uhl-
mann’s theorem [30,31], guarantees the form of Eq. (1).

With the help of the uncertainty principle, we can formu-
late a different characterization of private states that empha-
sizes the relation of privacy to complementarity and does not
involve statements about Eve’s system. Consider a hypo-
thetical measurement by one party, say Alice, on her key
qubit in a basis conjugate to the standard basis. In this con-
text, “conjugate” refers to any basis whose elements give
random outcomes when measured in the standard basis. A
general conjugate basis has elements |X):= éEf;éem*ﬂk) for
some set of 0, € R such that LllEkei(oxk‘9>'k)= Sy

Due to the conjugate nature of the |k) and |X) bases,
complementarity places constraints on the predictability of
both measurements. In particular, the entropic uncertainty
relation of Maassen and Uffink [28] states that, for an arbi-
trary state p?,

H(Z") + HX") = log, d, ()

where Z* and X* are any nondegenerate observables having
eigenstates |k)* and |X)*, respectively, and H is the Shannon
entropy of the outcome probabilities, measured in bits.
Hence, if the outcome of Z is certain, then the measurement

of X must be random and vice versa.

To determine how much information is simultaneously
available, we can include the measurement devices them-
selves in the description, following Hall and Cerf er al.
[29,32]. Whatever information can be stored in separate de-
vices is clearly simultaneously accessible, so consider a state

PP and POVMs A€ and I'? that are restricted to systems C
and D, respectively. Denoting the classical conditional en-
tropy of Z* given the measurement result I'” by H(Z4|T?),
we have:

Lemma I (Complementary Information Tradeoff). For a
tripartite quantum state p*“P, conjugate observables Z* and

)?A, and arbitrary measurements A€ and o,

H(ZMTP) + H(X*|AC) = log, d (3)

where d=dim(A).
Proof. Consider arbitrary measurements A€ and T'°. Since

these can be performed independently simultaneously, we
can define the conditional marginal state p?k
1= TrCD[AjCFkD pACD~]/ P for py:= Tr[AjCFf p“P]. Measure-
ments of Z4 and X” on each of those states must obey Eq.
(2), which in the current context reads H(Z*|T'P =k,AC=))
+H(X*|TP=k,AC=j)=log, d. Averaging over the measure-
ment outcomes and using the fact that conditioning reduces
entropy, we obtain the desired result. |

Note that no restriction is placed on the ability of a single
system to be correlated with two complementary Alice ob-
servables, only that the correlations not be simultaneously
realized. Such is the case when p*? is maximally entangled;

PHYSICAL REVIEW A 78, 032335 (2008)

in the EPR state, for instance, Bob can predict either the
position or momentum of Alice’s system, but not both at the
same time.

The information exclusion principle bears directly on the
question of privacy, as conjugate information can be used to
exclude the eavesdropper’s information about the key. Define
the key to be the outcome of Alice’s observable 77, let Eve
hold D, and suppose that system C=BS, i.e., the remainder
of the systems under Alice and Bob’s control. Then if some
measurement A?S of the BS subsystem can predict the out-
come of Alice’s conjugate basis observable XA, Eve can have
no information about the key: H(X*|ABS)=0 implies
H(Z*|T')=1log, d. Thus, complementarity assures privacy of
the secret key without directly making statements about
Eve’s system. This line of thought leads to the new charac-
terization of private states:

Theorem 1 (Exact Private States). 'S is a private state
with (nondegenerate) key observables Z* and Z? iff for some

measurement AZS

(a) H(ZYZP)=0, (4)

(b) H(X*|ABS)=0. (5)

Proof. Start with the reverse (if) implication and suppose
¥'BS satisfies the two conditions. By the above argument,
condition (b) implies H(Z*|T'¥)=log, d and therefore
H(Z*)=log, d, whence Eve’s marginal states must be inde-
pendent of the key. As (a) implies the key is perfectly corre-
lated, "85 must be a private state.

To prove the forward (only if) implication, we construct
the measurement A®S from the twisting operator U5S
=3P ®V;,. First, condition (a) follows immediately for
Y'BS a private state. The joint probability for the conjugate
measurement is given by

Py =THYP5B} & A%
1 ‘ .
= 2 e TN © VP VDAY

1 4 _
= EE & (Ou=0y)) Tr[ (|j){k| ® &) UTBSAfSUBS]
jk

L= -
= TP © E)UAPUR],

where ﬁ;B is the conjugate of ﬁf in the standard basis. Con-
dition (b) follows by setting A%S:= UBS(IS;B QIS5 UBS 5o that
pxy o 5xy' .

From this viewpoint, privacy of the key follows from the
ability of one part of the honest players’ systems to predict
either the key or a complementary observable of the other
part; here we focused on Alice’s system, but clearly the same
result holds for Bob’s.

III. APPROXIMATE PRIVATE STATES

Of course, a realistic QKD protocol can never produce a
perfect secret key or a perfect private state and instead strives
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to create a good approximation. But what is a good approxi-
mation? Because the key is meant to be used in arbitrary
further cryptographic applications, the definition of approxi-
mate must be composable so that security statements about a
whole cryptographic process can be made by individually
examining the constituent parts. In this framework, a suffi-
cient notion of approximate secrecy is furnished by the prob-
ability that the actual key could be distinguished from an
exact secret key. According to Helstrom’s theorem [33], the
probability of distinguishing between the two quantum states
p and o is bounded by 3+ ;Tr|p—a]. Hence the trace dis-
tance Tr| p— o] is the important quantity. This motivates the
deﬁnition that a shared e-secret key, where € is called the
security parameter, is any p*BE that satisfies Tr|p*BE - kABE|
=2¢ for some perfect secret key «*5% [14,34].

We could analogously define e-private states to be states
that are e-close to exact private states in trace distance. These
will lead to e-secret keys since the measurement that creates
the key is a quantum operation, and the trace distance can
only decrease under quantum operations. However, the con-
verse is not true: States not e-close may nevertheless still
generate e-secret keys. Hence a better approach is simply to
say that /55 is an e-private state when the key measurement
leads to an e-secret key, with the eavesdropper system E
defined as any purifying system of ¢S,

Intuitively, the new characterization of exact private states
should be extendible to the approximate case; if Alice’s key
and conjugate measurements are almost perfectly predictable
by the BS systems, then the shared state ought to produce a
good approximation of a secret key. Defining “almost perfect
predictability” in terms of nearly zero conditional entropy, or
equivalently nearly maximal mutual information, will not
suffice, as this approach is not composable [35]. Instead, the
following two theorems show that an alternate definition of
approximate private states can be given in terms of concrete
measurements having small probabilities of error. The first
says that if Bob is able to distinguish Alice’s state measured
in either one of two conjugated bases, then they share an
e-private state, while the second is the converse. Only the
first theorem is needed when constructing a security proof,
but we provide both for completeness and to highlight the
connection between our framework and Koashi’s comple-
mentarity control scenario [22].

Theorem 2. A state y/*BS with nondegenerate key observ-
ables Z* and Z® is an (e,+Ve ) -private state if there exists a

conjugate observable XA and corresponding measurement
APS such that

=3 T(P! ® PHy™] = e., (6)
j#k

=2 T{(P} ® AP)yP] = e,. (7)
xXFy

Theorem 3. If /*BS is an e-private state with nondegener-
ate key observables Z* and Z2, then for any conjugate ob-

servable X* there exists a corresponding measurement ABS
such that

PHYSICAL REVIEW A 78, 032335 (2008)

pe=2 Ti{(P} @ P/ <€, (®)
Jj*k
= 2 TH{(P} ® Ay < 2¢- €. )
x#Fy

As the proofs are somewhat technical, we defer them to Ap-
pendix A.

IV. PRIVATE STATE DISTILLATION

With this characterization of approximate private states, it
becomes simple to construct a procedure to distill private
states from an arbitrary input. Alice simply needs to reveal
enough information about her system so that the states of the
B and BS systems can be reliably distinguished. The amount
of information she must reveal depends on the details of the
state, and no useful answer can be given in the general case.
But when Alice and Bob share asymptotically many copies
of an arbitrary state ¢85, two applications of the HSW theo-
rem give the distillation rate, which we show equals the
quantum Csiszar-Korner rate.

However, this distillation scenario contains the additional
subtlety that the information Alice needs to reveal ostensibly
comes from noncommuting measurements. Avoiding this
problem is where CSS error-correcting codes come into play,
as they enable the side information to be properly defined in
terms of commuting variables and also define the form of the
key system of the distilled state. CSS codes were used by
Shor and Preskill [3] in their proof of the BB84 protocol for
precisely the same purpose, and the following distillation
scheme can be understood as an extension of this method to
arbitrary private states. This section contains the main results
of this paper, which for clarity are subdivided into two parts:
How the CSS codes enable distillation when Alice’s state has
dimension d", and at what rate can private states be distilled
from many copies of an arbitrary resource state.

A. One-shot distillation

First we recall a few facts about CSS codes. A CSS code
encoding n—m,—m, qudits into n is defined by a set of m,
+m, (commuting) stabilizer operators, m. operators of the
form Z°=Z1® Z2® - -- ® Z°» for 0=s5;=d—-1, and m, of the
form X'=X"1®X2® ---® X for 0=t;=d-1. We have im-
plicitly used the definition s=(s;,---,s;) and the notation
that an operator raised to a string is simply the product of the
operators raised to the elements of the string. To simplify
notation, we adopt the following:|k)=X|k)® - --
=|(’D’<1>® e ® |<pkn>, and Py for Py ® -+~ ® P and similarly

for ﬁx in the conjugate basis.

The first set, the Z-type stabilizers, defines a code correct-
ing errors in the standard basis (dit errors, or amplitude er-
rors), while the second, the X-type stabilizers, defines a code
correcting phase errors. Here, and henceforth, the operators
X and Z are the generalized Pauli operators in d dimensions
[36] given by Z:=3 o k)k| and X:=3{ j|k+1)K|

=S wHT)(F], where w:= 2™,
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Measuring the stabilizers yields the amplitude and phase
syndromes @ and B, to which we associate projectors II,

and IT p» respectively. Since the stabilizers are products of Z’s

or X’s, these projectors can be expressed as

=2 c[aPkand ﬁﬂ:Exe[ﬁ]ﬁx where the [a] and [B] are

equivalence classes of standard and conjugate basis states
that all share the syndromes « and 3, respectively.

Commuting with the stabilizers (but not included in them)

i )_(j, one pair for

each of the n—m,—m, encoded qudits. Crucially, these may

also be chosen to be of Z and X type, respectively, an as-

sumption we make throughout. Let N and u be the measure-

are the logical or encoded operators Z; and

ment outcomes of all the logical operators {Z [1=j=n
—m,—m_} and {X |1 <j=<n-m,—m,}, respectively, and II,
=2k a1Px and I = 2xe] M]PX the associated projectors for
[)\] and [ u] the corresponding equivalence classes.

The idea behind one-shot distillation is for Alice to mea-
sure the syndromes a and S on her system and reveal a to
Bob. If the CSS code is properly chosen, this information
should make it possible to distinguish the corresponding
marginals of his key system and the shield, at which point

Theorem 2 would apply to key observables Zj and conjugate

observables }_(j. Bob only needs e, since the mere existence
of the conjugate basis measurement implies the secrecy of
the key. In QKD, measuring the encoded Z operators is
equivalent to privacy amplification, and the degrees of free-

dom in defining the logical operators Zj give rise to different
families of privacy amplification functions. Here we present
a one-shot private state distillation theorem useful for QKD
security proofs [37].

Theorem 4 (One-Shot Distillation). Let Alice and Bob
share an arbltrary state W55 with dim(4)=d" and purifica-
tion |)ABSE =3, Vi k)| @i )BSE. Suppose there exists a CSS
code with m, Z-type stabilizers and m, X-type stabilizers
whose syndromes a and B are associated with measurements

A% and ABS for which
=2 2 T(P} @ AL )Ty ] < e, (10)

a j*Fk

po=2 2 T (Py @ APt =e. (1)

B x#y

Then by one-way communication from Alice to Bob they can
distill an (e + Ve,)-private state of size d"<"x whose key is
the encoded value A.

Proof. Suppose that Alice measures the syndromes « and
B and makes « public. The post-measurement state is
|\If1>ABSERT:=Ea,ﬁﬂflﬁgﬁlf}”sﬂa)ﬂﬁy where R is a new
public register shared by all parties but T is held by Alice.
Coherently measuring A, with the partial isometry U52
produces

I
(W) = UBB2W ) = X5 VAL ([ W ABSERT| )52
k

Bob can determine the values of Z;‘ for all j with error prob-
ability
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= > (I} M) %3]

N#N

= > X X T} & A5 )IAITEwAA]
AEN B ke[\']

=2 X 2 TR e A7 IvY]

AEN @ ke[N]

=2 D TH(P! @ AL )IIAWAE]

a jFk

= €,

where we have used [l:[A,ﬁ?;]=0 and Eﬁﬁ?fl*‘. Alice’s
conjugate basis measurement can be accurately predicted by
first undoing UPB2 and then measuring ABS . An entirely
similar calculation shows that the resulting error probability
is less than €. Hence, by Theorem 2 V¥, is an
(€. +\e) -private state, whose key subsystems are the en-

coded subsystems A and B,. |

As stated, the above theorem only involves one-way com-
munication. However, it can easily be generalized to the sorts
of two-way error-correction protocols presented in [35]. The
idea is that, instead of making only one measurement, Alice
and Bob execute successive “partial” measurements of the
syndrome of the dit error correction code, each of which is
followed by a round of two-way classical communication.
Each measurement is still associated with a set of Z-type
operators, but the Z-type operators of the ith round of mea-
surement could depend on all their previous outcomes. One-
way error correction can be interpreted as the case in which
the Z-type operators are chosen independently.

B. Achievable distillation rates

Now we turn to the achievable distillation rates. Define an
(n,€) distillation protocol for 25 to be a series of local
quantum operations and classical communication such that
application on WABS=(WABS)®n produces an e-private state.
If there exists an (n,€,) protocol for every n, producing a
log, 7,-bit approximate private state, such that lim,,_,., €,=0,
then the fractional yield of private outputs to raw inputs de-
fines the achievable rate

log, 7,
R = lim 22T

n—o n

(12)

Finally, the supremum of achieveable rates is called the one-
way distillable privacy P_ (¢/85) of the state y/*55. In the
following, we use the label ¢, where necessary to denote that
the entropy or mutual information is computed using an ex-
tended version ¢/ “%5E of the state #/*#SE. Using the previous
result and a slightly modified version of the HSW theorem
given in Appendix B, we quickly get the following:

Theorem 5 (One-Way Distillable Privacy). Given conju-
gate observables Z4 and X“, consider an arbitrary state y/\Z5
and its extension z//:CBS obtained by copying the Z* basis of
A to C. Then

P_ (P = 1(Z*:B) - H(Z") + I(X":CBS) v
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Proof. Without loss of generality, we can assume that
d=dim(A) is prime by appending additional |k)* for which
the corresponding weights p;=0. Let C be under Alice’s con-
trol so that she can perform the copy operation and consider
YABS= (A CBS)en Pick a CSS code ¢ from the distribution C
given in Appendix C, so that the Z-type and X-type stabiliz-
ers give rise to universal hash functions (for a definition, see
Appendix B), and let m,= "7 -[H(Z*)-1(Z*:B)+44] and
M= o, d[H(XA)¢ —I(X": CBS)¢ +468] for a fixed 6>0.
Theorem 7 1mpl1es that the measurements Aak constructed
from these hash functions can predict Alice’s key with aver-

age error probability (€, .)o=6X 2%, Similarly, the aver-

age error probability of the measurements Alcgis in predicting
the conjugate basis observable is (ex,L,)CséQ‘”‘sa . Now ap-
ply Theorem 4 to each CSS code, where the shield is the
combined system CS, and average over the different codes.
Using the concavity of the square root and the fact that
H(XA)¢, =log, d, it follows that Alice and Bob can create an
e-private state having n[1(Z*:B)+1(X*: CBS),, - —-H(7")-84]

key bits, for e=(e,)c+ \J<EX’C>CS 6x27 16X 27, W

By Lemma 2, P_(yBS)=1(Z*:B)-1(Z*:E), so this
method achieves the same yield of secret key as the random
coding method used by Devetak and Winter [13].

Lemma 2. For conjugate observables Z* and X" and a
state  of the form | YA BSE=S\p kYA [k)C| @) BSE,
I(X*:CBS)=H(Z")-1(Z":E).

Proof. Rewrite |y, YABSE  as —Ex|5E}A|19 YCBSE - for
|9 )CBSE=ZCS, \p | k)C| @) PSE. Hence S(q‘}CBS) S(9555) for
all x. From the Schmidt decomposition, S(ﬂCB S) S(ﬁE)
=S(E) and S(CBS)=S(AE). Therefore,

I(X*:CBS) = S(CBS) - >, ¢,S(95%) = S(AE) — S(9555)

—S(E i ®gok) S(E)=H(Z") - (Z*:E).

|

An immediate corollary is that the distillable privacy of
an arbitrary state ¢/? without a specified shield system must
be no less than the coherent information I.(A)B):=S(B)
—S(AB); this can be seen as a weaker version of the hashing
inequality, which we will consider in the next section.

Corollary 1. P_(*®)=1.(A)B).

Proof. Pick any observable Z* and define the computa-
tional basis of A as its eigenbasis. Consider the purification
|ABE=S,\p k)2 @)BE of 4B, and note that I.(A)B)
=S(B)-S(E)=1(Z":B)-1(Z*:E), where the last equality fol-
lows from the fact that S(¢})=S(¢5) for all k. From Theorem
5 and Lemma 2, P_ (*8)=1(Z":B)-1(Z*:E)=I1.(A)B). A

V. HASHING INEQUALITY

Now we turn to the related question of entanglement dis-
tillation and show how the above analysis can be modified to
prove the hashing inequality on the one-way distillable en-
tanglement E_ (44%), which is defined analogously to
P_(4/B5). There are two main differences with the methods
used in the preceding section. The first is that for Theorem 5,
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it does not matter how the shield is split between Alice and
Bob, but of course for entanglement distillation Alice and
Bob must be able to locally untwist the private state. The
difficulty comes from the first step, in which Alice copies her
key to system C, which was then considered part of the
shield. Here, we avoid this problem by showing that after
Bob makes the Aﬁ measurement, he effectively has system
C. Thus, he has the entire shield, and can perform the un-
twisting operator himself.

The second difference stems from the definition of ap-
proximate private states as states that yield approximate se-
cret keys when measured. Because we must now perform all
measurements coherently, these results are not directly appli-
cable. Modifying them is possible, but we prefer to give a
more direct argument, which has the side benefit of yielding
a better approximation parameter.

Theorem 6 (Hashing Inequality). E_ (%) =1.(A)B).

Proof. The proof proceeds by successively performing the
A and A measurements coherently and showing how the
result is close to an entangled state. Purify "2 to |)*BE

=S4 p kYA o) BE. Without loss of generality, we can as-
sume that d=dim(A) is prime by appending additional states

|ky for which p,=0. Now define |W)YABE:=(|y)ABE)en
=Sk @), where  p=py pk2 Py [K)
|kl>|k2>, n _|g0k >|(Pk2

Now suppose Al1ce picks a CSS code c fro{l1 the distribu-
tion C described in Appendix C with m, Z-type and m,
X-type stabilizers, measures the dit and phase error syn-
dromes « and B, and declares them publicly. This transforms
the state into

W) == (13)

where R is a publicly held register.

Let m.= ow, d[H(ZA),/,—I(ZA B),+40] for some arbitrary
6>0. By Theorem 7, there exists a measurement A that
predicts Alice’s key with error probability e, such that
(€, >C<6><2"“sz Performing this measurement coherently
y1elds

[Wy) = 20 TIOITEVAL [ W)Y BEK) o, )R,

k.a.p

where the output is stored in system C. This state is essen-
tially identical to the one in which Bob simply has a copy of
Alice’s key,

[Wh) = > 15015 (14)
ap

where |W,)=|,)¢", as defined in Theorem 5, except that
Bob holds C. Computing the fidelity, we obtain

<‘P2|‘I’£>= 2 pk<(Pk|VAlju,k|‘Pk>BE
akelal

E pk<‘Pk|Ai,k|(Pk>BE =l-€,
akelal

using the fact that VA=A for 0=A=1. Since the fidelity
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bounds the trace distance via Tr|p—o|=2V1-F(p,0)? [38],
we have Tr|W,- V)| =212e¢, .
Now rewrite |‘I’2> as |‘I’2> 3 Vg KA 9,0BCE and let m,
10g2[I[H(XA)#, —I(X": BC),, +46]. By Theorem 7, there ex-
ists a measurement Af,c that can predict the outcome of a
conjugate measurement on A with error probability €, . such
that (e, )o=6X27"
herently measures Kﬂ and store the result in D. This gives

E HAHA, ABC'q, >ABCE|y'>D|a B>R

y.ap

5, Starting from |W}), suppose Bob co-

As before, this is essentially the same as the state |W7) in
which Bob has a copy of Alice’s string X in system D,

/_ o~
(W= 2 o I5T5%" %
x,a,f3

(15)

and a similar calculation to the one above shows that
Tr| W} - =21\2e,..

Implicit in rewrmng W) usmg Alice’s conjugate basis is
the fact that Vgy| 9,5 E=3,\p,(X|K)|k)C| @, )BE. Substituting
this in Eq. (15) gives

|} = d— > AR
\a" x,a,8

® 2 Vpro™ k) o) B
k

Bob can now decouple subsystem BCE by using the op-
erator UPP =3, .0 **PP® PE, and the result is an entangled
state in the encoded subsystem AD,

W = U

1 _

= — > T4 D
NP 4 Pa

_

® 2 Vpilk) @i °E. (16)
k

Since they never hold exactly |¥;) or |¥}), Alice and Bob
only end up with a good approximation to an entangled state.
To determine how good, we can use properties of the trace
distance. Call the unitaries implementing the coherent mea-
surements Ufc and UPP, respectively, and define WZCP

= UBPUBPUBC. Applying W to V| generates W, and by the
triangle inequality and unitary invariance of the trace dis-
tance, we have

Tr[W, - )| = 2(\2e.. + 26, ). (17)

The next step is to average over all CSS codes. Using the
concavity of the square root and the fact that the trace dis-
tance cannot increase under the partial trace, we obtain

Te[ WP — @AP| < 813 x 277, (18)

Finally, we must show that the resulting rate is given by
the coherent information. Since H(X%) v =log, d, (n—-m,
—m)log, d=n[I(Z*:B) ,+1(X":BC), ~H(Z"),~88]. By
Lemma 2, I(X*: BC),# H(ZA),ﬂ —1(Z*: E)w Clearly
H(Z%) y=H (ZA)w and similarly for the quantum mutual infor-
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mation of Z4 with B or E. Since 1(A)B),, =I(Z*:B),
—I(Z*:E),, as in Corollary 1, (n—m,—m,)log, d=nl.(A)B),
—8nd, which concludes the proof |

VI. RELATION TO PREVIOUS WORK

The present work is an outgrowth of earlier work on pri-
vate states by one of us [39] and draws much inspiration
from the work of Koashi [10,22]. In particular, Theorems 2
and 3 are closely related to the first two theorems of [22], in
which Koashi defines the two protocols of the complemen-
tary control scenario. It is easy to see that our condition on
the predictability of the key is equivalent to his condition on
the primary protocol, and that our condition on the measure-

ment ABS implies his condition on the secondary protocol.
Therefore, Theorem 2 is a corollary of the first theorem of
[22]. Although we were not able to show that the condition
on the secondary protocol implies our condition on the mea-

surement ABS, Theorem 3 can be proven using arguments
very similar to those found in [22].

Meanwhile, Theorem 4 corresponds conceptually to the
inclusion of the complementary control scenario in the secu-
rity analysis of [ 10], with several important differences in the
details. First, we do not consider parameter estimation at all,
while [10] presents a full security analysis for BB84. To
complete a security proof using our results, one would need
to determine what quantum states /'35 are compatible with
the output of the parameter estimation phase of the protocol
in order to apply Theorems 4 and 5. This can be done with an
estimate of the quantum channel noise obtained indirectly
from the experimental measurements. The advantage of
Theorem 4 is that it could be used to prove the security of a
more general set of QKD protocols, even those including
preprocessing. Second, [10] assumes that Bob’s conjugate
measurement is independent of 3, with the supplemental in-
formation supplied only after the measurement is made. In
our method, Bob uses the syndrome £ to construct the mea-

surement Kﬁs. Generally, the latter is no less powerful than
the former, and avoids the pitfalls of locking of accessible
information [40]. In Appendix D we provide a concrete ex-

ample in which allowing Kzs to depend on S yields a better
security parameter than if it were independent.

The smaller difference concerns the step in [10] of having
Alice encrypt the amplitude error syndromes using a pre-
shared secret key. This removes the need to use a CSS code
[41], but requires a key of size O(n log d) bits [in addition to
the authentication key, of size O(log n-log d)] and makes a
small but practically significant difference for QKD. Theo-
rem 4 can be modified to encrypt the syndrome a of an
arbitrary (not necessarily linear) code as follows. Supposing
Alice and Bob already share a perfect secret key € of the
same size as the amplitude error syndrome a. Alice publicly
transmits a+€ to Bob. He recovers e using € and can then
make the Ai measurement. The system R storing the value
of a is unknown to Eve and can be decoupled with the
operator Eal_[i@(XR)‘“ since this does not affect the key
measurements. We can now apply Theorem 4 directly on the
resulting correlated state. Using these ideas, one can easily
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show that the final security parameter would have a similar
form with or without encrypting of the dit error syndrome.

By adapting Koashi’s complementarity scenario, we are
able to construct a means for distilling private states from
arbitrary resource states at a rate given by the quantum
Csiszar-Korner bound. This complements the result of De-
vetak and Winter [27], showing more directly how physical
(quantum-mechanical) phenomena are responsible for the
privacy of the key. As mentioned before, it must be possible
to view their result as private state distillation by performing
the operations coherently, and indeed a twisting operator
plays an important role in their derivation of the hashing
inequality, specifically the operator U defined on p. 8 of [13].
Mathematically speaking, the difference in the two ap-
proaches can be traced to the origins of this operator: here
from the measurement used in the HSW theorem to deter-
mine the outcome of Alice’s conjugate measurement, there
from the quantum Chernoff bound via Uhlmann’s theorem.

A different approach to private state distillation is taken in
[42], whose ultimate goal is to show that key distribution is
still possible over channels whose quantum capacity is zero,
rather than give rates on private state distillation. The distil-
lation portion of the protocol accepts only certain inputs,
namely twisted versions of noisy entangled states, and thus
the distillation procedure works by untwisting the state and
then applying entanglement distillation. The difficulty in this
scheme then lies in determining the optimal combination of
twisting operator and noise such that the given input can be
expressed in this form. As such, no closed-form distillation
rate expressions can be given, and happily this is not relevant
to their goal.

Our method of private state distillation gives a new proof
of the hashing inequality, which then also implies a new
proof of the direct quantum coding theorem. This version
differs from previous work [13,43-48] in several ways,
mainly by the explicit use of CSS codes from the beginning
and the fact that the decoder is constructed from the mea-
surement used in the HSW theorem, rather than by decou-
pling Eve and appealing to Uhlmann’s theorem. This con-
struction resolves the open question raised in the conclusion
of [48] as here the decoder is directly linked to the bit and
phase syndromes of the CSS code.

Finally, we would like to point out the connections to
recent work on complementary channels. In [49-51], it has
been shown that a correctable channel implies that the
complementary channel is private, and vice versa. Theorems
2 and 3 are essentially a static version of this (dynamic)
result, applied to bipartite states instead of channels and
starting from different assumptions.

VII. CONCLUSION

We provide a characterization of private states in terms of
an information exclusion principle for complementary ob-
servables, and we generalize the security proof methods
based on entanglement distillation and the uncertainty prin-
ciple. This generalization is formulated as a one-shot distil-
lation theorem (Theorem 4). Exploiting this framework, we
give alternative proofs of the quantum Csiszar-Korner bound
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on distillable secret key (Theorem 5 and Lemma 2) and the
hashing inequality on distillable entanglement (Theorem 6).

One of the main applications of this work is of course to
QKD, particularly proofs for realistic protocols. These in-
volve more physical systems than just those describing the
keys and the eavesdropper, and one challenge has been de-
termining how to use information the honest parties have
about such systems. Including the shield system into the se-
curity analysis and picturing the QKD process as private
state distillation gives a general method for doing so, a point
also emphasized by Koashi [10]. The importance of these
extra systems is how they contribute to knowledge of hypo-
thetical conjugate basis measurements made on the key sys-
tem of either party.

This is dramatically exemplified by Koashi’s security
proof of the BB84 protocol with uncharacterized detectors,
which proceeds by noting that this protocol directly furnishes
Bob with an estimate of Alice’s conjugate basis result, re-
gardless of the detector details. Our results provide a more
detailed and complete picture of how shield systems contrib-
ute to privacy, which should expand the range of protocol
and device imperfections that can be treated. For instance, it
would be interesting to investigate the unconditional security
of QKD protocols that are not permutation invariant [52,53].
This possibility is particularly appealing since Theorem 4
does not require a permutation of the input state nor does it
depend on a particular method of parameter estimation. We
plan to examine these issues and other implications for real-
istic protocols in an upcoming publication.

As a final remark, we note that our approach to the hash-
ing inequality is closely related to [48], which also makes
use of an information-uncertainty relation. In fact, that rela-
tion is simply the “quantum” version of Hall’s the comple-
mentary information tradeoff, Lemma 1, replacing the clas-
sical conditional entropy H with the -classical-quantum
conditional entropy S to obtain

S(Z*|E) + S(X*|B) = log, d (19)

for any state p5E, conjugate observables Z* and X*, and d
=dim(A). As the “classical” version can easily be generalized
to nonconjugate observables simply by using the general
form of the entropic uncertainty relation, it becomes reason-
able to ask if the “quantum” version of the same holds as it
does for strictly conjugate observables. Numerical evidence
supports this claim, and we explore this subject in more de-
tail in Ref. [54].
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APPENDIX A: APPROXIMATE PRIVATE STATE PROOFS

Here we present the proofs of Theorems 2 and 3.
Proof of Theorem 2. Write the purification of 25 as
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|¢>ABSE Ejk\pjk|]k>AB|gojk)SE for some (normalized) states
|(pjk . Copying the standard basis of Bob’s state to a blank
register |0)®" with the unitary CBE' yields |y, )ABSEB’
_E]k\p,k|]k>AB|k)B o] k>SE. Let WABB SE be the state after
measuring Z* and Z® and consider the related state
|¢1)ABB'SEzEk\spjk|J]>AB|k>B’|<pjk>SE. Performing the same
measurement on ¢’ and computing the trace distance be-
tween the states, we find

Te| )P — P =22 pj=2p. = 2e..
JjFk

(A1)

Observe that |y y*BB'SE= CAB|y)AB'SE|0)B Rewrite the
original state as |)Y*E'SE=3 \q |[9)4|9,)8"5E for some prob-
ability distribution ¢, and normalized states |9,)8"SE. Coher-

ently performing the A® 'S measurement with unitary U857,
where the extra system'T stores the result, we find
i) = CAEUP ST|y)A"SE|0)B|0)" (A2)

=2 g CERAOPNAT )T ST (A3)

Define |y})=3 L CAB|5C>A|0>B\/AB S| B SE[X)T; its fi-

Xl"’

delity with |y,)48"SET

(ly) =N1-p, =1 -¢€,. (A4)

In general, the fidelity between two quantum states is de-
fined as F(p, o) := Tr|p\a]. Note that |14,)*B8'SET is a private
state with key systems AB and shield B’ST. One way to see
this is to rewrite |X) in terms of |k),

’ \qx i
|43 = EE N il kY B\ AB'S| 9, )3 SE| )T
kx V1 —

Applying the unitary operator W2'=3 e %P¥® P re-
sults in a maximally entangled state |®)*? in the AB sub-
system. Since W57 i }) is a private
state.

|¢ >ABB SET UTB ST|¢ >ABB SET

If we now define , also a

private state since UB'ST acts only on the shield, it follows
from unitary invariance of the inner product that

F(lys DAY =T - e

Finally, bound the trace distance with the fidelity, using
the relation Tr|p—o|=\1-F(p,o)?. This implies Tr|y;%"
&{ABE | SZVE, and using the triangle inequality we obtain
Trl g%~ "] <2(e +e)). m
Proof of Theorem 3. Assume Eve holds the purification of
PS5 and measure AB to create the key. This yields y*PF
=3 jk(P? ® PP) 1//ABE(P§‘ ® P?). A simple and direct calculation
using the triangle inequality gives 2p, =< Tr|y/® - k*®|. Since
Y5 is an e-approximate private state, Tr|y/*PF — kAPE| < 2e.

Tracing out E does increase this distance, therefore p.=e.
To prove the analog statement for the conjugate basis, we

(AS)

must define a suitable ABS. For this we adapt the correspond-
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ing measurement from the purification of «*8%, which is a
private state. First bound the fidelity with the trace distance,
using the fact that 1-3Trlp—o|=F(p,o) [38]. Thus
F(J*PE k*BE)=1-€. Uhlmann’s theorem asserts that for

any purification |)PER of /B, there exists a purification

K)ABER of KABE such that F(J/BE | (ABE)
=F(|p)ABER |k)ABER) We can set R=SA'B’ and take
the former purification to be |y ABER
= A " and CPB" unitary op-

erations such that C*4[k)4|0)A" = |k)A[k)A".
By definition, |k)A#ER is an exact private state, and so is
VABER . CHAA' OB

3 YABER Since fidelity is invariant un-
der a unitary transformation, F(|y)ABSE|0)yA'[0)" |k’ YABER)
= F(|§)*BER [ )ABER). Hence there exists A|** such that mea-
suring P ®A'BR on |k"YBER produces the uniform distribu-
tion -5 Making the same measurement on
|¢>ABSEIO>A '|0)%" results in some probability distribution ..
Observe that measuring A’%% on |g)yABSE|0Y"'[0)8" is the
same as measuring Afs== (dO|A’B’A;BR|OO)A’B, on [)ABSE,
Since a quantum operation cannot decrease the fidelity,
we  immediately  have  F(|)ABSE|0)yA'|0)B |k’ YABER)

=F(Gyy>;0)- But

F(vaal >_ ’_2 VG = \[quy_ 1-p. (A6)
XFy

by the concavity of the square root function. Collecting the
inequalities, we find j, =2e- €. |

APPENDIX B: STATIC HSW THEOREM

Suppose a source described by the ensemble E={p,, ¢\}
distributes classical letters k €{0,1,...,d—1} to Alice and
quantum states ¢; to Bob. Alice would like to communicate
the value of k to Bob, using as few resources as possible.
Bob already possesses some information about k in the form
of ¢, but in general cannot reliably distinguish between all
these states. But Bob can learn & if Alice reveals some infor-
mation about k, a “hint” that narrows the set of ¢, to some
that he can reliably distinguish.

This is the “static” version, first studied in [55,56], of the
standard HSW scenario in which Alice actively encodes the
information s she wants to send to Bob using the signal
ensemble £ [23,24]. Typically this problem is considered in
the asymptotic setting of many identical and independent
samples from &. Alice then encodes her information into a
block of such samples and Bob performs a collective mea-
surement, a version of the so-called pretty good measure-
ment (PGM) [57], to decode the message. Properties of typi-
cal sequences and subspaces are used to prove that the PGM
has a low probability of error.

Although in the main text we are concerned with using
linear functions to generate the side information, in this ap-
pendix we shall consider the more general method of univer-
sal hashing [58] (also called 2-universal hashing), since it is
not any more difficult and random linear functions are uni-
versal. In universal hashing, the hint is generated by choos-
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ing a random f:{0,...,d"-1}—{0, ... ,m—1} from a family
F of hash functions and computing ¢=f(x). Each function
defines the subset S, of possible inputs having the same out-
put value; hopefully Bob will be able to distinguish between
the elements of this set. The family is called universal when
the probability of collision, f(x)=f(y) for x#y, is the same
as for random functions: Pr{f(x)=£(y)]=1/m. Put differ-
ently, the probability of any two elements being included in
some S, is also the same as if Alice chose the subsets com-
pletely at random, which is random enough for the procedure
to work.

In the i.i.d. scenario, Alice and Bob share n copies of the
state B=37"0p,PL® ¢, which we write as WA8=3,p, P!
® <pff for By the following static HSW theorem, a hint
roughly of size logy m=n[H(py)~x(pi. ) ]=n[H(Z")
—I1(z*:B)] suffices for Bob to learn k with exponentially
small average probability of error.

Theorem 7 (Static HSW Theorem for Universal Hash
Functions). For n copies of an arbitrary state of the form
/e =Z,f;(1)ka’2 ® cpf , fix 6>0. Then for a universal family of
hash functions f:{0,...,d"-1}—{0,...,m—1} where
log, m=n[H(Z*)—I1(Z*:B)+44], there exist measurements
Af(k),f such that

D
Pe= < > Tr[Af(k),e(Pk]> =6x2™"7. (B1)
{#k £k

Proof. Fix a 6>0 and start by Alice measuring her share

of the state in the computational basis. With probability

greater than 1—e for e=e 2, the resulting string K is typi-

cal, meaning k € 7={ €-27"HP10< ;< 2nHpi+nd)} [59],
If k is not typical, the protocol aborts.

If it does not abort, Alice randomly picks f from a uni-
versal family F and sends f(k) to Bob via the public channel.
This narrows the set of possible k to the subset Cy of typi-
cal elements of Syy,). Bob will try to determine k by making
a measurement to distinguish the ¢, for € € Cy(). For this he
uses the PGM defined by Eq. (11) in [23], which is repre-
sented by the POVM elements

Aﬁk>,e=( > QQeQ>‘”2QQkQ( > QQeQ)_m,

le Cf(k) e Cf(k)
(B2)

where Q and Q) are the projections into the typical sub-
spaces (subspaces spanned by eigenstates with typical eigen-
values) of ®" and ¢y, respectively For a specific f and k, a
bound for the average error probability of this measurement
is given by Eq. (17) of [23], except that we do not yet need
to average over all codewords,

Pe(k) =3 Trl (1 - 0)]+ Trl @i (1 — Q)]
+ 2 T0e00]+

le Cf(k)

where 7 is 1 if k is typical and O otherwise. In our case, we
are interested in the probability of error averaged over all f
and k, i.e., (P.(k));x. To compute it, we need the following
relations (see [23] for details):

(g (1-Q)]=<e. (B3)
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(Tlen(1- QW) =, (B4)
Qk = 2n2,pl-S(q;[)+n§(Pk, (BS)
2 o = 2nH(pi)+n6¢®n’ (B6)

kETZS

I0&°"Qll.. = 275, (B7)

where |M]., is the maximal eigenvalue of M. Since (@)
=", we have

(Pe(k))y = 5€+< > Tr[QquQQ[L]> =5e
k.f

#eCrik)

+ X Pr,{f(ﬂ)=f(k)]Tr[Q<kaQM]> :
k

neTy

Straightforward calculations give

1
<Pe(k)>k,f =5e+ %2”['1(1’[)"'”2:'1’[5(‘9[)"'2"5 Tr[Q¢®nQ¢®n] =5¢

+ l2nH(p[)—nS(¢)+nE[p[S((pi)+3n5

m
where for the last step we use the relation Tr[Q@®"Q@®"]
=[l0e*"0l|.Tr[¢*"]=[|0&*" O Choosing log, m

=n[H(p;)-S(®)+Z;p;S(¢;)+465] completes the proof. M

APPENDIX C: UNIVERSAL DISTRIBUTION FOR
STABILIZERS OF CSS CODES

The question we explore in this appendix is how to pick a
family of CSS codes such that both the Z- and X-type stabi-
lizers are universal hash functions. The problem is that the
two stabilizers are not independent; they must commute with
each other. The Z and X stabilizers can be represented by an
m, by n matrix M, and the m, by n matrix M, respectively,
where each entry is an integer modulo d. We have the fol-
lowing:

Lemma 3. Consider the set of all m,+m, by n matrices R
such that each row is orthogonal to the others and where
each entry is an integer modulo a prime number d. Let M, be
the first m, rows of R, and M, be the last m, rows of R. Then
the linear functions associated with M, and M are both uni-
versal.

Proof. Let r; be the ith row of R. All possible strings have
the same probability to be r;. Therefore, for any distinct n
dit-strings k and k', Prg[r,-k=r, ~k’]=§. This is not gener-
ally true if d is not prime. Now we proceed by induction.
Assume that we have a set R, of strings ry, rp, ... and r,
such that Prg[r;-k=r;-k'|1=i={]= j. Conditional on Ry,
the next row ry,; is uniformly distributed over the space of
strings orthogonal to the set R,. If r;-k#r;-k’ for some 1
=j=¢, then Prlr;-k=r;-r'|1=i=€+1]=0. So we can con-
sider only the case in which r;-k=r;-k’ for all 1=i=¢. In
that situation, k—k’ can be expended in any basis of the
space orthogonal to R, (the coefficients being integers from 0
to d—1). Pick one such basis. ry,; is uniformly distributed
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over all strings that are spanned by this basis, therefore
PrR_Re[rg+1 -k:r“l-k’]:ﬁ, where we assumed r;-k=r;-K’
for all 1 =i=<{. Including all possible cases, we deduce that
PrR[ri-k=r,-~k’-ISiS€+1]<d§+,.

Since there is no distinction between the order of the rows
of R, we conclude that any function associated with a matrix
composed of a subset of rows of R is universal. |

APPENDIX D: ON THE ONE-SHOT DISTILLATION
THEOREM

Parameter estimation aside, Theorem 4 is stronger than
the security proof of [10]. Constructing an example where
this is the case is not too difficult and we will simply give an

example in which the optimal Kgs for guessing Alice’s con-
jugate basis measurement is not independent of . Consider
two copies (i.e., n=2) of the state

1
| yABSE = 5(|()>A|0)B + A 1)B)| o)’ |0)E

1
S 0PI0)" = 11|81,

where |¢) and |¢,) are two different nonorthogonal states.
Bob can guess Alice’s key without an error by measuring his
state in the computational basis. His ability to predict the
conjugate basis will depend on the overlap of |¢) and |¢;).
Assuming this is not nearly maximal, Alice will have to pro-
vide Bob with some additional information, which in this

PHYSICAL REVIEW A 78, 032335 (2008)

case would be the result of measuring some set of stabilizers.
Measuring two stabilizers defeats their purpose, since then
no secret key can be distilled. Hence Alice measures either
X®X, X®1, or 1 ®X. The case where X®1 or 1 ® X is used
simply reduces to the case in which Alice and Bob only share
one state |/)AB5E. In that case, Bob’s minimum error prob-
ability of guessing Alice’s measurement in the conjugated
basis is given by 3—2\1—[(¢|#)* (which follows from
Helstrom’s result [33] for pure states) and the measurement
used is independent of 8. However, if X® X is used instead,
then the minimum error probability of the optimal measure-
ment given any S is -é—%\f'l—|<¢o|¢]>|4, which is smaller
than 3 —31—[(¢| ¢;)|>. For each value of B, the optimal
measurement is, for 8=0, the two projections IA’izo on the
range of the positive and negative parts of (¢§)®2—(¢f)®2
and the extra projection so that the sum of them is 1. For
B=1, the optimal measurement is the two projections 13@;1
on the range of the positive and negative parts of ¢g® ¢f
—¢f® ¢>§ added with an extra projection so that the sum of

them is 1. Since the projection f’fzo overlaps with both ﬁﬁzl,

the optimal measurement /’{gs cannot be independent of .
Despite this example, we have not shown that the
asymptotic rates of some protocols (for n— ) could not be

achieved using a measurement ABS that is independent of S,
but it seems reasonable to conjuncture that this is the case.

Even if it were unnecessary, allowing A2 to depend on B
does help to prove Theorems 5 and 6.
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